101
|
Kochunov P, Du X, Moran LV, Sampath H, Wijtenburg SA, Yang Y, Rowland LM, Stein EA, Hong LE. Acute nicotine administration effects on fractional anisotropy of cerebral white matter and associated attention performance. Front Pharmacol 2013; 4:117. [PMID: 24065920 PMCID: PMC3776159 DOI: 10.3389/fphar.2013.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022] Open
Abstract
Introduction: Nicotinic acetylcholine receptors are present in the cerebral white matter (WM). We hypothesized that WM response to nicotine can be detected by diffusion tensor imaging (DTI); and that such responses may be associated with nicotine-led cognitive enhancement in sustained attention. Methods: A randomized, nicotine-placebo patch, crossover, double-blind clinical trial in two non-overlapping cohorts of smokers was used to test the hypothesis. The discovery cohort consisted of 39 subjects (N = 20/19 controls/schizophrenic patients, age = 36.8 ± 10.1 years) and the replication cohorts consisted of 38 healthy smokers (31.7 ± 10.5 years). WM integrity was measured by fractional anisotropy (FA) values for the whole brain and nine preselected WM tracts using tract-based-spatial-statistics. Results: Nicotine significantly enhanced FA values for the genu of corpus callosum compared with placebo (ΔFAgenu) (p = 0.01) in smokers with low recent smoking exposure as measured by low average cotinine level. This finding was replicated in the second cohort (p = 0.02). ΔFAgenu values explained 22% of variance in performance of a sustained attention task during the nicotine session (p = 0.006). However, this effect was limited to schizophrenia patients (r = 0.62 and 0.09; p = 0.003 and 0.7 for patients and controls, respectively). Conclusion: Acute pharmacological influence of nicotine patch on WM integrity appeared present, but was dependent on nicotine intake from recent smoking. Change in the WM integrity in the genu of corpus callosum was associated with a significant proportion of variability of nicotine-led changes in sustained attention/working memory of the smokers. Further studies will be necessary to understand biophysical underpinning of the nicotine-related changes in FA.
Collapse
Affiliation(s)
- Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Physics, University of Maryland Baltimore County, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Di Benedetto B, Rupprecht R. Targeting glia cells: novel perspectives for the treatment of neuropsychiatric diseases. Curr Neuropharmacol 2013; 11:171-85. [PMID: 23997752 PMCID: PMC3637671 DOI: 10.2174/1570159x11311020004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disorders are devastating mental illnesses with a high economic burden. The additional morbidity associated with social issues that arises along with the course of these diseases increases the need for a clear understanding of their etiopathogenesis to allow an implementation of novel pharmacological strategies. Yet a poor knowledge about interactions occurring at the glia-neuron interface in health and disease still hampers innovative discoveries, despite the fact that glia cells have been long described to actively participate in the regulation of brain circuits. The purpose of this review was to collect the scattered literature on the involvement of glia cells in neuropsychiatric disorders and to describe how also these cells besides neurons might be responsive to current pharmacological interventions. We hope thereby to offer alternative approaches for investigations that may open avenues to search for new potential targets for drug discovery.
Collapse
Affiliation(s)
- B Di Benedetto
- Max Planck Institute of Psychiatry, Munich, Germany ; Department of Psychiatry and Psychotherapy, Regensburg University, Germany
| | | |
Collapse
|
103
|
Petrik D, Yun S, Latchney SE, Kamrudin S, LeBlanc JA, Bibb JA, Eisch AJ. Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires cdk5. PLoS One 2013; 8:e72819. [PMID: 23991155 PMCID: PMC3753242 DOI: 10.1371/journal.pone.0072819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
The early postnatal period is a unique time of brain development, as diminishing amounts of neurogenesis coexist with waves of gliogenesis. Understanding the molecular regulation of early postnatal gliogenesis may provide clues to normal and pathological embryonic brain ontogeny, particularly in regards to the development of astrocytes and oligodendrocytes. Cyclin dependent kinase 5 (Cdk5) contributes to neuronal migration and cell cycle control during embryogenesis, and to the differentiation of neurons and oligodendrocytes during adulthood. However, Cdk5's function in the postnatal period and within discrete progenitor lineages is unknown. Therefore, we selectively removed Cdk5 from nestin-expressing cells and their progeny by giving transgenic mice (nestin-CreERT2/R26R-YFP/CDK5(flox/flox) [iCdk5] and nestin-CreERT2/R26R-YFP/CDK5(wt/wt) [WT]) tamoxifen during postnatal (P) days P2-P 4 or P7-P 9, and quantified and phenotyped recombined (YFP+) cells at P14 and P21. When Cdk5 gene deletion was induced in nestin-expressing cells and their progeny during the wave of cortical and hippocampal gliogenesis (P2-P4), significantly fewer YFP+ cells were evident in the cortex, corpus callosum, and hippocampus. Phenotypic analysis revealed the cortical decrease was due to fewer YFP+ astrocytes and oligodendrocytes, with a slightly earlier influence seen in oligodendrocytes vs. astrocytes. This effect on cortical gliogenesis was accompanied by a decrease in YFP+ proliferative cells, but not increased cell death. The role of Cdk5 in gliogenesis appeared specific to the early postnatal period, as induction of recombination at a later postnatal period (P7-P9) resulted in no change YFP+ cell number in the cortex or hippocampus. Thus, glial cells that originate from nestin-expressing cells and their progeny require Cdk5 for proper development during the early postnatal period.