101
|
O'Donnell M, Chance RK, Bashaw GJ. Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 2009; 32:383-412. [PMID: 19400716 DOI: 10.1146/annurev.neuro.051508.135614] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of precise connectivity patterns during the establishment of the nervous system depends on the regulated action of diverse, conserved families of guidance cues and their neuronal receptors. Determining how these signaling pathways function to regulate axon growth and guidance is fundamentally important to understanding wiring specificity in the nervous system and will undoubtedly shed light on many neural developmental disorders. Considerable progress has been made in defining the mechanisms that regulate the correct spatial and temporal distribution of guidance receptors and how these receptors in turn signal to the growth cone cytoskeleton to control steering decisions. This review focuses on recent advances in our understanding of the mechanisms mediating growth cone guidance with a particular emphasis on the control of guidance receptor regulation and signaling.
Collapse
Affiliation(s)
- Michael O'Donnell
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
102
|
Abstract
Synapse development and remodeling are regulated by a plethora of molecules such as receptor tyrosine kinases (RTKs), a family of cell surface receptors that play critical roles in neural development. Two families of RTKs implicated in synaptic functions, ErbBs and Ephs, share similar characteristics in terms of exhibiting forward and reverse signaling. In this review, we will discuss the latest advances in the functions of ErbBs and Ephs at the synapse, including dendritic spine morphogenesis, synapse formation and maturation, and synaptic transmission and plasticity. In addition to signaling at interneuronal synapses, communication between neuron and glia is increasingly implicated in the control of synaptic functions. Studies on RTKs and their cognate ligands in glial cells enhance our understanding on the nature of 'tripartite synapse'. Implications of these signaling events in human diseases will be discussed.
Collapse
|
103
|
North HA, Zhao X, Kolk SM, Clifford MA, Ziskind DM, Donoghue MJ. Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling. Development 2009; 136:2467-76. [PMID: 19542359 DOI: 10.1242/dev.034405] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Eph receptors are widely expressed during cerebral cortical development, yet a role for Eph signaling in the generation of cells during corticogenesis has not been shown. Cortical progenitor cells selectively express one receptor, EphA4, and reducing EphA4 signaling in cultured progenitors suppressed proliferation, decreasing cell number. In vivo, EphA4(-/-) cortex had a reduced area, fewer cells and less cell division compared with control cortex. To understand the effects of EphA4 signaling in corticogenesis, EphA4-mediated signaling was selectively depressed or elevated in cortical progenitors in vivo. Compared with control cells, cells with reduced EphA4 signaling were rare and mitotically inactive. Conversely, overexpression of EphA4 maintained cells in their progenitor states at the expense of subsequent maturation, enlarging the progenitor pool. These results support a role for EphA4 in the autonomous promotion of cell proliferation during corticogenesis. Although most ephrins were undetectable in cortical progenitors, ephrin B1 was highly expressed. Our analyses demonstrate that EphA4 and ephrin B1 bind to each other, thereby initiating signaling. Furthermore, overexpression of ephrin B1 stimulated cell division of neighboring cells, supporting the hypothesis that ephrin B1-initiated forward signaling of EphA4 promotes cortical cell division.
Collapse
Affiliation(s)
- Hilary A North
- Department of Biology, Georgetown University, 334 Reiss Science Building, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
104
|
Sosa MS, Lewin NE, Choi SH, Blumberg PM, Kazanietz MG. Biochemical characterization of hyperactive beta2-chimaerin mutants revealed an enhanced exposure of C1 and Rac-GAP domains. Biochemistry 2009; 48:8171-8. [PMID: 19618918 DOI: 10.1021/bi9010623] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies established that the Rac-GAP beta2-chimaerin plays important roles in development, neuritogenesis, and cancer progression. A unique feature of beta2-chimaerin is that it can be activated by phorbol esters and the lipid second messenger diacylglycerol (DAG), which bind with high affinity to its C1 domain and promote beta2-chimaerin translocation to membranes, leading to the inactivation of the small G-protein Rac. Crystallographic evidence and cellular studies suggest that beta2-chimaerin remains in an inactive conformation in the cytosol with the C1 domain inaccessible to ligands. We developed a series of beta2-chimaerin point mutants in which intramolecular contacts that occlude the C1 domain have been disrupted. These mutants showed enhanced translocation in response to phorbol 12-myristate 13-acetate (PMA) in cells. Binding assays using [(3)H]phorbol 12,13-dibutyrate ([(3)H]PDBu) revealed that internal contact mutants have a reduced acidic phospholipid requirement for phorbol ester binding. Moreover, disruption of intramolecular contacts enhances binding of beta2-chimaerin to acidic phospholipid vesicles and confers enhanced Rac-GAP activity in vitro. These studies suggest that beta2-chimaerin must undergo a conformational rearrangement in order to expose its lipid binding sites and become activated.
