101
|
Bulut T. Meta-analytic connectivity modeling of the left and right inferior frontal gyri. Cortex 2022; 155:107-131. [DOI: 10.1016/j.cortex.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/21/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
|
102
|
Kuang C, Chen J, Chen J, Shi Y, Huang H, Jiao B, Lin Q, Rao Y, Liu W, Zhu Y, Mo L, Ma L, Lin J. Uncovering neural distinctions and commodities between two creativity subsets: A meta-analysis of fMRI studies in divergent thinking and insight using activation likelihood estimation. Hum Brain Mapp 2022; 43:4864-4885. [PMID: 35906880 PMCID: PMC9582370 DOI: 10.1002/hbm.26029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
The dual‐process theory that two different systems of thought coexist in creative thinking has attracted considerable attention. In the field of creative thinking, divergent thinking (DT) is the ability to produce multiple solutions to open‐ended problems in a short time. It is mainly considered an associative and fast process. Meanwhile, insight, the new and unexpected comprehension of close‐ended problems, is frequently marked as a deliberate and time‐consuming thinking process requiring concentrated effort. Previous research has been dedicated to revealing their separate neural mechanisms, while few studies have compared their differences and similarities at the brain level. Therefore, the current study applied Activation Likelihood Estimation to decipher common and distinctive neural pathways that potentially underlie DT and insight. We selected 27 DT studies and 30 insight studies for retrospective meta‐analyses. Initially, two single analyses with follow‐up contrast and conjunction analyses were performed. The single analyses showed that DT mainly involved the inferior parietal lobe (IPL), cuneus, and middle frontal gyrus (MFG), while the precentral gyrus, inferior frontal gyrus (IFG), parahippocampal gyrus (PG), amygdala (AMG), and superior parietal lobe were engaged in insight. Compared to insight, DT mainly led to greater activation in the IPL, the crucial part of the default mode network. However, insight caused more significant activation in regions related to executive control functions and emotional responses, such as the IFG, MFG, PG, and AMG. Notably, the conjunction analysis detected no overlapped areas between DT and insight. These neural findings implicate that various neurocognitive circuits may support DT and insight.
Collapse
Affiliation(s)
- Changyi Kuang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Chen
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Jiawen Chen
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyuan Huang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingqing Jiao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwen Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyang Rao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Liu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunpeng Zhu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Mo
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Lijun Ma
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China.,UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
103
|
Doricchi F, Lasaponara S, Pazzaglia M, Silvetti M. Left and right temporal-parietal junctions (TPJs) as "match/mismatch" hedonic machines: A unifying account of TPJ function. Phys Life Rev 2022; 42:56-92. [PMID: 35901654 DOI: 10.1016/j.plrev.2022.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Experimental and theoretical studies have tried to gain insights into the involvement of the Temporal Parietal Junction (TPJ) in a broad range of cognitive functions like memory, attention, language, self-agency and theory of mind. Recent investigations have demonstrated the partition of the TPJ in discrete subsectors. Nonetheless, whether these subsectors play different roles or implement an overarching function remains debated. Here, based on a review of available evidence, we propose that the left TPJ codes both matches and mismatches between expected and actual sensory, motor, or cognitive events while the right TPJ codes mismatches. These operations help keeping track of statistical contingencies in personal, environmental, and conceptual space. We show that this hypothesis can account for the participation of the TPJ in disparate cognitive functions, including "humour", and explain: a) the higher incidence of spatial neglect in right brain damage; b) the different emotional reactions that follow left and right brain damage; c) the hemispheric lateralisation of optimistic bias mechanisms; d) the lateralisation of mechanisms that regulate routine and novelty behaviours. We propose that match and mismatch operations are aimed at approximating "free energy", in terms of the free energy principle of decision-making. By approximating "free energy", the match/mismatch TPJ system supports both information seeking to update one's own beliefs and the pleasure of being right in one's own' current choices. This renewed view of the TPJ has relevant clinical implications because the misfunctioning of TPJ-related "match" and "mismatch" circuits in unilateral brain damage can produce low-dimensional deficits of active-inference and predictive coding that can be associated with different neuropsychological disorders.
Collapse
Affiliation(s)
- Fabrizio Doricchi
- Dipartimento di Psicologia 39, Università degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy.
| | - Stefano Lasaponara
- Dipartimento di Psicologia 39, Università degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia 39, Università degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Lab (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Rome, Italy
| |
Collapse
|
104
|
Bio BJ, Guterstam A, Pinsk M, Wilterson AI, Graziano MS. Right temporoparietal junction encodes inferred visual knowledge of others. Neuropsychologia 2022; 171:108243. [DOI: 10.1016/j.neuropsychologia.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
105
|
Wang F, Zhang M, Li Y, Li Y, Gong H, Li J, Zhang Y, Zhang C, Yan F, Sun B, He N, Wei H. Alterations in brain iron deposition with progression of late-life depression measured by magnetic resonance imaging (MRI)-based quantitative susceptibility mapping. Quant Imaging Med Surg 2022; 12:3873-3888. [PMID: 35782236 PMCID: PMC9246724 DOI: 10.21037/qims-21-1137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/19/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND Previous studies have revealed abnormality of iron deposition in the brain of patients with depression. The progression of iron deposition associated with depression remains to be elucidated. METHODS This is a longitudinal study. We explored brain iron deposition with disease progression in 20 patients older than 55 years with depression and on antidepressants, using magnetic resonance imaging (MRI)-based quantitative susceptibility mapping (QSM). Magnetic susceptibility values of the whole brain were compared between baseline and approximately one-year follow-up scans using permutation testing. Furthermore, we examined the relationship of changes between the susceptibility values and disease improvement using Spearman's partial correlation analysis, controlling for age, gender, and the visit interval. RESULTS Compared to the initial scan, increased magnetic susceptibility values were found in the medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (dACC), occipital areas, habenula, brainstem, and cerebellum (P<0.05, corrected). The susceptibility values decreased in the dorsal part of the mPFC, middle and posterior cingulate cortex (MCC and PCC), right postcentral gyrus, right inferior parietal lobule, right precuneus, right supramarginal gyrus, left lingual gyrus, left dorsal striatum, and right thalamus (P<0.05, corrected). Notably, the increase in susceptibility values at the mPFC and dACC negatively correlated with the changes in depression scores, as calculated using the Hamilton Depression Scale (HAMD) (r=-0.613, P=0.009), and the increase in susceptibility values at the cerebellum and habenula negatively correlated with the changes in cognitive scores, which were calculated using the Mini-Mental State Examination (MMSE) (cerebellum: r=-0.500, P=0.041; habenula: r=-0.588, P=0.013). Additionally, the decreased susceptibility values at the white matter near the mPFC (anterior corona radiata) also correlated with the changes in depression scores (r=-0.541, P=0.025), and the decreased susceptibility values at the left lingual gyrus correlated with the changes in cognitive scores (r=-0.613, P=0.009). CONCLUSIONS Our study identified brain areas where iron deposition changed with the progression of depression while on antidepressants. The linear relationship of changes in the magnetic susceptibility values in the mPFC, dACC, and some subcortical areas with changes in depression symptoms and cognitive functions of patients is highlighted. Our results strengthen the understanding of the alterations of brain iron levels associated with disease progression in patients with late-life depression.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hengfen Gong
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
106
|
Raucher-Chéné D, Lavigne KM, Makowski C, Lepage M. Altered Surface Area Covariance in the Mentalizing Network in Schizophrenia: Insight Into Theory of Mind Processing. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:706-715. [PMID: 32919946 DOI: 10.1016/j.bpsc.2020.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Theory of mind (ToM), the cognitive capacity to attribute mental states to self and others, is robustly affected in schizophrenia. The neural substrates of ToM impairment have been largely studied with functional imaging, but little is known about structural abnormalities. We compared structural covariance (between-subjects correlations of brain regional measures) of magnetic resonance imaging-based cortical surface area between patients with schizophrenia and healthy control subjects and between schizophrenia subgroups based on the patients' ToM ability to examine ToM-specific effects on structural covariance in schizophrenia. METHODS T1-weighted structural images were acquired on a 3T magnetic resonance imaging scanner, and ToM was assessed with the Hinting Task for 104 patients with schizophrenia and 69 healthy control subjects. The sum of surface area was computed for 12 regions of interest selected and compared between groups to examine structural covariance within the often reported mentalizing network: rostral and caudal middle frontal gyrus, inferior parietal lobule, precuneus, and middle and superior temporal gyrus. High and low ToM groups were defined using a median split on the Hinting Task. RESULTS Cortical surface contraction was observed in the schizophrenia group, predominantly in temporoparietal regions. Patients with schizophrenia also exhibited significantly stronger covariance between the right rostral middle frontal gyrus and the right superior temporal gyrus than control subjects (r = 4.015; p < .001). Direct comparisons between high and low ToM subgroups revealed stronger contralateral frontotemporal covariances in the low ToM group. CONCLUSIONS Our results provide evidence for structural changes underlying ToM impairments in schizophrenia that need to be confirmed to develop new therapeutic perspectives.