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Aoki Y, Orikabe L, Takayanagi Y, Yahata N, Mozue Y, Sudo Y, Ishii T, Itokawa M, Suzuki M, Kurachi M, Okazaki Y, Kasai K, Yamasue H. Volume reductions in frontopolar and left perisylvian cortices in methamphetamine induced psychosis. Schizophr Res 2013; 147:355-61. [PMID: 23688384 DOI: 10.1016/j.schres.2013.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Consumption of methamphetamine disturbs dopaminergic transmission and sometimes provokes schizophrenia-like-psychosis, named methamphetamine-associated psychosis (MAP). While previous studies have repeatedly reported regional volume reductions in the frontal and temporal areas as neuroanatomical substrates for psychotic symptoms, no study has examined whether such neuroanatomical substrates exist or not in patients with MAP. Magnetic resonance images obtained from twenty patients with MAP and 20 demographically-matched healthy controls (HC) were processed for voxel-based morphometry (VBM) using Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra. An analysis of covariance model was adopted to identify volume differences between subjects with MAP and HC, treating intracranial volume as a confounding covariate. The VBM analyses showed significant gray matter volume reductions in the left perisylvian structures, such as the posterior inferior frontal gyrus and the anterior superior temporal gyrus, and the frontopolar cortices, including its dorsomedial, ventromedial, dorsolateral, and ventrolateral portions, and white matter volume reduction in the orbitofrontal area in the patients with MAP compared with the HC subjects. The smaller regional gray matter volume in the medial portion of the frontopolar cortex was significantly correlated with the severe positive symptoms in the individuals with MAP. The volume reductions in the left perisylvian structure suggest that patients with MAP have a similar pathophysiology to schizophrenia, whereas those in the frontopolar cortices and orbitofrontal area suggest an association with antisocial traits or vulnerability to substance dependence.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Benedetti F, Giacosa C, Radaelli D, Poletti S, Pozzi E, Dallaspezia S, Falini A, Smeraldi E. Widespread changes of white matter microstructure in obsessive-compulsive disorder: effect of drug status. Eur Neuropsychopharmacol 2013; 23:581-93. [PMID: 22954900 DOI: 10.1016/j.euroneuro.2012.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/29/2012] [Accepted: 07/03/2012] [Indexed: 10/27/2022]
Abstract
Diffusion tensor imaging (DTI) allows the study of white matter (WM) structure. Literature suggests that WM structure could be altered in obsessive-compulsive disorder (OCD) proportional to the severity of the disease. Heterogeneity of brain imaging methods, of the studied samples, and of drug treatments make localization, nature, and severity of the WM abnormalities unclear. We applied Tract-Based Spatial Statistics (TBSS) of DTI measures to compare fractional anisotropy (FA), mean, axial, and radial diffusivity of the WM skeleton in a group of 40 consecutively admitted inpatients affected by severe OCD (18 drug-naive, and 22 with an ongoing drug treatment) and 41 unrelated healthy volunteers from the general population. Data were analyzed accounting for the effects of multiple comparisons, and of age, sex, and education as nuisance covariates. Compared to controls, OCD patients showed a widespread reduction of FA with a concurrent increase of mean and radial diffusivity. In no brain areas patients had higher FA or lower diffusivity values than controls. These differences were observed in drug-treated patients compared to drug-naive patients and healthy controls, which in turn did not differ among themselves in any DTI measure. Reduced FA with increased mean and radial diffusivity suggests significant changes in myelination of WM tracts, without axonal loss. Drug treatments could modify the structure of cell membranes and myelin sheaths by influencing cellular lipogenesis, cholesterol homeostasis, autophagy, oligodendrocyte differentiation and remyelination. Changes of DTI measures in drug-treated OCD patients could reflect pathophysiological underpinnings of OCD, or a yet unexplored part of the mechanism of action of drugs.