Collapse
Affiliation(s)
- Maria Soledad Sosa
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
105
|
Hu T, Shi G, Larose L, Rivera GM, Mayer BJ, Zhou R. Regulation of process retraction and cell migration by EphA3 is mediated by the adaptor protein Nck1. Biochemistry 2009; 48:6369-78. [PMID: 19505147 DOI: 10.1021/bi900831k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Eph family of tyrosine kinase receptors and their ligands, the ephrins, participates in the regulation of a wide variety of biological functions under normal and pathological conditions. During embryonic development, interactions between the ligands and receptors define tissue boundaries, guide migrating axons, and regulate angiogenesis, as well as bone morphogenesis. These molecules have also been shown to modify neural activity in the adult nervous system and influence tumor progression. However, the molecular mechanisms underlying these diverse functions are not completely understood. In this study, we conducted a yeast two-hybrid screen to identify molecules that physically interact with Eph receptors using the cytoplasmic domain of EphA3 as "bait". This study identified Nck1 as a strong binding partner of EphA3 as assayed using both GST fusion protein pull down and co-immunoprecipitation techniques. The interaction is mediated through binding of the Nck1 SH2 domain to the phosphotyrosine residue at position 602 (Y602) of the EphA3 receptor. The removal of the SH2 domain or the mutation of the Y602 residue abolishes the interaction. We further demonstrated that EphA3 activation inhibits cell migration and process outgrowth, and these inhibiting effects are partially alleviated by dominant-negative Nck1 mutants that lack functional SH2 or SH3 domains, but not by the wild-type Nck1 gene. These results suggest that Nck1 interacts with EphA3 to regulate cell migration and process retraction.
Collapse
Affiliation(s)
- Tianjing Hu
- Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
106
|
Abstract
Signal relay by guidance receptors at the axonal growth cone is a process essential for the assembly of a functional nervous system. We investigated the in vivo function of Src family kinases (SFKs) as growth cone guidance signaling intermediates in the context of spinal lateral motor column (LMC) motor axon projection toward the ventral or dorsal limb mesenchyme. Using in situ mRNA detection we determined that Src and Fyn are expressed in LMC motor neurons of chick and mouse embryos at the time of limb trajectory selection. Inhibition of SFK activity by C-terminal Src kinase (Csk) overexpression in chick LMC axons using in ovo electroporation resulted in LMC axons selecting the inappropriate dorsoventral trajectory within the limb mesenchyme, with medial LMC axon projecting into the dorsal and ventral limb nerve with apparently random incidence. We also detected LMC axon trajectory choice errors in Src mutant mice demonstrating a nonredundant role for Src in motor axon guidance in agreement with gain and loss of Src function in chick LMC neurons which led to the redirection of LMC axons. Finally, Csk-mediated SFK inhibition attenuated the retargeting of LMC axons caused by EphA or EphB over-expression, implying the participation of SFKs in Eph-mediated LMC motor axon guidance. In summary, our findings demonstrate that SFKs are essential for motor axon guidance and suggest that they play an important role in relaying ephrin:Eph signals that mediate the selection of motor axon trajectory in the limb.