Collapse
Affiliation(s)
- Delphine Raucher-Chéné
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Cognition, Health, and Society Laboratory EA 6291, University of Reims Champagne-Ardenne, Reims, France; Academic Department of Psychiatry, University Hospital of Reims, Etablissement Public de Santé Mentale de la Marne, Reims, France
| | - Katie M Lavigne
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, La Jolla, California; Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| | - Martin Lepage
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
107
|
Willis DE, Goldstein PA. Targeting Affective Mood Disorders With Ketamine to Prevent Chronic Postsurgical Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:872696. [PMID: 35832728 PMCID: PMC9271565 DOI: 10.3389/fpain.2022.872696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
The phencyclidine-derivative ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one] was added to the World Health Organization's Model List of Essential Medicines in 1985 and is also on the Model List of Essential Medicines for Children due to its efficacy and safety as an intravenous anesthetic. In sub-anesthetic doses, ketamine is an effective analgesic for the treatment of acute pain (such as may occur in the perioperative setting). Additionally, ketamine may have efficacy in relieving some forms of chronic pain. In 2019, Janssen Pharmaceuticals received regulatory-approval in both the United States and Europe for use of the S-enantiomer of ketamine in adults living with treatment-resistant major depressive disorder. Pre-existing anxiety/depression and the severity of postoperative pain are risk factors for development of chronic postsurgical pain. An important question is whether short-term administration of ketamine can prevent the conversion of acute postsurgical pain to chronic postsurgical pain. Here, we have reviewed ketamine's effects on the biopsychological processes underlying pain perception and affective mood disorders, focusing on non-NMDA receptor-mediated effects, with an emphasis on results from human trials where available.
Collapse
Affiliation(s)
- Dianna E. Willis
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, United States
| | - Peter A. Goldstein
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Peter A. Goldstein
| |
Collapse
|
108
|
Verriotis M, Sorger C, Peters J, Ayoub LJ, Seunarine KK, Clark CA, Walker SM, Moayedi M. Amygdalar Functional Connectivity Differences Associated With Reduced Pain Intensity in Pediatric Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:918766. [PMID: 35692562 PMCID: PMC9184677 DOI: 10.3389/fpain.2022.918766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is evidence of altered corticolimbic circuitry in adults with chronic pain, but relatively little is known of functional brain mechanisms in adolescents with neuropathic pain (NeuP). Pediatric NeuP is etiologically and phenotypically different from NeuP in adults, highlighting the need for pediatric-focused research. The amygdala is a key limbic region with important roles in the emotional-affective dimension of pain and in pain modulation. Objective To investigate amygdalar resting state functional connectivity (rsFC) in adolescents with NeuP. Methods This cross-sectional observational cohort study compared resting state functional MRI scans in adolescents aged 11–18 years with clinical features of chronic peripheral NeuP (n = 17), recruited from a tertiary clinic, relative to healthy adolescents (n = 17). We performed seed-to-voxel whole-brain rsFC analysis of the bilateral amygdalae. Next, we performed post hoc exploratory correlations with clinical variables to further explain rsFC differences. Results Adolescents with NeuP had stronger negative rsFC between right amygdala and right dorsolateral prefrontal cortex (dlPFC) and stronger positive rsFC between right amygdala and left angular gyrus (AG), compared to controls (PFDR<0.025). Furthermore, lower pain intensity correlated with stronger negative amygdala-dlPFC rsFC in males (r = 0.67, P = 0.034, n = 10), and with stronger positive amygdala-AG rsFC in females (r = −0.90, P = 0.006, n = 7). These amygdalar rsFC differences may thus be pain inhibitory. Conclusions Consistent with the considerable affective and cognitive factors reported in a larger cohort, there are rsFC differences in limbic pain modulatory circuits in adolescents with NeuP. Findings also highlight the need for assessing sex-dependent brain mechanisms in future studies, where possible.
Collapse
Affiliation(s)
- Madeleine Verriotis
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Madeleine Verriotis
| | - Clarissa Sorger
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Judy Peters
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Lizbeth J. Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Kiran K. Seunarine
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Chris A. Clark
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Suellen M. Walker
- Paediatric Pain Research Group, Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| |
Collapse
|
109
|
Mueller K, Růžička F, Slovák M, Forejtová Z, Dušek P, Dušek P, Jech R, Serranová T. Symptom-severity-related brain connectivity alterations in functional movement disorders. Neuroimage Clin 2022; 34:102981. [PMID: 35287089 PMCID: PMC8921488 DOI: 10.1016/j.nicl.2022.102981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/21/2023]
Abstract
Brain connectivity alterations were found in functional movement disorders. Hyperconnectivity in temporoparietal junction and precuneus in functional weakness. Consistent brain connectivity differences with four different centrality measures. Motor symptom severity correlates positively with connectivity in functional weakness.
Background Functional movement disorders, a common cause of neurological disabilities, can occur with heterogeneous motor manifestations including functional weakness. However, the underlying mechanisms related to brain function and connectivity are unknown. Objective To identify brain connectivity alterations related to functional weakness we assessed network centrality changes in a group of patients with heterogeneous motor manifestations using task-free functional MRI in combination with different network centrality approaches. Methods Task-free functional MRI was performed in 48 patients with heterogeneous motor manifestations including 28 patients showing functional weakness and 65 age- and sex-matched healthy controls. Functional connectivity differences were assessed using different network centrality approaches, i.e. global correlation, eigenvector centrality, and intrinsic connectivity. Motor symptom severity was assessed using The Simplified Functional Movement Disorders Rating Scale and correlated with network centrality. Results Comparing patients with and without functional weakness showed significant network centrality differences in the left temporoparietal junction and precuneus. Patients with functional weakness showed increased centrality in the same anatomical regions when comparing functional weakness with healthy controls. Moreover, in the same regions, patients with functional weakness showed a positive correlation between motor symptom severity and network centrality. This correlation was shown to be specific to functional weakness with an interaction analysis, confirming a significant difference between patients with and without functional weakness. Conclusions We identified the temporoparietal junction and precuneus as key regions involved in brain connectivity alterations related to functional weakness. We propose that both regions may be promising targets for phenotype-specific non-invasive brain stimulation.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Matěj Slovák
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Zuzana Forejtová
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Pavel Dušek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Tereza Serranová
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
110
|
Yue X, Zhang G, Li X, Shen Y, Wei W, Bai Y, Luo Y, Wei H, Li Z, Zhang X, Wang M. Brain Functional Alterations in Prepubertal Boys With Autism Spectrum Disorders. Front Hum Neurosci 2022; 16:891965. [PMID: 35664346 PMCID: PMC9160196 DOI: 10.3389/fnhum.2022.891965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Abnormal brain function in ASD patients changes dynamically across developmental stages. However, no one has studied the brain function of prepubertal children with ASD. Prepuberty is an important stage for children’s socialization. This study aimed to investigate alterations in local spontaneous brain activity in prepubertal boys with ASD. Materials and Methods Measures of the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) acquired from resting-state functional magnetic resonance imaging (RS-fMRI) database, including 34 boys with ASD and 49 typically developing (TD) boys aged 7 to 10 years, were used to detect regional brain activity. Pearson correlation analyses were conducted on the relationship between abnormal ALFF and ReHo values and Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) scores. Results In the ASD group, we found decreased ALFF in the left inferior parietal lobule (IPL) and decreased ReHo in the left lingual gyrus (LG), left superior temporal gyrus (STG), left middle occipital gyrus (MOG), and right cuneus (p < 0.05, FDR correction). There were negative correlations between ReHo values in the left LG and left STG and the ADOS social affect score and a negative correlation between ReHo values in the left STG and the calibrated severity total ADOS score. Conclusion Brain regions with functional abnormalities, including the left IPL, left LG, left STG, left MOG, and right cuneus may be crucial in the neuropathology of prepubertal boys with ASD. Furthermore, ReHo abnormalities in the left LG and left STG were correlated with sociality. These results will supplement the study of neural mechanisms in ASD at different developmental stages, and be helpful in exploring the neural mechanisms of prepubertal boys with ASD.
Collapse
Affiliation(s)
- Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaochen Li
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Luo
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziqiang Li
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, China
| | | | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Meiyun Wang,
| |
Collapse
|
111
|
Aflalo T, Zhang C, Revechkis B, Rosario E, Pouratian N, Andersen RA. Implicit mechanisms of intention. Curr Biol 2022; 32:2051-2060.e6. [PMID: 35390282 PMCID: PMC9090994 DOI: 10.1016/j.cub.2022.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
High-level cortical regions encode motor decisions before or even absent awareness, suggesting that neural processes predetermine behavior before conscious choice. Such early neural encoding challenges popular conceptions of human agency. It also raises fundamental questions for brain-machine interfaces (BMIs) that traditionally assume that neural activity reflects the user's conscious intentions. Here, we study the timing of human posterior parietal cortex single-neuron activity recorded from implanted microelectrode arrays relative to the explicit urge to initiate movement. Participants were free to choose when to move, whether to move, and what to move, and they retrospectively reported the time they felt the urge to move. We replicate prior studies by showing that posterior parietal cortex (PPC) neural activity sharply rises hundreds of milliseconds before the reported urge. However, we find that this "preconscious" activity is part of a dynamic neural population response that initiates much earlier, when the participant first chooses to perform the task. Together with details of neural timing, our results suggest that PPC encodes an internal model of the motor planning network that transforms high-level task objectives into appropriate motor behavior. These new data challenge traditional interpretations of early neural activity and offer a more holistic perspective on the interplay between choice, behavior, and their neural underpinnings. Our results have important implications for translating BMIs into more complex real-world environments. We find that early neural dynamics are sufficient to drive BMI movements before the participant intends to initiate movement. Appropriate algorithms ensure that BMI movements align with the subject's awareness of choice.