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Zhang A, Ajilore O, Zhan L, GadElkarim J, Korthauer L, Yang S, Leow A, Kumar A. White matter tract integrity of anterior limb of internal capsule in major depression and type 2 diabetes. Neuropsychopharmacology 2013; 38:1451-9. [PMID: 23389692 PMCID: PMC3682138 DOI: 10.1038/npp.2013.41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of studies have shown an association between diabetes and depression. However, the underlying mechanisms are still unclear. Previous findings indicate a role for the prefrontal cortex and subcortical gray matter regions in type 2 diabetes and major depressive disorder (MDD). The purpose of this study was to examine the white matter integrity in the fibers that are part of the anterior limb of internal capsule (ALIC) in MDD and diabetic subjects using diffusion tensor imaging tractography. We studied 4 groups of subjects including 1) 42 healthy controls (HC), 2) 28 MDD subjects (MD), 3) 24 patients diagnosed with type 2 diabetes without depression (DC), and 4) 22 patients diagnosed with diabetes and depression (DD). Results revealed significantly decreased fractional anisotropy (FA; P=.021) and a trend towards significant increase in radial diffusivity (RD; P=.078) of the right ALIC in depressed subjects (MD+DD) compared to non-depressed subjects (HC+DC). While there were no significant diabetes effects or interactions between depression and diabetes, subjects with high depression ratings and high hemoglobin A1c levels had the lowest mean FA values in the right ALIC. In addition, we found a significant negative correlation between FA of the left ALIC with hemoglobin A1c in diabetic subjects (DC+DD; P=.016). Our study demonstrated novel findings of white matter abnormalities of the ALIC in depression and diabetes. These findings have implications for clinical manifestations of depression and diabetes as well as their pathophysiology.
Collapse
Affiliation(s)
- Aifeng Zhang
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL,Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, MC 912, Chicago, IL 60612 USA, Tel: + 312 413 4562, Fax: +312 996 7658, E-mail:
| | - Liang Zhan
- LONI, Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Johnson GadElkarim
- Department of Bioengineering, University of Illinois-Chicago, Chicago, IL
| | - Laura Korthauer
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL,Department of Bioengineering, University of Illinois-Chicago, Chicago, IL,Department of Radiology, University of Illinois-Chicago, Chicago, IL
| | - Alex Leow
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL,Department of Bioengineering, University of Illinois-Chicago, Chicago, IL,Community Psychiatry Associates, Sacramento, CA
| | - Anand Kumar
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL
| |
Collapse
|
107
|
Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:5-19. [PMID: 22800757 DOI: 10.1016/j.pnpbp.2012.06.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023]
Abstract
In 1995, the macrophage-T lymphocyte theory of schizophrenia (Smith and Maes, 1995) considered that activated immuno-inflammatory pathways may account for the higher neurodevelopmental pathology linked with gestational infections through the detrimental effects of activated microglia, oxidative and nitrosative stress (O&NS), cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway and consequent modulation of the N-methyl d-aspartate receptor (NMDAr) and glutamate production. The aim of the present paper is to review the current state-of-the art regarding the role of the above pathways in schizophrenia. Accumulating data suggest a powerful role for prenatal infection, both viral and microbial, in driving an early developmental etiology to schizophrenia. Models of prenatal rodent infection show maintained activation of immuno-inflammatory pathways coupled to increased microglia activation. The ensuing activation of immuno-inflammatory pathways in schizophrenia may activate the TRYCAT pathway, including increased kynurenic acid (KA) and neurotoxic TRYCATs. Increased KA, via the inhibition of the α7 nicotinic acetylcholine receptor, lowers gamma-amino-butyric-acid (GABA)ergic post-synaptic current, contributing to dysregulated glutamatergic activity. Hypofunctioning of the NMDAr on GABAergic interneurons will contribute to glutamatergic dysregulation. Many susceptibility genes for schizophrenia are predominantly expressed in early development and will interact with these early developmental driven changes in the immuno-inflammatory and TRYCAT pathways. Maternal infection and subsequent immuno-inflammatory responses are additionally associated with O&NS, including lowered antioxidants such as glutathione. This will contribute to alterations in neurogenesis and myelination. In such a scenario a) a genetic or epigenetic potentiation of immuno-inflammatory pathways may constitute a double hit on their own, stimulating wider immuno-inflammatory responses and thus potentiating the TRYCAT pathway and subsequent NMDAr dysfunction and neuroprogression; and b) antipsychotic-induced changes in immuno-inflammatory, TRYCAT and O&NS pathways would modulate the CNS glia-neuronal interactions that determine synaptic plasticity as well as myelin generation and maintenance.