Collapse
|
107
|
Ho S, Kovačević N, Henkelman R, Boyd A, Pawson T, Henderson J. EphB2 and EphA4 receptors regulate formation of the principal inter-hemispheric tracts of the mammalian forebrain. Neuroscience 2009; 160:784-95. [DOI: 10.1016/j.neuroscience.2009.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/25/2009] [Accepted: 03/05/2009] [Indexed: 11/25/2022]
|
108
|
Cooper MA, Crockett DP, Nowakowski RS, Gale NW, Zhou R. Distribution of EphA5 receptor protein in the developing and adult mouse nervous system. J Comp Neurol 2009; 514:310-28. [PMID: 19326470 PMCID: PMC2724768 DOI: 10.1002/cne.22030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The EphA5 receptor tyrosine kinase plays key roles in axon guidance during development. However, the presence of EphA5 protein in the nervous system has not been fully characterized. To examine EphA5 localization better, mutant mice, in which the EphA5 cytoplasmic domain was replaced with beta-galactosidase, were analyzed for both temporal and regional changes in the distribution of EphA5 protein in the developing and adult nervous system. During embryonic development, high levels of EphA5 protein were found in the retina, olfactory bulb, cerebral neocortex, hippocampus, pretectum, tectum, cranial nerve nuclei, and spinal cord. Variations in intensity were observed as development proceeded. Staining of pretectal nuclei, tectal nuclei, and other areas of the mesencephalon became more diffuse after maturity, whereas the cerebral neocortex gained more robust intensity. In the adult, receptor protein continued to be detected in many areas including the olfactory nuclei, neocortex, piriform cortex, induseum griseum, hippocampus, thalamus, amygdala, hypothalamus, and septum. In addition, EphA5 protein was found in the claustrum, stria terminalis, barrel cortex, and striatal patches, and along discrete axon tracts within the corpus callosum of the adult. We conclude that EphA5 function is not limited to the developing mouse brain and may play a role in synaptic plasticity in the adult.
Collapse
Affiliation(s)
- Margaret A. Cooper
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - David P. Crockett
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, 08854
| | - Richard S. Nowakowski
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, 08854
| | | | - Renping Zhou
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, 08854
| |
Collapse
|
109
|
Luria V, Krawchuk D, Jessell TM, Laufer E, Kania A. Specification of motor axon trajectory by ephrin-B:EphB signaling: symmetrical control of axonal patterning in the developing limb. Neuron 2009; 60:1039-53. [PMID: 19109910 DOI: 10.1016/j.neuron.2008.11.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/07/2008] [Accepted: 11/11/2008] [Indexed: 11/17/2022]
Abstract
Studies of the innervation of limb muscles by spinal motor neurons have helped to define mechanisms by which axons establish trajectories to their targets. Related motor axons select dorsal or ventral pathways at the base of the limb, raising the question of how these alternate trajectories are specified. EphA signaling has been proposed to control the dorsal trajectory of motor axons in conjunction with other signaling systems, although the respective contributions of each system to motor axon guidance are unclear. We show that the expression of EphB receptors by motor axons, and ephrin-B ligands by limb mesenchymal cells, directs the ventral trajectory of motor axons. Our findings reveal symmetry in the molecular strategies that establish this aspect of nerve-muscle connectivity. The involvement of ephrin:Eph signaling in guiding both sets of motor axons raises the possibility that other signaling systems function primarily to refine or modulate a core Eph signaling program.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
110
|
Takeuchi S, Yamaki N, Iwasato T, Negishi M, Katoh H. Beta2-chimaerin binds to EphA receptors and regulates cell migration. FEBS Lett 2009; 583:1237-42. [PMID: 19306875 DOI: 10.1016/j.febslet.2009.03.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/16/2022]
Abstract
Ephrins and Eph receptors have key roles in regulation of cell migration during development. We found that the RacGAP beta2-chimaerin (chimerin) bound to EphA2 and EphA4 and inactivated Rac1 in response to ephrinA1 stimulation. EphA4 bound to beta2-chimaerin through its kinase domain and promoted binding of Rac1 to beta2-chimaerin. In addition, knockdown of endogenous beta2-chimaerin blocked ephrinA1-induced suppression of cell migration. These results suggest that beta2-chimaerin is activated by EphA receptors and mediates the EphA receptor-dependent regulation of cell migration.