Collapse
Affiliation(s)
- Tyson Aflalo
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA; California Institute of Technology, Tianqiao and Chrissy Chen Brain-Machine Interface Center, 1200 E California Blvd., Pasadena, CA 91125, USA.
| | - Carey Zhang
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Boris Revechkis
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Emily Rosario
- Casa Colina Hospital and Centers for Rehabilitation, 255 E Bonita Ave, Pomona, CA 91767, USA
| | - Nader Pouratian
- University of California, Los Angeles, Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Richard A Andersen
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA; California Institute of Technology, Tianqiao and Chrissy Chen Brain-Machine Interface Center, 1200 E California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
112
|
Du J, Zhu Y, Zhao C, Yang D, Yu T, Zhang X, Ren L, Wang Y. Distinct Patterns of Automatic and Controlled Incongruent Information Processing in the Human Brain. Front Hum Neurosci 2022; 16:836374. [PMID: 35601902 PMCID: PMC9121373 DOI: 10.3389/fnhum.2022.836374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
It is a fundamental ability to discriminate incongruent information in daily activity. However, the underlying neural dynamics are still unclear. Using stereoelectroencephalography (SEEG), in this study, we investigated the fine-grained and different states of incongruent information processing in patients with refractory epilepsy who underwent intracranial electrode implantation. All patients performed a delayed match-to-sample paradigm in the sequential pairs of visual stimuli (S1 followed by S2). Participants were asked to discriminate whether the relevant feature of S2 was identical to S1 while ignoring the irrelevant feature. The spatiotemporal cortical responses evoked by different conditions were calculated and compared, respectively, in the context of brain intrinsic functional networks. In total, we obtained SEEG recordings from 241 contacts in gray matter. In the processing of irrelevant incongruent information, the activated brain areas included the superior parietal lobule, supramarginal gyrus, angular gyrus, inferior temporal gyrus, and fusiform gyrus. By comparing the relevant incongruent condition with the congruent condition, the activated brain areas included the middle frontal gyrus, superior temporal gyrus, middle temporal gyrus, posterior superior temporal sulcus, and posterior cingulate cortex. We demonstrated the dynamics of incongruent information processing with high spatiotemporal resolution and suggested that the process of automatic detection of irrelevant incongruent information requires the involvement of local regions and relatively few networks. Meanwhile, controlled discrimination of relevant incongruent information requires the participation of extensive regions and a wide range of nodes in the network. Furthermore, both the frontoparietal control network and default mode network were engaged in the incongruent information processing.
Collapse
Affiliation(s)
- Jialin Du
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chengtian Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Liankun Ren
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Institute of Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- *Correspondence: Yuping Wang
| |
Collapse
|
113
|
Brodeur C, Belley É, Deschênes LM, Enriquez-Rosas A, Hubert M, Guimond A, Bilodeau J, Soucy JP, Macoir J. Primary and Secondary Progressive Aphasia in Posterior Cortical Atrophy. Life (Basel) 2022; 12:life12050662. [PMID: 35629330 PMCID: PMC9142989 DOI: 10.3390/life12050662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Posterior cortical atrophy (PCA) is a clinico-radiological syndrome characterized by a progressive decline in visuospatial/visuoperceptual processing. PCA is accompanied by the impairment of other cognitive functions, including language abilities. Methods: The present study focused on three patients presenting with language complaints and a clinical profile that was compatible with PCA. In addition to neurological and neuroimaging examinations, they were assessed with comprehensive batteries of neuropsychological and neurolinguistic tests. Results: The general medical profile of the three patients is consistent with PCA, although they presented with confounding factors, making diagnosis less clear. The cognitive profile of the three patients was marked by Balint and Gerstmann’s syndromes as well as impairments affecting executive functions, short-term and working memory, visuospatial and visuoperceptual abilities, and sensorimotor execution abilities. Their language ability was characterized by word-finding difficulties and impairments of sentence comprehension, sentence repetition, verbal fluency, narrative speech, reading, and writing. Conclusions: This study confirmed that PCA is marked by visuospatial and visuoperceptual deficits and reported evidence of primary and secondary language impairments in the three patients. The similarities of some of their language impairments with those found in the logopenic variant of primary progressive aphasia is discussed from neurolinguistic and neuroanatomical points of view.
Collapse
Affiliation(s)
- Catherine Brodeur
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
- Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Centre de Recherche de l’IUGM, Montreal, QC H3W 1W6, Canada
| | - Émilie Belley
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC G1V 0A6, Canada; (É.B.); (L.-M.D.)
| | - Lisa-Marie Deschênes
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC G1V 0A6, Canada; (É.B.); (L.-M.D.)
| | - Adriana Enriquez-Rosas
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Michelyne Hubert
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Anik Guimond
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Josée Bilodeau
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Jean-Paul Soucy
- Université de Montréal, Montreal, QC H3T 1J4, Canada;
- McConnell Brain Imaging Centre, McGill University, Montreal, QC H3A 2B4, Canada
- Concordia University, Montreal, QC H4B 1R6, Canada
| | - Joël Macoir
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC G1V 0A6, Canada; (É.B.); (L.-M.D.)
- Centre de Recherche CERVO (CERVO Brain Research Centre), Quebec, QC G1J 2G3, Canada
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 412190)
| |
Collapse
|
114
|
Hanley CJ, Burns N, Thomas HR, Marstaller L, Burianová H. The effects of age-bias on neural correlates of successful and unsuccessful response inhibition. Behav Brain Res 2022; 428:113877. [DOI: 10.1016/j.bbr.2022.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
|
115
|
Bayot M, Gérard M, Derambure P, Dujardin K, Defebvre L, Betrouni N, Delval A. Functional networks underlying freezing of gait: a resting-state electroencephalographic study. Neurophysiol Clin 2022; 52:212-222. [PMID: 35351387 DOI: 10.1016/j.neucli.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION The pathophysiology of freezing of gait in people with Parkinson's disease (PD) remains unclear, despite its association with motor, cognitive, limbic and sensory-perceptual impairments. Resting-state electroencephalography (EEG) may provide functional information for a better understanding of freezing of gait by studying spectral power and connectivity between brain regions in different frequency bands. METHODS High-resolution EEG was recorded in 36 patients with PD (18 freezers, 18 non-freezers), and 18 healthy controls during a 5-min resting-state protocol with eyes open, followed by a basic spectral analysis in the sensor space and a more advanced analysis of functional connectivity at the source level. RESULTS Freezers showed a diffusely higher theta-band relative spectral power than controls. This increased power was correlated with a deficit in executive control. Concerning resting-state functional connectivity, connectivity strength within a left fronto-parietal network appeared to be higher in freezers than in controls in the theta band, and to be correlated with freezing severity and a history of falls. CONCLUSION We have shown that spectral power and connectivity analyses of resting-state EEG provide useful and complementary information to better understand freezing of gait in PD. The higher connectivity strength seen within the left ventral attention network in freezers is in keeping with an excessive guidance of behavior by external cues, due to executive dysfunction, and spectral analysis also found changes in freezers that was closely correlated with executive control deficits. This exaggerated influence of the external environment might result in behavioral consequences that contribute to freezing of gait episodes. These findings should be further investigated with a longitudinal study.
Collapse
Affiliation(s)
- Madli Bayot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Morgane Gérard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Philippe Derambure
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Nacim Betrouni
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| |
Collapse
|
116
|
The Role of the Interaction between the Inferior Parietal Lobule and Superior Temporal Gyrus in the Multisensory Go/No-go Task. Neuroimage 2022; 254:119140. [PMID: 35342002 DOI: 10.1016/j.neuroimage.2022.119140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Information from multiple sensory modalities interacts. Using functional magnetic resonance imaging (fMRI), we aimed to identify the neural structures correlated with how cooccurring sound modulates the visual motor response execution. The reaction time (RT) to audiovisual stimuli was significantly faster than the RT to visual stimuli. Signal detection analyses showed no significant difference in the perceptual sensitivity (d') between audiovisual and visual stimuli, while the response criteria (β or c) of the audiovisual stimuli was decreased compared to the visual stimuli. The functional connectivity between the left inferior parietal lobule (IPL) and bilateral superior temporal gyrus (STG) was enhanced in Go processing compared with No-go processing of audiovisual stimuli. Furthermore, the left precentral gyrus (PreCG) showed enhanced functional connectivity with the bilateral STG and other areas of the ventral stream in Go processing compared with No-go processing of audiovisual stimuli. These results revealed that the neuronal network correlated with modulations of the motor response execution after the presentation of both visual stimuli along with cooccurring sound in a multisensory Go/Nogo task, including the left IPL, left PreCG, bilateral STG and some areas of the ventral stream. The role of the interaction between the IPL and STG in transforming audiovisual information into motor behavior is discussed. The current study provides a new perspective for exploring potential brain mechanisms underlying how humans execute appropriate behaviors on the basis of multisensory information.
Collapse
|
117
|
Parsons JD, Davies J. The Neural Correlates of Analogy Component Processes. Cogn Sci 2022; 46:e13116. [PMID: 35297092 DOI: 10.1111/cogs.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2021] [Accepted: 01/21/2021] [Indexed: 11/28/2022]
Abstract
Analogical reasoning is a core facet of higher cognition in humans. Creating analogies as we navigate the environment helps us learn. Analogies involve reframing novel encounters using knowledge of familiar, relationally similar contexts stored in memory. When an analogy links a novel encounter with a familiar context, it can aid in problem solving. Reasoning by analogy is a complex process that is mediated by multiple brain regions and mechanisms. Several advanced computational architectures have been developed to simulate how these brain processes give rise to analogical reasoning, like the "learning with inferences and schema abstraction" architecture and the Companion architecture. To obtain this power to simulate human reasoning, theses architectures assume that various computational "subprocesses" comprise analogical reasoning, such as analogical access, mapping, inference, and schema induction, consistent with the structure-mapping framework proposed decades ago. However, little is known about how these subprocesses relate to actual brain processes. While some work in neuroscience has linked analogical reasoning to regions of brain prefrontal cortex, more research is needed to investigate the wide array of specific neural hypotheses generated by the computational architectures. In the current article, we review the association between historically important computational architectures of analogy and empirical studies in neuroscience. In particular, we focus on evidence for a frontoparietal brain network underlying analogical reasoning and the degree to which brain mechanisms mirror the computational subprocesses. We also offer a general vantage on the current- and future-states of neuroscience research in this domain and provide some recommendations for future neuroimaging studies.
