101
|
Antzoulatos EG, Miller EK. Increases in functional connectivity between prefrontal cortex and striatum during category learning. Neuron 2014; 83:216-25. [PMID: 24930701 DOI: 10.1016/j.neuron.2014.05.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 01/20/2023]
Abstract
Functional connectivity between the prefrontal cortex (PFC) and striatum (STR) is thought critical for cognition and has been linked to conditions like autism and schizophrenia. We recorded from multiple electrodes in PFC and STR while monkeys acquired new categories. Category learning was accompanied by an increase in beta band synchronization of LFPs between, but not within, the PFC and STR. After learning, different pairs of PFC-STR electrodes showed stronger synchrony for one or the other category, suggesting category-specific functional circuits. This category-specific synchrony was also seen between PFC spikes and STR LFPs, but not the reverse, reflecting the direct monosynaptic connections from the PFC to STR. However, causal connectivity analyses suggested that the polysynaptic connections from STR to the PFC exerted a stronger overall influence. This supports models positing that the basal ganglia "train" the PFC. Category learning may depend on the formation of functional circuits between the PFC and STR.
Collapse
Affiliation(s)
- Evan G Antzoulatos
- The Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95618, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
102
|
Puig MV, Miller EK. Neural Substrates of Dopamine D2 Receptor Modulated Executive Functions in the Monkey Prefrontal Cortex. Cereb Cortex 2014; 25:2980-7. [PMID: 24814093 DOI: 10.1093/cercor/bhu096] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dopamine D2 receptors (D2R) play a major role in cognition, mood and motor movements. Their blockade by antipsychotic drugs reduces hallucinatory and delusional behaviors in schizophrenia, but often fails to alleviate affective and cognitive dysfunctions. The prefrontal cortex (PFC) expresses D2R and is altered in schizophrenia. We investigated how D2R modulate behavior and PFC function in monkeys. Two monkeys learned new and performed highly familiar visuomotor associations, where each cue was associated with a saccade to a right or left target. We recorded neural spikes and local field potentials from multiple electrodes while injecting the D2R antagonist eticlopride in the lateral PFC. Blocking prefrontal D2R impaired associative learning and cognitive flexibility, reduced motivation, but left the performance of familiar associations intact. Eticlopride reduced saccade-direction selectivity of prefrontal neurons, leading to a decrease in neural information about the associations, and an increase in alpha oscillations. These results, together with our recent study using a D1R antagonist, suggest that D1R and D2R in the primate lateral PFC cooperate to modulate several executive functions. Our findings help to gain insight into why antipsychotic drugs, with strong antagonistic actions on D2R, fail to ameliorate cognitive and emotional deficits in schizophrenia.
Collapse
Affiliation(s)
- M Victoria Puig
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
103
|
Clark KL, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 2014; 8:33. [PMID: 24782714 PMCID: PMC3986539 DOI: 10.3389/fncir.2014.00033] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.
Collapse
Affiliation(s)
- Kelsey L Clark
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Behrad Noudoost
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| |
Collapse
|
104
|
Dopamine prediction error responses integrate subjective value from different reward dimensions. Proc Natl Acad Sci U S A 2014; 111:2343-8. [PMID: 24453218 DOI: 10.1073/pnas.1321596111] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prediction error signals enable us to learn through experience. These experiences include economic choices between different rewards that vary along multiple dimensions. Therefore, an ideal way to reinforce economic choice is to encode a prediction error that reflects the subjective value integrated across these reward dimensions. Previous studies demonstrated that dopamine prediction error responses reflect the value of singular reward attributes that include magnitude, probability, and delay. Obviously, preferences between rewards that vary along one dimension are completely determined by the manipulated variable. However, it is unknown whether dopamine prediction error responses reflect the subjective value integrated from different reward dimensions. Here, we measured the preferences between rewards that varied along multiple dimensions, and as such could not be ranked according to objective metrics. Monkeys chose between rewards that differed in amount, risk, and type. Because their choices were complete and transitive, the monkeys chose "as if" they integrated different rewards and attributes into a common scale of value. The prediction error responses of single dopamine neurons reflected the integrated subjective value inferred from the choices, rather than the singular reward attributes. Specifically, amount, risk, and reward type modulated dopamine responses exactly to the extent that they influenced economic choices, even when rewards were vastly different, such as liquid and food. This prediction error response could provide a direct updating signal for economic values.