Collapse
|
108
|
Carter CJ. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders. J Pathog 2013; 2013:965046. [PMID: 23533776 PMCID: PMC3603208 DOI: 10.1155/2013/965046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/18/2012] [Accepted: 09/10/2012] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P from 8.01E - 05 (ADHD) to 1.22E - 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself.
Collapse
Affiliation(s)
- C. J. Carter
- Polygenic Pathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
109
|
Bartzokis G, Lu PH, Heydari P, Couvrette A, Lee GJ, Kalashyan G, Freeman F, Grinstead JW, Villablanca P, Finn JP, Mintz J, Alger JR, Altshuler LL. Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biol Psychiatry 2012; 72:1026-34. [PMID: 23017471 DOI: 10.1016/j.biopsych.2012.07.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/08/2012] [Accepted: 07/01/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND Postmortem and volumetric imaging data suggest that brain myelination is a dynamic lifelong process that, in vulnerable late-myelinating regions, peaks in middle age. We examined whether known regional differences in axon size and age at myelination influence the timing and rates of development and degeneration/repair trajectories of white matter (WM) microstructure biomarkers. METHODS Healthy subjects (n = 171) 14-93 years of age were examined with transverse relaxation rate (R(2)) and four diffusion tensor imaging measures (fractional anisotropy [FA] and radial, axial, and mean diffusivity [RD, AxD, MD, respectively]) of frontal lobe, genu, and splenium of the corpus callosum WM (FWM, GWM, and SWM, respectively). RESULTS Only R(2) reflected known levels of myelin content with high values in late-myelinating FWM and GWM regions and low ones in early-myelinating SWM. In FWM and GWM, all metrics except FA had significant quadratic components that peaked at different ages (R(2) < RD < MD < AxD), with FWM peaking later than GWM. Factor analysis revealed that, although they defined different factors, R(2) and RD were the metrics most closely associated with each other and differed from AxD, which entered into a third factor. CONCLUSIONS The R(2) and RD trajectories were most dynamic in late-myelinating regions and reflect age-related differences in myelination, whereas AxD reflects axonal size and extra-axonal space. The FA and MD had limited specificity. The data suggest that the healthy adult brain undergoes continual change driven by development and repair processes devoted to creating and maintaining synchronous function among neural networks on which optimal cognition and behavior depend.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Bartzokis G, Lu PH, Raven EP, Amar CP, Detore NR, Couvrette AJ, Mintz J, Ventura J, Casaus LR, Luo JS, Subotnik KL, Nuechterlein KH. Impact on intracortical myelination trajectory of long acting injection versus oral risperidone in first-episode schizophrenia. Schizophr Res 2012; 140:122-8. [PMID: 22809684 PMCID: PMC3567927 DOI: 10.1016/j.schres.2012.06.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022]
Abstract
CONTEXT Imaging and post-mortem studies suggest that frontal lobe intracortical myelination is dysregulated in schizophrenia (SZ). Prior MRI studies suggested that early in the treatment of SZ, antipsychotic medications initially increase frontal lobe intracortical myelin (ICM) volume, which subsequently declines prematurely in chronic stages of the disease. Insofar as the trajectory of ICM decline in chronic SZ is due to medication non-adherence or pharmacokinetics, it may be modifiable by long acting injection (LAI) formulations. OBJECTIVES Assess the effect of risperidone formulation on the ICM trajectory during a six-month randomized trial of LAI (RLAI) versus oral (RisO) in first-episode SZ subjects. DESIGN Two groups of SZ subjects (RLAI, N=9; and RisO, N=13) matched on pre-randomization oral medication exposure were prospectively examined at baseline and 6 months later, along with 12 healthy controls (HCs). Frontal lobe ICM volume was assessed using inversion recovery (IR) and proton density (PD) MRI images. Medication adherence was tracked. MAIN OUTCOME MEASURE ICM volume change scores were adjusted for the change in the HCs. RESULTS ICM volume increased significantly (p=.005) in RLAI and non-significantly (p=.39) in the RisO groups compared with that of the healthy controls. A differential between-group treatment effect was at a trend level (p=.093). SZ subjects receiving RLAI had better medication adherence and more ICM increases (chi-square p<.05). CONCLUSIONS The results suggest that RLAI may promote ICM development in first-episode SZ patients. Better adherence and/or pharmacokinetics provided by LAI may modify the ICM trajectory. In vivo MRI myelination measures can help clarify pharmacotherapeutic mechanisms of action.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Po H. Lu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Erika P. Raven
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Chetan P. Amar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Nicole R. Detore
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alexander J. Couvrette
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jim Mintz
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Laurie R. Casaus
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John S. Luo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Department of Psychology, UCLA, Los Angeles, California
| |
Collapse
|