Collapse
Affiliation(s)
| | - Jim Davies
- Department of Cognitive Science, Carleton University
| |
Collapse
|
118
|
Claeys EHI, Mantingh T, Morrens M, Yalin N, Stokes PRA. Resting-state fMRI in depressive and (hypo)manic mood states in bipolar disorders: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110465. [PMID: 34736998 DOI: 10.1016/j.pnpbp.2021.110465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Abnormalities in spontaneous brain activity, measured with resting-state functional magnetic resonance imaging (rs-fMRI), may be key biomarkers for bipolar disorders. This systematic review compares rs-fMRI findings in people experiencing a bipolar depressive or (hypo)manic episode to bipolar euthymia and/or healthy participants. METHODS Medline, Web of Science and Embase were searched up until April 2021. Studies without control group, or including minors, neurological co-morbidities or mixed episodes, were excluded. Qualitative synthesis was used to report results and risk of bias was assessed using the National Heart, Lung and Blood Institute tool for case-control studies. RESULTS Seventy-one studies were included (3167 bipolar depressed/706 (hypo)manic). In bipolar depression, studies demonstrated default-mode (DMN) and frontoparietal network (FPN) dysfunction, altered baseline activity in the precuneus, insula, striatum, cingulate, frontal and temporal cortex, and disturbed regional homogeneity in parietal, temporal and pericentral areas. Functional connectivity was altered in thalamocortical circuits and between the cingulate cortex and precuneus. In (hypo)mania, studies reported altered functional connectivity in the amygdala, frontal and cingulate cortex. Finally, rs-fMRI disturbances in the insula and putamen correlate with depressive symptoms, cerebellar resting-state alterations could evolve with disease progression and altered amygdala connectivity might mediate lithium effects. CONCLUSIONS Our results suggest DMN and FPN dysfunction in bipolar depression, whereas local rs-fMRI alterations might differentiate mood states. Future studies should consider controlling rs-fMRI findings for potential clinical confounding factors such as medication. Considerable heterogeneity of methodology between studies limits conclusions. Standardised clinical reporting and consistent analysis approaches would increase coherence in this promising field.
Collapse
Affiliation(s)
- Eva H I Claeys
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, S.033, Universiteitsplein 1, 2610 Antwerpen, Belgium; Department of Psychiatry, University Psychiatric Centre Duffel, Stationsstraat 22, 2570 Duffel, Belgium
| | - Tim Mantingh
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Manuel Morrens
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, S.033, Universiteitsplein 1, 2610 Antwerpen, Belgium; Department of Psychiatry, University Psychiatric Centre Duffel, Stationsstraat 22, 2570 Duffel, Belgium
| | - Nefize Yalin
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Paul R A Stokes
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
119
|
Alhajri N, Boudreau SA, Graven-Nielsen T. Angular gyrus connectivity at alpha and beta oscillations is reduced during tonic pain - Differential effect of eye state. Neuroimage Clin 2022; 33:102907. [PMID: 34915329 PMCID: PMC8683773 DOI: 10.1016/j.nicl.2021.102907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Tonic pain differentially altered AG connectivity during eyes closed and eyes open. Negative mood and/or sleep quality can influence pain-related connectivity. Eyes closed baseline may allow for a reliable detection of pain-related changes. Eyes-closed-eyes-open sequence is crucial for assessing pain-related connectivity.
The angular gyrus (AG) is a common hub in the pain networks. The role of the AG during pain perception, however, is still unclear. This crossover study examined the effect of tonic pain on resting state functional connectivity (rsFC) of the AG under eyes closed (EC) and eyes open (EO). It included two sessions (placebo/pain) separated by 24 hours. Pain was induced using topical capsaicin (or placebo as control) on the right forearm. Electroencephalographic rsFC assessed by Granger causality was acquired from 28 healthy participants (14 women) before (baseline) and 1-hour following the application of placebo/capsaicin. Subjects were randomly assigned and balanced to groups of recording sequence (EC-EO, EO-EC). Decreased rsFC at alpha-1 and beta, but not alpha-2, oscillations was found during pain compared to baseline during EC only. For alpha-1, EC-EO group showed a pain-induced decrease only among connections between the right AG and each of the posterior cingulate cortex (PCC, P = 0.002), medial prefrontal cortex (mPFC, P = 0.005), and the left AG (P = 0.023). For beta rsFC, the EC-EO group showed a bilateral decrease in rsFC spanning the connections between the right AG and mPFC (P = 0.015) and between the left AG and each of PCC (P = 0.004) and mPFC (P = 0.026). In contrast, the EO-EC group showed an increase in beta rsFC only among connections between the left AG and each of PCC (P = 0.012) and mPFC (P = 0.036). No significant change in the AG rsFC was found during EO. These results provide insight into the involvement of the AG in pain perception and reveal methodological considerations when assessing rsFC during EO and EC.
Collapse
Affiliation(s)
- Najah Alhajri
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Shellie Ann Boudreau
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
120
|
Blithikioti C, Nuño L, Guell X, Pascual-Diaz S, Gual A, Balcells-Olivero Μ, Miquel L. The cerebellum and psychological trauma: A systematic review of neuroimaging studies. Neurobiol Stress 2022; 17:100429. [PMID: 35146077 PMCID: PMC8801754 DOI: 10.1016/j.ynstr.2022.100429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Psychological trauma is highly prevalent among psychiatric disorders, however, the relationship between trauma, neurobiology and psychopathology is not yet fully understood. The cerebellum has been recognized as a crucial structure for cognition and emotion, however, it has been relatively ignored in the literature of psychological trauma, as it is not considered as part of the traditional fear neuro-circuitry. The aim of this review is to investigate how psychological trauma affects the cerebellum and to make conclusive remarks on whether the cerebellum forms part of the trauma-affected brain circuitry. A total of 267 unique records were screened and 39 studies were included in the review. Structural cerebellar alterations and aberrant cerebellar activity and connectivity in trauma-exposed individuals were consistently reported across studies. Early-onset of adverse experiences was associated with cerebellar alterations in trauma-exposed individuals. Several studies reported alterations in connectivity between the cerebellum and nodes of large-brain networks, which are implicated in several psychiatric disorders, including the default mode network, the salience network and the central executive network. Also, trauma-exposed individuals showed altered resting state and task based cerebellar connectivity with cortical and subcortical structures that are involved in emotion and fear regulation. Our preferred interpretation of the results is through the lens of the Universal Cerebellar Transform, the hypothesis that the cerebellum, given its homogeneous cytoarchitecture, performs a common computation for motor, cognitive and emotional functions. Therefore, trauma-induced alterations in this computation might set the ground for a variety of psychiatric symptoms.
Collapse
Affiliation(s)
- C. Blithikioti
- Psychiatry Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L. Nuño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - X. Guell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - S. Pascual-Diaz
- Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A. Gual
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Μ. Balcells-Olivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - L. Miquel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| |
Collapse
|
121
|
Zhang L, Yang T, Chen Y, Zheng D, Sun D, Tu Q, Huang J, Zhang J, Li Z. Cognitive Deficit and Aberrant Intrinsic Brain Functional Network in Early-Stage Drug-Naive Parkinson's Disease. Front Neurosci 2022; 16:725766. [PMID: 35281494 PMCID: PMC8914103 DOI: 10.3389/fnins.2022.725766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although cognitive deficit is a common non-motor symptom of Parkinson's disease (PD), the mechanism and valid biomarkers of it have not been identified. To our best knowledge, this was the first study to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks in early-stage drug-naive (ESDN) PD patients and its association with cognitive deficit of PD using voxel-wise Degree Centrality (DC) approach. METHODS A total of 53 ESDN PD patients and 53 healthy controls (HC) were recruited. Resting-state fMRI (rs-fMRI) data were acquired, and voxel-wise DC approach was applied. Electrophysiological testing at P300 amplitude was recorded. The Montreal Cognitive Assessment (MoCA) was conducted to evaluate cognitive performance. RESULTS ESDN PD patients had lower MoCA scores and P300 amplitudes, but higher P300 latency, than HC (all p < 0.0001). PD patients displayed higher DC in the right inferior frontal gyrus (IFG), left medial frontal gyrus (MFG) and left precentral gyrus (PreCG); but lower DC in the left inferior parietal lobule (IPL), left inferior temporal gyrus (ITG), right occipital lobe, and right postcentral gyrus (PoCG) (pBonferroni correction < 0.0001). Interestingly, the DC values of left MFG, right PoCG and right occipital lobe were negatively associated with P300 latency but positively associated with P300 amplitudes and MoCA scores (all pBonferroni correction < 0.0001). CONCLUSIONS Our results indicate the cognitive deficit and abnormal intrinsic brain functional network in ESDN PD patients. The damage of Default Mode Network (DMN) may be contributes to the pathogenesis of cognitive dysfunction in ESDN PD.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Yang
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Yuping Chen
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Denise Zheng
- McGovern Medical School, Houston, TX, United States
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Tu
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jinbai Huang
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
122
|
Liu W, Wang X, Hamalainen T, Cong F. Exploring Oscillatory Dysconnectivity Networks in Major Depression during Resting State Using Coupled Tensor Decomposition. IEEE Trans Biomed Eng 2022; 69:2691-2700. [PMID: 35180074 DOI: 10.1109/tbme.2022.3152413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals novel mechanisms and neural characteristics of MDD. Our study applied a novel coupled tensor decomposition model to investigate the dysconnectivity networks characterized by spatio-temporal-spectral modes of covariation in MDD using resting electroencephalography. The phase lag index is used to calculate the functional connectivity within each time window at each frequency bin. Then, two adjacency tensors with the dimension of time frequency connectivity subject are constructed for the healthy group and the major depression group. We assume that the two groups share the same features for group similarity and retain individual characteristics for group differences. Considering that the constructed tensors are nonnegative and the components in spectral and adjacency modes are partially consistent among the two groups, we formulate a double-coupled nonnegative tensor decomposition model. To reduce computational complexity, we introduce the lowrank approximation. Then, the fast hierarchical alternative least squares algorithm is applied for model optimization. After clustering analysis, we summarize four oscillatory networks characterizing the healthy group and four oscillatory networks characterizing the major depression group, respectively. The proposed model may reveal novel mechanisms of pathoconnectomics in MDD during rest, and it can be easily extended to other psychiatric disorders.