Collapse
Affiliation(s)
- Shingo Takeuchi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
111
|
Siliceo M, Mérida I. T cell receptor-dependent tyrosine phosphorylation of beta2-chimaerin modulates its Rac-GAP function in T cells. J Biol Chem 2009; 284:11354-63. [PMID: 19201754 DOI: 10.1074/jbc.m806098200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The actin cytoskeleton has an important role in the organization and function of the immune synapse during antigen recognition. Dynamic rearrangement of the actin cytoskeleton in response to T cell receptor (TCR) triggering requires the coordinated activation of Rho family GTPases that cycle between active and inactive conformations. This is controlled by GTPase-activating proteins (GAP), which regulate inactivation of Rho GTPases, and guanine exchange factors, which mediate their activation. Whereas much attention has centered on guanine exchange factors for Rho GTPases in T cell activation, the identity and functional roles of the GAP in this process are largely unknown. We previously reported beta2-chimaerin as a diacylglycerol-regulated Rac-GAP that is expressed in T cells. We now demonstrate Lck-dependent phosphorylation of beta2-chimaerin in response to TCR triggering. We identify Tyr-153 as the Lck-dependent phosphorylation residue and show that its phosphorylation negatively regulates membrane stabilization of beta2-chimaerin, decreasing its GAP activity to Rac. This study establishes the existence of TCR-dependent regulation of beta2-chimaerin and identifies a novel mechanism for its inactivation.
Collapse
Affiliation(s)
- María Siliceo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | |
Collapse
|
112
|
Guidance from above: common cues direct distinct signaling outcomes in vascular and neural patterning. Trends Cell Biol 2009; 19:99-110. [PMID: 19200729 DOI: 10.1016/j.tcb.2009.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/19/2008] [Accepted: 01/05/2009] [Indexed: 01/13/2023]
Abstract
The nervous and vascular systems are both exquisitely branched and complicated systems and their proper development requires careful guidance of nerves and vessels. The recent realization that common ligand-receptor pairs are used in guiding the patterning of both systems has prompted the question of whether similar signaling pathways are used in both systems. This review highlights recent progress in our understanding of the similarities and differences in the intracellular signaling mechanisms downstream of semaphorins, ephrins and vascular endothelial growth factor in neurons and endothelial cells during neural and vascular development. We present evidence that similar intracellular signaling principles underlying cytoskeletal regulation are used to control neural and vascular guidance, although the specific molecules used in neurons and endothelial cells are often different.
Collapse
|
113
|
Colón-González F, Leskow FC, Kazanietz MG. Identification of an autoinhibitory mechanism that restricts C1 domain-mediated activation of the Rac-GAP alpha2-chimaerin. J Biol Chem 2008; 283:35247-57. [PMID: 18826946 DOI: 10.1074/jbc.m806264200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chimaerins are a family of GTPase activating proteins (GAPs) for the small G-protein Rac that have gained recent attention due to their important roles in development, cancer, neuritogenesis, and T-cell function. Like protein kinase C isozymes, chimaerins possess a C1 domain capable of binding phorbol esters and the lipid second messenger diacylglycerol (DAG) in vitro. Here we identified an autoinhibitory mechanism in alpha2-chimaerin that restricts access of phorbol esters and DAG, thereby limiting its activation. Although phorbol 12-myristate 13-acetate (PMA) caused limited translocation of wild-type alpha2-chimaerin to the plasma membrane, deletion of either N- or C-terminal regions greatly sensitize alpha2-chimaerin for intracellular redistribution and activation. Based on modeling analysis that revealed an occlusion of the ligand binding site in the alpha2-chimaerin C1 domain, we identified key amino acids that stabilize the inactive conformation. Mutation of these sites renders alpha2-chimaerin hypersensitive to C1 ligands, as reflected by its enhanced ability to translocate in response to PMA and to inhibit Rac activity and cell migration. Notably, in contrast to PMA, epidermal growth factor promotes full translocation of alpha2-chimaerin in a phospholipase C-dependent manner, but not of a C1 domain mutant with reduced affinity for DAG (P216A-alpha2-chimaerin). Therefore, DAG generation and binding to the C1 domain are required but not sufficient for epidermal growth factor-induced alpha2-chimaerin membrane association. Our studies suggest a role for DAG in anchoring rather than activation of alpha2-chimaerin. Like other DAG/phorbol ester receptors, including protein kinase C isozymes, alpha2-chimaerin is subject to autoinhibition by intramolecular contacts, suggesting a highly regulated mechanism for the activation of this Rac-GAP.