Collapse
|
105
|
Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol Learn Mem 2013; 108:65-77. [PMID: 24269353 DOI: 10.1016/j.nlm.2013.11.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/01/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Abstract
Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes.
Collapse
|
106
|
Glovaci I, Caruana DA, Chapman CA. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling. Neuroscience 2013; 258:74-83. [PMID: 24220689 DOI: 10.1016/j.neuroscience.2013.10.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022]
Abstract
The modulatory neurotransmitter dopamine induces concentration-dependent changes in synaptic transmission in the entorhinal cortex, in which high concentrations of dopamine suppress evoked excitatory postsynaptic potentials (EPSPs) and lower concentrations induce an acute synaptic facilitation. Whole-cell current-clamp recordings were used to investigate the dopaminergic facilitation of synaptic responses in layer II neurons of the rat lateral entorhinal cortex. A constant bath application of 1 μM dopamine resulted in a consistent facilitation of EPSPs evoked in layer II fan cells by layer I stimulation; the size of the facilitation was more variable in pyramidal neurons, and synaptic responses in a small group of multiform neurons were not modulated by dopamine. Isolated inhibitory synaptic responses were not affected by dopamine, and the facilitation of EPSPs was not associated with a change in paired-pulse facilitation ratio. Voltage-clamp recordings of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptor-mediated excitatory postsynaptic currents (EPSCs) were facilitated by dopamine, but N-methyl-D-aspartate receptor-mediated currents were not. Bath application of the dopamine D₁-like receptor blocker SCH23390 (50 μM), but not the D₂-like receptor blocker sulpiride (50 μM), prevented the facilitation, indicating that it is dependent upon D₁-like receptor activation. Dopamine D₁ receptors lead to activation of protein kinase A (PKA), and including the PKA inhibitor H-89 or KT 5720 in the recording pipette solution prevented the facilitation of EPSCs. PKA-dependent phosphorylation of inhibitor 1 or the dopamine- and cAMP-regulated protein phosphatase (DARPP-32) can lead to a facilitation of AMPA receptor responses by inhibiting the activity of protein phosphatase 1 (PP1) that reduces dephosphorylation of AMPA receptors, and we found here that inhibition of PP1 occluded the facilitatory effect of dopamine. The dopamine-induced facilitation of AMPA receptor-mediated synaptic responses in layer II neurons of the lateral entorhinal cortex is therefore likely mediated via a D₁ receptor-dependent increase in PKA activity and a resulting inhibition in PP1-dependent dephosphorylation of AMPA receptors.
Collapse
Affiliation(s)
- I Glovaci
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - D A Caruana
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - C A Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
107
|
Dopamine regulates two classes of primate prefrontal neurons that represent sensory signals. J Neurosci 2013; 33:13724-34. [PMID: 23966694 DOI: 10.1523/jneurosci.0210-13.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The lateral prefrontal cortex (PFC), a hub of higher-level cognitive processing, is strongly modulated by midbrain dopamine (DA) neurons. The cellular mechanisms have been comprehensively studied in the context of short-term memory, but little is known about how DA regulates sensory inputs to PFC that precede and give rise to such memory activity. By preparing recipient cortical circuits for incoming signals, DA could be a powerful determinant of downstream cognitive processing. Here, we tested the hypothesis that prefrontal DA regulates the representation of sensory signals that are required for perceptual decisions. In rhesus monkeys trained to report the presence or absence of visual stimuli at varying levels of contrast, we simultaneously recorded extracellular single-unit activity and applied DA to the immediate vicinity of the neurons by micro-iontophoresis. We found that DA modulation of prefrontal neurons is not uniform but tailored to specialized neuronal classes. In one population of neurons, DA suppressed activity with high temporal precision but preserved signal/noise ratio. Neurons in this group had short visual response latencies and comprised all recorded narrow-spiking, putative interneurons. In a distinct population, DA increased excitability and enhanced signal/noise ratio by reducing response variability. These neurons had longer visual response latencies and were composed exclusively of broad-spiking, putative pyramidal neurons. By gating sensory inputs to PFC and subsequently strengthening the representation of sensory signals, DA might play an important role in shaping how the PFC initiates appropriate behavior in response to changes in the sensory environment.