Collapse
|
123
|
Zhang Y, Mai X. 欺骗的认知神经网络模型. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-0963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
124
|
Zhang S, Cui J, Zhang Z, Wang Y, Liu R, Chen X, Feng Y, Zhou J, Zhou Y, Wang G. Functional connectivity of amygdala subregions predicts vulnerability to depression following the COVID-19 pandemic. J Affect Disord 2022; 297:421-429. [PMID: 34606814 PMCID: PMC8558508 DOI: 10.1016/j.jad.2021.09.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The amygdala is vital in processing psychological stress and predicting vulnerability or resilience to stress-related disorders. This study aimed to build the link between functional magnetic resonance imaging data obtained before the stress event and the subsequent stress-related depressive symptoms. METHODS Neuroimaging data obtained before the coronavirus disease 2019 pandemic from 39 patients with major depressive disorder (MDD) and 61 health controls (HCs) were used in this study. The participants were divided retrospectively into four groups in accordance with the severity of depressive symptoms during the pandemic: remitted patients, non-remitted patients, depressed HCs (HCd) and non-depressed HCs (HCnd). Seed-based resting-state functional connectivity (rsFC) analyses of the amygdala and its subregions, including the centromedial (CM), the basolateral and the superficial (SF), were performed. RESULTS Vulnerability to depression was suggested by decreased rsFC between the left CM amygdala and the bilateral lingual gyrus in the HCd group compared with the HCnd group, and decreased rsFC of the left CM or right SF amygdala with the precuneus and the postcentral gyrus in the HCd group compared with patients with MDD. No evidence supported the rsFC of the amygdala or its subregions as a biomarker for the resilience of patients with MDD to stress under antidepressant treatment. LIMITATIONS Smaller sample size and no longitudinal neuroimaging data. CONCLUSIONS Our findings suggested that the rsFC of amygdala subregions may represent a neurobiological marker of vulnerability to depression following stress.
Collapse
Affiliation(s)
- Shudong Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Cui
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
125
|
Cui W, Wang S, Chen B, Fan G. Altered Functional Network in Infants With Profound Bilateral Congenital Sensorineural Hearing Loss: A Graph Theory Analysis. Front Neurosci 2022; 15:810833. [PMID: 35095404 PMCID: PMC8795617 DOI: 10.3389/fnins.2021.810833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have suggested that there is a functional reorganization of brain areas in patients with sensorineural hearing loss (SNHL). Recently, graph theory analysis has brought a new understanding of the functional connectome and topological features in central neural system diseases. However, little is known about the functional network topology changes in SNHL patients, especially in infants. In this study, 34 infants with profound bilateral congenital SNHL and 28 infants with normal hearing aged 11–36 months were recruited. No difference was found in small-world parameters and network efficiency parameters. Differences in global and nodal topologic organization, hub distribution, and whole-brain functional connectivity were explored using graph theory analysis. Both normal-hearing infants and SNHL infants exhibited small-world topology. Furthermore, the SNHL group showed a decreased nodal degree in the bilateral thalamus. Six hubs in the SNHL group and seven hubs in the normal-hearing group were identified. The left middle temporal gyrus was a hub only in the SNHL group, while the right parahippocampal gyrus and bilateral temporal pole were hubs only in the normal-hearing group. Functional connectivity between auditory regions and motor regions, between auditory regions and default-mode-network (DMN) regions, and within DMN regions was found to be decreased in the SNHL group. These results indicate a functional reorganization of brain functional networks as a result of hearing loss. This study provides evidence that functional reorganization occurs in the early stage of life in infants with profound bilateral congenital SNHL from the perspective of complex networks.
Collapse
|
126
|
Differential associations between neocortical tau pathology and blood flow with cognitive deficits in early-onset vs late-onset Alzheimer's disease. Eur J Nucl Med Mol Imaging 2022; 49:1951-1963. [PMID: 34997294 PMCID: PMC9016024 DOI: 10.1007/s00259-021-05669-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Purpose Early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD. Methods Seventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n = 35, age-at-PET = 59 ± 5, MMSE = 23 ± 4; LOAD: n = 44, age-at-PET = 71 ± 5, MMSE = 23 ± 4) underwent a 130-min dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital, and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language, and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition. Results Both region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipitoparietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND − 0.76 ≤ stβ ≤ − 0.48 vs LOAD − 0.18 ≤ stβ ≤ − 0.02; EOAD R1 0.37 ≤ stβ ≤ 0.84 vs LOAD − 0.25 ≤ stβ ≤ 0.16). Conclusions Compared to LOAD, the degree of lateral temporal and occipitoparietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05669-6.
Collapse
|
127
|
Serotonergic modulation of effective connectivity in an associative relearning network during task and rest. Neuroimage 2022; 249:118887. [PMID: 34999203 DOI: 10.1016/j.neuroimage.2022.118887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.
Collapse
|
128
|
Taran N, Farah R, DiFrancesco M, Altaye M, Vannest J, Holland S, Rosch K, Schlaggar BL, Horowitz-Kraus T. The role of visual attention in dyslexia: Behavioral and neurobiological evidence. Hum Brain Mapp 2022; 43:1720-1737. [PMID: 34981603 PMCID: PMC8886655 DOI: 10.1002/hbm.25753] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Poor phonological processing has typically been considered the main cause of dyslexia. However, visuo‐attentional processing abnormalities have been described as well. The goal of the present study was to determine the involvement of visual attention during fluent reading in children with dyslexia and typical readers. Here, 75 children (8–12 years old; 36 typical readers, 39 children with dyslexia) completed cognitive and reading assessments. Neuroimaging data were acquired while children performed a fluent reading task with (a) a condition where the text remained on the screen (Still) versus (b) a condition in which the letters were being deleted (Deleted). Cognitive assessment data analysis revealed that visual attention, executive functions, and phonological awareness significantly contributed to reading comprehension in both groups. A seed‐to‐voxel functional connectivity analysis was performed on the fluency functional magnetic resonance imaging task. Typical readers showed greater functional connectivity between the dorsal attention network and the left angular gyrus while performing the Still and Deleted reading tasks versus children with dyslexia. Higher connectivity values were associated with higher reading comprehension. The control group showed increased functional connectivity between the ventral attention network and the fronto‐parietal network during the Deleted text condition (compared with the Still condition). Children with dyslexia did not display this pattern. The results suggest that the synchronized activity of executive, visual attention, and reading‐related networks is a pattern of functional integration which children with dyslexia fail to achieve. The present evidence points toward a critical role of visual attention in dyslexia.
Collapse
Affiliation(s)
- Nikolay Taran
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Mark DiFrancesco
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mekibib Altaye
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer Vannest
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel.,Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Behavioral Sciences and Pediatrics, Johns Hopkins University School of Medicine. School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
129
|
Fang F, Gong YJ, Luo Q, Ge RB, Kang M, Ma MM, Zhang L, Mu D, Yin DZ, Wang YF. Cognitive Dysfunction in Type 2 Diabetes Is Not a One-Way Process: Evidence From a Longitudinal Brain Connectivity Study. Front Endocrinol (Lausanne) 2022; 13:874538. [PMID: 35573998 PMCID: PMC9095898 DOI: 10.3389/fendo.2022.874538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cognitive dysfunction is an important comorbidity of diabetes characterized by brain functional hypo-connectivity. However, our recent study demonstrated an adaptive hyper-connectivity in young type 2 diabetes with cognitive decrements. This longitudinal study aimed to further explore the changes in functional connectivity and cognitive outcomes after regular glycemic control. METHODS At 18 months after recruitment, participants underwent a second cognitive assessment and magnetic resonance imaging. Three enhanced functional connectivities previously identified at baseline were followed up. Linear mixed-effects models were performed to compare the longitudinal changes of cognition and functional connectivity in patients with type 2 diabetes and non-diabetic controls. A linear regression model was used to investigate the association between changes in functional connectivity and changes in cognitive performance. RESULTS Improvements in multiple cognitive domains were observed in diabetes; however, the enhanced functional connectivity at baseline decreased significantly. Moreover, the decrease in hippocampal connectivity was correlated with an increase in the accuracy of Stroop task and the decrease in posterior cingulate cortex connectivity was correlated with an increase in Montreal Cognitive Assessment in diabetes. CONCLUSION This study suggests diabetes-related cognitive dysfunction is not a one-way process and the early-stage enhancement of brain connectivity was a potential "window period" for cognitive reversal.