Collapse
Affiliation(s)
- Francheska Colón-González
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
114
|
Miyake N, Chilton J, Psatha M, Cheng L, Andrews C, Chan WM, Law K, Crosier M, Lindsay S, Cheung M, Allen J, Gutowski NJ, Ellard S, Young E, Iannaccone A, Appukuttan B, Stout JT, Christiansen S, Ciccarelli ML, Baldi A, Campioni M, Zenteno JC, Davenport D, Mariani LE, Sahin M, Guthrie S, Engle EC. Human CHN1 mutations hyperactivate alpha2-chimaerin and cause Duane's retraction syndrome. Science 2008; 321:839-43. [PMID: 18653847 PMCID: PMC2593867 DOI: 10.1126/science.1156121] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes alpha2-chimaerin, a Rac guanosine triphosphatase-activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase alpha2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance alpha2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant alpha2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that alpha2-chimaerin has a critical developmental function in ocular motor axon pathfinding.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Medicine (Genetics), Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - John Chilton
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Research Way, Plymouth PL6 8BU, UK
| | - Maria Psatha
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London SE1 1UL, UK
| | - Long Cheng
- Department of Medicine (Genetics), Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Andrews
- Department of Medicine (Genetics), Children’s Hospital Boston, Boston, MA 02115, USA
- Department of Neurology, Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wai-Man Chan
- Department of Medicine (Genetics), Children’s Hospital Boston, Boston, MA 02115, USA
| | - Krystal Law
- Department of Medicine (Genetics), Children’s Hospital Boston, Boston, MA 02115, USA
| | - Moira Crosier
- MRC-Wellcome Trust Human Developmental Biology Resource (Newcastle), Institute of Human Genetics, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Susan Lindsay
- MRC-Wellcome Trust Human Developmental Biology Resource (Newcastle), Institute of Human Genetics, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michelle Cheung
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London SE1 1UL, UK
| | - James Allen
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Research Way, Plymouth PL6 8BU, UK
| | - Nick J Gutowski
- Department of Neurology, Royal Devon and Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
- Peninsula Medical School, Barrack Road, Exeter EX2 5DW, UK
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
- Peninsula Medical School, Barrack Road, Exeter EX2 5DW, UK
| | | | - Alessandro Iannaccone
- University of Tennessee Health Science Center, Hamilton Eye Institute, 930 Madison Avenue, Suite 731, Memphis, TN 38163, USA
| | - Binoy Appukuttan
- Casey Eye Institute, Oregon Health and Science University, 3375 SW Terwilliger Blvd, Portland, OR 97239, USA
| | - J. Timothy Stout
- Casey Eye Institute, Oregon Health and Science University, 3375 SW Terwilliger Blvd, Portland, OR 97239, USA
| | - Stephen Christiansen
- Department of Ophthalmology, University of Minnesota, MMC 493, 420 Delaware St, SE, Minneapolis, MN 55455-0501, USA
| | | | - Alfonso Baldi
- Department of Biochemistry 'F. Cedrangolo', Section of Pathologic Anatomy, Second University of Naples, Naples, Italy
| | - Mara Campioni
- Department of Biochemistry 'F. Cedrangolo', Section of Pathologic Anatomy, Second University of Naples, Naples, Italy
| | - Juan C. Zenteno
- Department of Genetics and Research Unit, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - Dominic Davenport
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London SE1 1UL, UK
| | - Laura E. Mariani
- Department of Neurology, Children’s Hospital Boston, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Guthrie
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London SE1 1UL, UK
| | - Elizabeth C. Engle
- Department of Medicine (Genetics), Children’s Hospital Boston, Boston, MA 02115, USA
- Department of Neurology, Children’s Hospital Boston, Boston, MA 02115, USA
- Department of Ophthalmology, Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
115
|
Abstract