Collapse
|
108
|
Panagiotaropoulos TI, Kapoor V, Logothetis NK. Desynchronization and rebound of beta oscillations during conscious and unconscious local neuronal processing in the macaque lateral prefrontal cortex. Front Psychol 2013; 4:603. [PMID: 24062706 PMCID: PMC3769623 DOI: 10.3389/fpsyg.2013.00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates that control mechanisms are not tightly bound to conscious perception since both conscious and unconscious information can trigger control processes, probably through the activation of higher-order association areas like the prefrontal cortex. Studying the modulation of control-related prefrontal signals in a microscopic, neuronal level during conscious and unconscious neuronal processing, and under control-free conditions could provide an elementary understanding of these interactions. Here we performed extracellular electrophysiological recordings in the macaque lateral prefrontal cortex (LPFC) during monocular physical alternation (PA) and binocular flash suppression (BFS) and studied the local scale relationship between beta (15-30 Hz) oscillations, a rhythmic signal believed to reflect the current sensory, motor, or cognitive state (status-quo), and conscious or unconscious neuronal processing. First, we show that beta oscillations are observed in the LPFC during resting state. Both PA and BFS had a strong impact on the power of this spontaneous rhythm with the modulation pattern of beta power being identical across these two conditions. Specifically, both perceptual dominance and suppression of local neuronal populations in BFS were accompanied by a transient beta desynchronization followed by beta activity rebound, a pattern also observed when perception occurred without any underlying visual competition in PA. These results indicate that under control-free conditions, at least one rhythmic signal known to reflect control processes in the LPFC (i.e., beta oscillations) is not obstructed by local neuronal, and accordingly perceptual, suppression, thus being independent from temporally co-existing conscious and unconscious local neuronal representations. Future studies could reveal the additive effects of motor or cognitive control demands on prefrontal beta oscillations during conscious and unconscious processing.
Collapse
|
109
|
Wang DH, Wong-Lin K. Comodulation of dopamine and serotonin on prefrontal cortical rhythms: a theoretical study. Front Integr Neurosci 2013; 7:54. [PMID: 23935568 PMCID: PMC3733011 DOI: 10.3389/fnint.2013.00054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022] Open
Abstract
The prefrontal cortex (PFC) is implicated to play an important role in cognitive control. Abnormal PFC activities and rhythms have been observed in some neurological and neuropsychiatric disorders, and evidences suggest influences from the neuromodulators dopamine (DA) and serotonin (5-HT). Despite the high level of interest in these brain systems, the combined effects of DA and 5-HT modulation on PFC dynamics remain unknown. In this work, we build a mathematical model that incorporates available experimental findings to systematically study the comodulation of DA and 5-HT on the network behavior, focusing on beta and gamma band oscillations. Single neuronal model shows pyramidal cells with 5-HT1A and 2A receptors can be non-monotonically modulated by 5-HT. Two-population excitatory-inhibitory type network consisting of pyramidal cells with D1 receptors can provide rich repertoires of oscillatory behavior. In particular, 5-HT and DA can modulate the amplitude and frequency of the oscillations, which can emerge or cease, depending on receptor types. Certain receptor combinations are conducive for the robustness of the oscillatory regime, or the existence of multiple discrete oscillatory regimes. In a multi-population heterogeneous model that takes into account possible combination of receptors, we demonstrate that robust network oscillations require high DA concentration. We also show that selective D1 receptor antagonists (agonists) tend to suppress (enhance) network oscillations, increase the frequency from beta toward gamma band, while selective 5-HT1A antagonists (agonists) act in opposite ways. Selective D2 or 5-HT2A receptor antagonists (agonists) can lead to decrease (increase) in oscillation amplitude, but only 5-HT2A antagonists (agonists) can increase (decrease) the frequency. These results are comparable to some pharmacological effects. Our work illustrates the complex mechanisms of DA and 5-HT when operating simultaneously through multiple receptors.
Collapse
Affiliation(s)
- Da-Hui Wang
- Department of Systems Science and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
| | | |
Collapse
|
110
|
Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 2013; 7:25. [PMID: 23626526 PMCID: PMC3630391 DOI: 10.3389/fnint.2013.00025] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 01/20/2023] Open
Abstract
The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe.