Collapse
Affiliation(s)
- Fang Fang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Jia Gong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Luo
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-Bin Ge
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Kang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Ming Ma
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Da-Zhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- *Correspondence: Yu-Fan Wang, ; Da-Zhi Yin,
| | - Yu-Fan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yu-Fan Wang, ; Da-Zhi Yin,
| |
Collapse
|
130
|
Abstract
In the human brain, the temporal-parietal junction (TPJ) is a histologically heterogenous area that includes the ventral portions of the parietal cortex and the caudal superior temporal gyrus sector adjacent to the posterior end of the Sylvian fissure. The anatomical heterogeneity of the TPJ is matched by its seemingly ubiquitous involvement in different cognitive functions that span from memory to language, attention, self-consciousness, and social behavior. In line with established clinical evidence, recent fMRI investigations have confirmed relevant hemispheric differences in the TPJ function. Most importantly, the same investigations have highlighted that, in each hemisphere, different subsectors of the TPJ are putatively involved in different cognitive functions. Here I review empirical evidence and theoretical proposals that were recently advanced to gain a unifying interpretation of TPJ function(s). In the final part of the review, a new overarching interpretation of the TPJ function is proposed. Current advances in cognitive neuroscience can provide important insights that help improve the clinical understanding of cognitive deficits experienced by patients with lesions centered in or involving the TPJ area.
Collapse
Affiliation(s)
- Fabrizio Doricchi
- Department of Psychology, "La Sapienza" University, Rome, Italy; Laboratory of Neuropsychology of Attention, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
131
|
A Combined Administration of Testosterone and Arginine Vasopressin Affects Aggressive Behavior in Males. Brain Sci 2021; 11:brainsci11121623. [PMID: 34942928 PMCID: PMC8699569 DOI: 10.3390/brainsci11121623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Aggressive behavior is modulated by many factors, including personality and cognition, as well as endocrine and neural changes. To study the potential effects on the reaction to provocation, which was realized by an ostensible opponent subtracting money from the participant, we administered testosterone (T) and arginine vasopressin (AVP) or a respective placebo (PL). Forty males underwent a functional magnetic resonance imaging session while performing a provocation paradigm. We investigated differential hormone effects and the potential influence of Machiavellian traits on punishment choices (monetary subtractions by the participant) in the paradigm. Participants in the T/AVP group subtracted more money when they were not provoked but showed increased activation in the inferior frontal gyrus and inferior parietal lobule during feedback compared to PL. Higher Machiavellian traits significantly increased punishing behavior independent of provocation only in this group. The pilot study shows that T/AVP affects neural and behavioral responses during a provocation paradigm while personality characteristics, such as Machiavellian trait patterns, specifically interact with hormonal influences (T/AVP) and their effects on behavior.
Collapse
|
132
|
Lyu D, Pappas I, Menon DK, Stamatakis EA. A Precuneal Causal Loop Mediates External and Internal Information Integration in the Human Brain. J Neurosci 2021; 41:9944-9956. [PMID: 34675087 PMCID: PMC8638689 DOI: 10.1523/jneurosci.0647-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Human brains interpret external stimuli based on internal representations. One untested hypothesis is that the default-mode network (DMN), widely considered responsible for internally oriented cognition, can decode external information. Here, we posit that the unique structural and functional fingerprint of the precuneus (PCu) supports a prominent role for the posterior part of the DMN in this process. By analyzing the imaging data of 100 participants performing two attention-demanding tasks, we found that the PCu is functionally divided into dorsal and ventral subdivisions. We then conducted a comprehensive examination of their connectivity profiles and found that at rest, both the ventral PCu (vPCu) and dorsal PCu (dPCu) are mainly connected with the DMN but also are differentially connected with internally oriented networks (IoN) and externally oriented networks (EoN). During tasks, the double associations between the v/dPCu and the IoN/EoN are correlated with task performance and can switch depending on cognitive demand. Furthermore, dynamic causal modeling (DCM) revealed that the strength and direction of the effective connectivity (EC) between v/dPCu is modulated by task difficulty in a manner potentially dictated by the balance of internal versus external cognitive demands. Our study provides evidence that the posterior medial part of the DMN may drive interactions between large-scale networks, potentially allowing access to stored representations for moment-to-moment interpretation of an ever-changing environment.SIGNIFICANCE STATEMENT The default-mode network (DMN) is widely known for its association with internalized thinking processes, e.g., spontaneous thoughts, which is the most interesting but least understood component in human consciousness. The precuneus (PCu), a posteromedial DMN hub, is thought to play a role in this, but a mechanistic explanation has not yet been established. In this study we found that the associations between ventral PCu (vPCu)/dorsal PCu (dPCu) subdivisions and internally oriented network (IoN)/externally oriented network (EoN) are flexibly modulated by cognitive demand and correlate with task performance. We further propose that the recurrent causal connectivity between the ventral and dorsal PCu supports conscious processing by constantly interpreting external information based on an internal model, meanwhile updating the internal model with the incoming information.
Collapse
Affiliation(s)
- Dian Lyu
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| | - Ioannis Pappas
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| |
Collapse
|
133
|
Tomiyama H, Murayama K, Nemoto K, Tomita M, Hasuzawa S, Mizobe T, Kato K, Ohno A, Tsuruta S, Togao O, Hiwatashi A, Nakao T. Increased functional connectivity between presupplementary motor area and inferior frontal gyrus associated with the ability of motor response inhibition in obsessive-compulsive disorder. Hum Brain Mapp 2021; 43:974-984. [PMID: 34816523 PMCID: PMC8764470 DOI: 10.1002/hbm.25699] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Recent evidence suggests that presupplementary motor area (pre‐SMA) and inferior frontal gyrus (IFG) play an important role in response inhibition. However, no study has investigated the relationship between these brain networks at resting‐state and response inhibition in obsessive–compulsive disorder (OCD). We performed resting‐state functional magnetic resonance imaging scans and then measured the response inhibition of 41 medication‐free OCD patients and 49 healthy control (HC) participants by using the stop‐signal task outside the scanner. We explored the differences between OCD and HC groups in the functional connectivity of pre‐SMA and IFG associated with the ability of motor response inhibition. OCD patients showed a longer stop‐signal reaction time (SSRT). Compared to HC, OCD patients exhibit different associations between the ability of motor response inhibition and the functional connectivity between pre‐SMA and IFG, inferior parietal lobule, dorsal anterior cingulate cortex, insula, and anterior prefrontal cortex. Additional analysis to investigate the functional connectivity difference from the seed ROIs to the whole brain voxels revealed that, compared to HC, OCD exhibited greater functional connectivity between pre‐SMA and IFG. Also, this functional connectivity was positively correlated with the SSRT score. These results provide additional insight into the characteristics of the resting‐state functional connectivity of the regions belonging to the cortico‐striato‐thalamo‐cortical circuit and the cingulo‐opercular salience network, underlying the impaired motor response inhibition of OCD. In particular, we emphasize the importance of altered functional connectivity between pre‐SMA and IFG for the pathophysiology of motor response inhibition in OCD.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Nemoto
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mayumi Tomita
- Department of Psychology, Kurume University, Kurume, Japan
| | - Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Sae Tsuruta
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
134
|
Are We Right about the Right TPJ? A Review of Brain Stimulation and Social Cognition in the Right Temporal Parietal Junction. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the past decade, the functional role of the TPJ (Temporal Parietal Junction) has become more evident in terms of its contribution to social cognition. Studies have revealed the TPJ as a ‘distinguisher’ of self and other with research focused on non-clinical populations as well as in individuals with Autism and Type I Schizophrenia. Further research has focused on the integration of self-other distinctions with proprioception. Much of what we now know about the causal role of the right TPJ derives from TMS (Transcranial Magnetic Stimulation), rTMS repetitive Transcranial Magnetic Stimulation), and tDCS (transcranial Direct Cortical Stimulation). In this review, we focus on the role of the right TPJ as a moderator of self, which is integrated and distinct from ‘other’ and how brain stimulation has established the causal relationship between the underlying cortex and agency.
Collapse
|
135
|
Neurocomputational mechanism of controllability inference under a multi-agent setting. PLoS Comput Biol 2021; 17:e1009549. [PMID: 34752453 PMCID: PMC8604335 DOI: 10.1371/journal.pcbi.1009549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/19/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Controllability perception significantly influences motivated behavior and emotion and requires an estimation of one’s influence on an environment. Previous studies have shown that an agent can infer controllability by observing contingency between one’s own action and outcome if there are no other outcome-relevant agents in an environment. However, if there are multiple agents who can influence the outcome, estimation of one’s genuine controllability requires exclusion of other agents’ possible influence. Here, we first investigated a computational and neural mechanism of controllability inference in a multi-agent setting. Our novel multi-agent Bayesian controllability inference model showed that other people’s action-outcome contingency information is integrated with one’s own action-outcome contingency to infer controllability, which can be explained as a Bayesian inference. Model-based functional MRI analyses showed that multi-agent Bayesian controllability inference recruits the temporoparietal junction (TPJ) and striatum. Then, this inferred controllability information was leveraged to increase motivated behavior in the vmPFC. These results generalize the previously known role of the striatum and vmPFC in single-agent controllability to multi-agent controllability, and this generalized role requires the TPJ in addition to the striatum of single-agent controllability to integrate both self- and other-related information. Finally, we identified an innate positive bias toward the self during the multi-agent controllability inference, which facilitated behavioral adaptation under volatile controllability. Furthermore, low positive bias and high negative bias were associated with increased daily feelings of guilt. Our results provide a mechanism of how our sense of controllability fluctuates due to other people in our lives, which might be related to social learned helplessness and depression. How we perceive controllability over an outcome if there are multiple other agents who can simultaneously influence that outcome? Previous ‘single-agent’ studies showed that an agents’ inferred controllability depends on contingency between its own action and following outcome and this inference involves striatum. Here, we show that in a multi-agent setting, other people’s action-outcome contingency information is integrated with one’s own action-outcome contingency to infer controllability, which was explained as a biased Bayesian inference. Notably, bias in inference played an adaptive role under volatile controllability and was associated with a perception of guilt. Striatum and temporoparietal junction (TPJ) were involved in this multi-agent Bayesian controllability inference and this controllability information was leveraged to increase motivated behavior in the vmPFC. Our results first provide a neurocomputational mechanism of multi-agent controllability inference.