Receptor tyrosine kinases of the Eph family bind to cell surface-associated ephrin ligands on neighboring cells. The ensuing bidirectional signals have emerged as a major form of contact-dependent communication between cells. New findings reveal that Eph receptors and ephrins coordinate not only developmental processes but also the normal physiology and homeostasis of many adult organs. Imbalance of Eph/ephrin function may therefore contribute to a variety of diseases. The challenge now is to better understand the complex and seemingly paradoxical signaling mechanisms of Eph receptors and ephrins, which will enable effective strategies to target these proteins in the treatment of diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Elena B Pasquale
- Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
116
|
Warner N, Wybenga-Groot LE, Pawson T. Analysis of EphA4 receptor tyrosine kinase substrate specificity using peptide-based arrays. FEBS J 2008; 275:2561-73. [PMID: 18422655 DOI: 10.1111/j.1742-4658.2008.06405.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eph receptor tyrosine kinases regulate many important biological processes. In the present study, we explored the substrate specificity of the EphA4 receptor tyrosine kinase using peptide arrays. We define a consensus substrate motif for EphA4 and go on to identify and test a number of potential EphA4 substrates and map their putative site(s) of phosphorylation. Cotransfection studies validate two of the predicted substrates: Nck2 and Dok1. Our findings identify several potential EphA4 substrates and demonstrate the general utility of using peptide arrays to rapidly identify and map protein kinase phosphorylation sites.
Collapse
Affiliation(s)
- Neil Warner
- Program in Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
117
|
Lackmann M, Boyd AW. Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 2008; 1:re2. [PMID: 18413883 DOI: 10.1126/stke.115re2] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the mid-1980s, Eph receptors have evolved from being regarded as orphan receptors with unknown functions and ligands to becoming one of the most complex "global positioning systems" that regulates cell traffic in multicellular organisms. During this time, there has been an exponentially growing interest in Ephs and ephrin ligands, coinciding with important advances in the way biological function is interrogated through mapping of genomes and manipulation of genes. As a result, many of the original concepts that used to define Eph signaling and function went overboard. Clearly, the need for progress in understanding Eph-ephrin biology and the underlying molecular principles involved has been compelling. Many cell-positioning programs during normal and oncogenic development-in particular, the patterning of skeletal, vascular, and nervous systems-are modulated in some way by Eph-ephrin function. Undeniably, the complexity of the underlying signaling networks is considerable, and it seems probable that systems biology approaches are required to further improve our understanding of Eph function.
Collapse
Affiliation(s)
- Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
118
|
The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases. J Neurosci 2008; 27:14205-15. [PMID: 18094260 DOI: 10.1523/jneurosci.2746-07.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eph receptors play critical roles in the establishment and remodeling of neuronal connections, but the signaling pathways involved are not fully understood. We have identified a novel interaction between the C terminus of the EphA4 receptor and the PDZ domain of the GTPase-activating protein spine-associated RapGAP (SPAR). In neuronal cells, this binding mediates EphA4-dependent inactivation of the closely related GTPases Rap1 and Rap2, which have recently been implicated in the regulation of dendritic spine morphology and synaptic plasticity. We show that SPAR-mediated inactivation of Rap1, but not Rap2, is critical for ephrin-A-dependent growth cone collapse in hippocampal neurons and decreased integrin-mediated adhesion in neuronal cells. Distinctive effects of constitutively active Rap1 and Rap2 on the morphology of growth cones and dendritic spines support the idea that these two GTPases have different functions in neurons. Together, our data implicate SPAR as an important signaling intermediate that links the EphA4 receptor with Rap GTPase function in the regulation of neuronal morphology.