Collapse
Affiliation(s)
- Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d' Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS Barcelona, Spain ; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid, Spain
| | | | | |
Collapse
|
111
|
Dissociable dopaminergic control of saccadic target selection and its implications for reward modulation. Proc Natl Acad Sci U S A 2013; 110:3579-84. [PMID: 23401524 DOI: 10.1073/pnas.1221236110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate mechanisms by which reward modulates target selection, we studied the behavioral effects of perturbing dopaminergic activity within the frontal eye field (FEF) of monkeys performing a saccadic choice task and simulated the effects using a plausible cortical network. We found that manipulation of FEF activity either by blocking D1 receptors (D1Rs) or by stimulating D2 receptors (D2Rs) increased the tendency to choose targets in the response field of the affected site. However, the D1R manipulation decreased the tendency to repeat choices on subsequent trials, whereas the D2R manipulation increased that tendency. Moreover, the amount of shift in target selection resulting from the two manipulations correlated in opposite ways with the baseline stochasticity of choice behavior. Our network simulation results suggest that D1Rs influence target selection mainly through their effects on the strength of inputs to the FEF and on recurrent connectivity, whereas D2Rs influence the excitability of FEF output neurons. Altogether, these results reveal dissociable dopaminergic mechanisms influencing target selection and suggest how reward can influence adaptive choice behavior via prefrontal dopamine.
Collapse
|
112
|
Abstract
Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
113
|
Qi XL, Constantinidis C. Neural changes after training to perform cognitive tasks. Behav Brain Res 2012; 241:235-43. [PMID: 23261872 DOI: 10.1016/j.bbr.2012.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/29/2022]
Abstract
Cognitive operations requiring working memory rely on the activity of neurons in areas of the association cortex, most prominently the lateral prefrontal cortex. Human imaging and animal neurophysiological studies indicate that this activity is shaped by learning, though much is unknown about how much training alters neural activity and cortical organization. Results from non-human primates demonstrate that prior to any training in cognitive tasks, prefrontal neurons respond to stimuli, exhibit persistent activity after their offset, and differentiate between matching and non-matching stimuli presented in sequence. A number of important changes also occur after training in a working memory task. More neurons are recruited by the stimuli and exhibit higher firing rates, particularly during the delay period. Operant stimuli that need to be recognized in order to perform the task elicit higher overall rates of responses, while the variability of individual discharges and correlation of discharges between neurons decrease after training. New information is incorporated in the activity of a small population of neurons highly specialized for the task and in a larger population of neurons that exhibit modest task related information, while information about other aspects of stimuli remains present in neuronal activity. Despite such changes, the relative selectivity of the dorsal and ventral aspect of the lateral prefrontal cortex is not radically altered with regard to spatial and non-spatial stimuli after training. Collectively, these results provide insights on the nature and limits of cortical plasticity mediating cognitive tasks.
Collapse
Affiliation(s)
- Xue-Lian Qi
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
114
|
Inestrosa NC, Montecinos-Oliva C, Fuenzalida M. Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol 2012; 7:788-807. [PMID: 23160851 DOI: 10.1007/s11481-012-9417-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022]
Abstract
Wnt signaling function starts during the development of the nervous system and is crucial for synaptic plasticity in the adult brain. Clearly Wnt effects in synaptic and plastic processes are relevant, however the implication of this pathway in the prevention of neurodegenerative diseases that produce synaptic impairment, is even more interesting. Several years ago our laboratory found a relationship between the loss of Wnt signaling and the neurotoxicity of the amyloid-β-peptide (Aβ), one of the main players in Alzheimer's disease (AD). Moreover, the activation of the Wnt signaling cascade prevents Aβ-dependent cytotoxic effects. In fact, disrupted Wnt signaling may be a direct link between Aβ-toxicity and tau hyperphosphorylation, ultimately leading to impaired synaptic plasticity and/or neuronal degeneration, indicating that a single pathway can account for both neuro-pathological lesions and altered synaptic function. These observations, suggest that a sustained loss of Wnt signaling function may be a key relevant factor in the pathology of AD. On the other hand, Schizophrenia remains one of the most debilitating and intractable illness in psychiatry. Since Wnt signaling is important in organizing the developing brain, it is reasonable to propose that defects in Wnt signaling could contribute to Schizophrenia, particularly since the neuro-developmental hypothesis of the disease implies subtle dys-regulation of brain development, including some core components of the Wnt signaling pathways such as GSK-3β or Disrupted in Schizophrenia-1 (DISC-1). This review focuses on the relationship between Wnt signaling and its potential relevance for the treatment of neurodegenerative and neuropsychiatric diseases including AD and Schizophrenia.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | | | | |
Collapse
|