Collapse
|
136
|
Establishing a role of the semantic control network in social cognitive processing: A meta-analysis of functional neuroimaging studies. Neuroimage 2021; 245:118702. [PMID: 34742940 DOI: 10.1016/j.neuroimage.2021.118702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
The contribution and neural basis of cognitive control is under-specified in many prominent models of socio-cognitive processing. Important outstanding questions include whether there are multiple, distinguishable systems underpinning control and whether control is ubiquitously or selectively engaged across different social behaviours and task demands. Recently, it has been proposed that the regulation of social behaviours could rely on brain regions specialised in the controlled retrieval of semantic information, namely the anterior inferior frontal gyrus (IFG) and posterior middle temporal gyrus. Accordingly, we investigated for the first time whether the neural activation commonly found in social functional neuroimaging studies extends to these 'semantic control' regions. We conducted five coordinate-based meta-analyses to combine results of 499 fMRI/PET experiments and identified the brain regions consistently involved in semantic control, as well as four social abilities: theory of mind, trait inference, empathy and moral reasoning. This allowed an unprecedented parallel review of the neural networks associated with each of these cognitive domains. The results confirmed that the anterior left IFG region involved in semantic control is reliably engaged in all four social domains. This supports the hypothesis that social cognition is partly regulated by the neurocognitive system underpinning semantic control.
Collapse
|
137
|
Di Cio F, Minosse S, Picchi E, Di Giuliano F, Sarmati L, Teti E, Andreoni M, Floris R, Guerrisi M, Garaci F, Toschi N. Whole-brain white matter network reorganization in HIV. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3830-3833. [PMID: 34892069 DOI: 10.1109/embc46164.2021.9629503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The human immunodeficiency virus (HIV) causes an infectious disease with a high viral tropism toward CD4 T-lymphocytes and macrophage. Since the advent of combined antiretroviral therapy (CART), the number of opportunistic infectious disease has diminished, turning HIV into a chronic condition. Nevertheless, HIV-infected patients suffer from several life-long symptoms, including the HIV-associated neurocognitive disorder (HAND), whose biological substrates remain unclear. HAND includes a range of cognitive impairments which have a huge impact on daily patient life. The aim of this study was to examine putative structural brain network changes in HIV-infected patient to test whether diffusion-imaging-related biomarkers could be used to discover and characterize subtle neurological alterations in HIV infection. To this end, we employed multi-shell, multi-tissue constrained spherical deconvolution in conjunction with probabilistic tractography and graph-theoretical analyses. We found several statistically significant effects in both local (right postcentral gyrus, right precuneus, right inferior parietal lobule, right transverse temporal gyrus, right inferior temporal gyrus, right putamen and right pallidum) and global graph-theoretical measures (global clustering coefficient, global efficiency and transitivity). Our study highlights a global and local reorganization of the structural connectome which support the possible application of graph theory to detect subtle alteration of brain regions in HIV patients.Clinical Relevance-Brain measures able to detect subtle alteration in HIV patients could also be used in e.g. evaluating therapeutic responses, hence empowering clinical trials.
Collapse
|
138
|
Cao W, Liao H, Cai S, Peng W, Liu Z, Zheng K, Liu J, Zhong M, Tan C, Yi J. Increased functional interaction within frontoparietal network during working memory task in major depressive disorder. Hum Brain Mapp 2021; 42:5217-5229. [PMID: 34328676 PMCID: PMC8519848 DOI: 10.1002/hbm.25611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Abnormal fronto-parietal activation has been suggested as a neural underpinning of the working memory (WM) deficits in major depressive disorder (MDD). However, the potential interaction within the frontoparietal network during WM processing in MDD remains unclear. This study aimed to examine the role of abnormal functional interactions within frontoparietal network in the neuropathological mechanisms of WM deficits in MDD. A total of 40 MDD patients and 47 demographic matched healthy controls (HCs) were included. Functional magnetic resonance imaging and behavioral data were collected during numeric n-back tasks. The psychophysiological interaction and dynamic causal modelling methods were applied to investigate the connectivity within the frontoparietal network in MDD during n-back tasks. The psychophysiological interaction analysis revealed that MDD patients showed increased functional connectivity between the right inferior parietal lobule (IPL) and the right dorsolateral prefrontal cortex (dlPFC) compared with HCs during the 2-back task. The dynamic causal modelling analysis revealed that MDD patients had significantly increased forward modulation connectivity from the right IPL to the right dlPFC than HCs during the 2-back task. Partial correlation was used to calculate the relationship between connective parameters and psychological variables in the MDD group, which showed that the effective connectivity from right IPL to right dlPFC was correlated negatively with the sensitivity index d' of WM performances and positively with the depressive severity in MDD group. In conclusion, the abnormal functional and effective connectivity between frontal and parietal regions might contribute to explain the neuropathological mechanism of working memory deficits in major depressive disorder.
Collapse
Affiliation(s)
- Wanyi Cao
- Medical Psychological CenterThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological InstituteCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| | - Haiyan Liao
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Sainan Cai
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Wanrong Peng
- Medical Psychological CenterThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological InstituteCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| | - Zhaoxia Liu
- Medical Psychological CenterThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological InstituteCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| | - Kaili Zheng
- Medical Psychological CenterThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological InstituteCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| | - Jinyu Liu
- Center for Studies of Psychological ApplicationSchool of Psychology, South China Normal UniversityGuangzhouGuangdongChina
| | - Mingtian Zhong
- Center for Studies of Psychological ApplicationSchool of Psychology, South China Normal UniversityGuangzhouGuangdongChina
| | - Changlian Tan
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Jinyao Yi
- Medical Psychological CenterThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological InstituteCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| |
Collapse
|
139
|
Schneider I, Neukel C, Bertsch K, Fuchs A, Möhler E, Zietlow AL, Brunner R, Wolf RC, Herpertz SC. Early life maltreatment affects intrinsic neural function in mothers. J Psychiatr Res 2021; 143:176-182. [PMID: 34500346 DOI: 10.1016/j.jpsychires.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/03/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Early life maltreatment (ELM) has an impact on brain functions involved in parenting and is associated with impaired maternal sensitivity. Here, we investigated the influence of ELM on intrinsic neural function and its associations with maternal sensitivity in mothers without a current episode of a mental disorder. Twenty-seven mothers with ELM and 29 mothers without ELM were examined using resting-state functional magnetic resonance imaging, followed by Amplitude of Low Frequency Fluctuations, regional homogeneity and seed-based functional connectivity analyses. Videotaped interactions between mothers and their school-aged children were conducted to assess maternal sensitivity based on the Emotional Availability Scales. Regional and functional connectivity measures were used to investigate associations between intrinsic activity and emotional availability. Mothers with ELM showed reduced maternal sensitivity and lower intrinsic neural activity in the right superior frontal gyrus, the left precuneus, the left middle occipital gyrus, and the parietal cortex (left angular and right supramarginal gyrus) compared to mothers without ELM (p < .001, whole-brain). Amplitude of Low Frequency Fluctuations in the superior frontal gyrus was positively associated with maternal sensitivity across all participants (p = .002). The data suggest a behavioral and neural signature of ELM even in currently mentally healthy mothers. In particular, effects of ELM were found in distinct brain regions involved in social cognition and executive control. These ELM-related alterations may be associated with maternal behavior.
Collapse
Affiliation(s)
- Isabella Schneider
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Voßstr. 4, 69115, Heidelberg, Germany.
| | - Corinne Neukel
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Voßstr. 4, 69115, Heidelberg, Germany
| | - Katja Bertsch
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Voßstr. 4, 69115, Heidelberg, Germany; Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna Fuchs
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Eva Möhler
- Department of Child and Adolescent Psychiatry, Saarland University Medical Center, Germany
| | - Anna-Lena Zietlow
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Romuald Brunner
- Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Voßstr. 4, 69115, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Voßstr. 4, 69115, Heidelberg, Germany
| |
Collapse
|
140
|
Lepping RJ, McKinney WS, Magnon GC, Keedy SK, Wang Z, Coombes SA, Vaillancourt DE, Sweeney JA, Mosconi MW. Visuomotor brain network activation and functional connectivity among individuals with autism spectrum disorder. Hum Brain Mapp 2021; 43:844-859. [PMID: 34716740 PMCID: PMC8720186 DOI: 10.1002/hbm.25692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and predictive of functional outcomes, though their neural underpinnings remain poorly understood. Using functional magnetic resonance imaging, we examined both brain activation and functional connectivity during visuomotor behavior in 27 individuals with ASD and 30 typically developing (TD) controls (ages 9–35 years). Participants maintained a constant grip force while receiving visual feedback at three different visual gain levels. Relative to controls, ASD participants showed increased force variability, especially at high gain, and reduced entropy. Brain activation was greater in individuals with ASD than controls in supplementary motor area, bilateral superior parietal lobules, and contralateral middle frontal gyrus at high gain. During motor action, functional connectivity was reduced between parietal‐premotor and parietal‐putamen in individuals with ASD compared to controls. Individuals with ASD also showed greater age‐associated increases in functional connectivity between cerebellum and visual, motor, and prefrontal cortical areas relative to controls. These results indicate that visuomotor deficits in ASD are associated with atypical activation and functional connectivity of posterior parietal, premotor, and striatal circuits involved in translating sensory feedback information into precision motor behaviors, and that functional connectivity of cerebellar–cortical sensorimotor and nonsensorimotor networks show delayed maturation.