Collapse
|
119
|
Caloca MJ, Delgado P, Alarcón B, Bustelo XR. Role of chimaerins, a group of Rac-specific GTPase activating proteins, in T-cell receptor signaling. Cell Signal 2007; 20:758-70. [PMID: 18249095 DOI: 10.1016/j.cellsig.2007.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Chimaerins are GTPase-activating proteins that inactivate the GTP-hydrolase Rac1 in a diacylglycerol-dependent manner. To date, the study of chimaerins has been done mostly in neuronal cells. Here, we show that alpha2- and beta2-chimaerin are expressed at different levels in T-cells and that they participate in T-cell receptor signaling. In agreement with this, we have observed that alpha2- and beta2-chimaerins translocate to the T-cell/B-cell immune synapse and, using both gain- and loss-of-function approaches, demonstrated that their catalytic activity is important for the inhibition of the T-cell receptor- and Vav1-dependent stimulation of the transcriptional factor NF-AT. Mutagenesis-based approaches have revealed the molecular determinants that contribute to the biological program of chimaerins during T-cell responses. Unexpectedly, we have found that the translocation of chimaerins to the T-cell/B-cell immune synapse does not rely on the canonical binding of diacylglycerol to the C1 region of these GTPase-activating proteins. Taken together, these results identify chimaerins as candidates for the downmodulation of Rac1 in T-lymphocytes and, in addition, uncover a novel regulatory mechanism that mediates their activation in T-cells.
Collapse
Affiliation(s)
- María José Caloca
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain.
| | | | | | | |
Collapse
|
120
|
Fawcett JP, Georgiou J, Ruston J, Bladt F, Sherman A, Warner N, Saab BJ, Scott R, Roder JC, Pawson T. Nck adaptor proteins control the organization of neuronal circuits important for walking. Proc Natl Acad Sci U S A 2007; 104:20973-8. [PMID: 18093944 PMCID: PMC2409251 DOI: 10.1073/pnas.0710316105] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Indexed: 01/15/2023] Open
Abstract
The intracellular signaling targets used by mammalian axon guidance receptors to organize the nervous system in vivo are unclear. The Nck1 and Nck2 SH2/SH3 adaptors (collectively Nck) can couple phosphotyrosine (pTyr) signals to reorganization of the actin cytoskeleton and are therefore candidates for linking guidance cues to the regulatory machinery of the cytoskeleton. We find that selective inactivation of Nck in the murine nervous system causes a hopping gait and a defect in the spinal central pattern generator, which is characterized by synchronous firing of bilateral ventral motor neurons. Nck-deficient mice also show abnormal projections of corticospinal tract axons and defective development of the posterior tract of the anterior commissure. These phenotypes are consistent with a role for Nck in signaling initiated by different classes of guidance receptors, including the EphA4 receptor tyrosine kinase. Our data indicate that Nck adaptors couple pTyr guidance signals to cytoskeletal events required for the ipsilateral projections of spinal cord neurons and thus for normal limb movement.
Collapse
Affiliation(s)
- James P. Fawcett
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Departments of Pharmacology and Surgery, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5
| | - John Georgiou
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Julie Ruston
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Friedhelm Bladt
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - Andrew Sherman
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8; and
| | - Neil Warner
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8; and
| | - Bechara J. Saab
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8; and
| | - Rizaldy Scott
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | - John C. Roder
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8; and
| | - Tony Pawson
- *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8; and
| |
Collapse
|
121
|
Abstract
In two manuscripts published in Neuron (Beg et al. and Wegmeyer et al.) and one published in Cell (Iwasato et al.), investigators have found that a particular GAP, alpha-chimaerin, is required in vivo for ephrinB3/EphA4-dependent motor circuit formation.
Collapse
Affiliation(s)
- Matthew B Dalva
- Department of Neuroscience, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|