Collapse
Affiliation(s)
- Rebecca J Lepping
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Walker S McKinney
- Schiefelbusch Institute for Life Span Studies, Clinical Child Psychology Program, and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, Kansas, USA
| | - Grant C Magnon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, Florida, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, Clinical Child Psychology Program, and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
141
|
Xu W, Song Y, Chen S, Xue C, Hu G, Qi W, Ma W, Lin X, Chen J. An ALE Meta-Analysis of Specific Functional MRI Studies on Subcortical Vascular Cognitive Impairment. Front Neurol 2021; 12:649233. [PMID: 34630270 PMCID: PMC8492914 DOI: 10.3389/fneur.2021.649233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Subcortical vascular cognitive impairment (sVCI), caused by cerebral small vessel disease, accounts for the majority of vascular cognitive impairment, and is characterized by an insidious onset and impaired memory and executive function. If not recognized early, it inevitably develops into vascular dementia. Several quantitative studies have reported the consistent results of brain regions in sVCI patients that can be used to predict dementia conversion. The purpose of the study was to explore the exact abnormalities within the brain in sVCI patients by combining the coordinates reported in previous studies. Methods: The PubMed, Embase, and Web of Science databases were thoroughly searched to obtain neuroimaging articles on the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in sVCI patients. According to the activation likelihood estimation (ALE) algorithm, a meta-analysis based on coordinate and functional connectivity modeling was conducted. Results: The quantitative meta-analysis included 20 functional imaging studies on sVCI patients. Alterations in specific brain regions were mainly concentrated in the frontal lobes including the middle frontal gyrus, superior frontal gyrus, medial frontal gyrus, and precentral gyrus; parietal lobes including the precuneus, angular gyrus, postcentral gyrus, and inferior parietal lobule; occipital lobes including the lingual gyrus and cuneus; temporal lobes including the fusiform gyrus and middle temporal gyrus; and the limbic system including the cingulate gyrus. These specific brain regions belonged to important networks known as the default mode network, the executive control network, and the visual network. Conclusion: The present study determined specific abnormal brain regions in sVCI patients, and these brain regions with specific changes were found to belong to important brain functional networks. The findings objectively present the exact abnormalities within the brain, which help further understand the pathogenesis of sVCI and identify them as potential imaging biomarkers. The results may also provide a basis for new approaches to treatment.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
142
|
Wu P, Pang X, Liang X, Wei W, Li X, Zhao J, Zheng J. Correlation analysis between regional homogeneity and executive dysfunction in anti-N-methyl-D-aspartate receptor encephalitis patients. Eur J Neurol 2021; 29:277-285. [PMID: 34546615 DOI: 10.1111/ene.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is characterized by a range of cognitive impairments, especially in executive function. Our study aims to identify the abnormal regional homogeneity (ReHo) in anti-NMDAR encephalitis patients and its relationship with the executive function. METHODS Forty patients and 42 healthy volunteers undertook an Attention Network Test and a resting-state functional magnetic resonance imaging scan. ReHo analysis was performed to investigate the neuronal activity synchronization in all subjects. Based on ReHo analysis, a multivariate pattern analysis (MVPA) was carried out to identify the brain regions that differed the most between the two groups. RESULTS Compared to controls, the patients had higher executive control scores (p < 0.05). The patients presented reduced ReHo values in the bilateral posterior cerebellar lobe, anterior cerebellar lobe, midbrain, bilateral caudate nucleus, right superior frontal gyrus, right middle temporal gyrus, bilateral inferior parietal lobule and the left middle frontal gyrus. The ReHo values of the bilateral inferior parietal lobule in patients were found to be negatively associated with executive control scores. The classification of patients and controls using MVPA had an accuracy of 76.83%, a sensitivity of 82.50%, a specificity of 71.43% and the area under the curve was 0.83. CONCLUSIONS Our study provides evidence of abnormal cerebral function in anti-NMDAR encephalitis patients, which may contribute to unveiling the neuropathological mechanisms of anti-NMDAR encephalitis and their influences on executive dysfunction. The MVPA classifier, based on ReHo, is helpful in identifying anti-NMDAR encephalitis patients from healthy controls.
Collapse
Affiliation(s)
- Peirong Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaomin Pang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiulin Liang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wutong Wei
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinrong Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingyuan Zhao
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
143
|
Blasi V, Bolognesi E, Ricci C, Baglio G, Zanzottera M, Canevini MP, Walder M, Cabinio M, Zanette M, Baglio F, Clerici M, Guerini FR. SNAP-25 Single Nucleotide Polymorphisms, Brain Morphology and Intelligence in Children With Borderline Intellectual Functioning: A Mediation Analysis. Front Neurosci 2021; 15:715048. [PMID: 34512248 PMCID: PMC8427043 DOI: 10.3389/fnins.2021.715048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Borderline intellectual functioning (BIF) is a multifactorial condition in which both genetic and environmental factors are likely to contribute to the clinical outcome. Abnormal cortical development and lower IQ scores were shown to be correlated in BIF children, but the genetic components of this condition and their possible connection with intelligence and brain morphology have never been investigated in BIF. The synaptosomal-associated protein of 25 kD (SNAP-25) is involved in synaptic plasticity, neural maturation, and neurotransmission, affecting intellectual functioning. We investigated SNAP-25 polymorphisms in BIF and correlated such polymorphisms with intelligence and cortical thickness, using socioeconomic status and environmental stress as covariates as a good proxy of the variables that determine intellectual abilities. Thirty-three children with a diagnosis of BIF were enrolled in the study. SNAP-25 polymorphisms rs363050, rs363039, rs363043, rs3746544, and rs1051312 were analyzed by genotyping; cortical thickness was studied by MRI; intelligence was measured using the WISC-III/IV subscales; environmental stressors playing a role in neuropsychiatric development were considered as covariate factors. Results showed that BIF children carrying the rs363043(T) minor allele represented by (CT + TT) genotypes were characterized by lower performance Perceptual Reasoning Index and lower full-scale IQ scores (p = 0.04) compared to those carrying the (CC) genotype. This association was correlated with a reduced thickness of the left inferior parietal cortex (direct effect = 0.44) and of the left supramarginal gyrus (direct effect = 0.56). These results suggest a link between SNAP-25 polymorphism and intelligence with the mediation role of brain morphological features in children with BIF.
Collapse
Affiliation(s)
- Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | | | - Maria Paola Canevini
- Epilepsy Center, ASST S. Paolo and S. Carlo Hospital, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Mauro Walder
- Child Neuropsychiatry Unit - ASST S. Paolo and S. Carlo Hospital, Milan, Italy
| | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
144
|
Marrazzo G, Vaessen MJ, de Gelder B. Decoding the difference between explicit and implicit body expression representation in high level visual, prefrontal and inferior parietal cortex. Neuroimage 2021; 243:118545. [PMID: 34478822 DOI: 10.1016/j.neuroimage.2021.118545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Recent studies provide an increasing understanding of how visual objects categories like faces or bodies are represented in the brain and also raised the question whether a category based or more dynamic network inspired models are more powerful. Two important and so far sidestepped issues in this debate are, first, how major category attributes like the emotional expression directly influence category representation and second, whether category and attribute representation are sensitive to task demands. This study investigated the impact of a crucial category attribute like emotional expression on category area activity and whether this varies with the participants' task. Using (fMRI) we measured BOLD responses while participants viewed whole body expressions and performed either an explicit (emotion) or an implicit (shape) recognition task. Our results based on multivariate methods show that the type of task is the strongest determinant of brain activity and can be decoded in EBA, VLPFC and IPL. Brain activity was higher for the explicit task condition in VLPFC and was not emotion specific. This pattern suggests that during explicit recognition of the body expression, body category representation may be strengthened, and emotion and action related activity suppressed. Taken together these results stress the importance of the task and of the role of category attributes for understanding the functional organization of high level visual cortex.
Collapse
Affiliation(s)
- Giuseppe Marrazzo
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, the Netherlands
| | - Maarten J Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, the Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, the Netherlands; Department of Computer Science, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
145
|
The right temporoparietal junction during a cooperation dilemma: An rTMS study. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
146
|
Kurtin DL, Violante IR, Zimmerman K, Leech R, Hampshire A, Patel MC, Carmichael DW, Sharp DJ, Li LM. Investigating the interaction between white matter and brain state on tDCS-induced changes in brain network activity. Brain Stimul 2021; 14:1261-1270. [PMID: 34438046 PMCID: PMC8460997 DOI: 10.1016/j.brs.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation whose potential as a cognitive therapy is hindered by our limited understanding of how participant and experimental factors influence its effects. Using functional MRI to study brain networks, we have previously shown in healthy controls that the physiological effects of tDCS are strongly influenced by brain state. We have additionally shown, in both healthy and traumatic brain injury (TBI) populations, that the behavioral effects of tDCS are positively correlated with white matter (WM) structure. Objectives In this study we investigate how these two factors, WM structure and brain state, interact to shape the effect of tDCS on brain network activity. Methods We applied anodal, cathodal and sham tDCS to the right inferior frontal gyrus (rIFG) of healthy (n = 22) and TBI participants (n = 34). We used the Choice Reaction Task (CRT) performance to manipulate brain state during tDCS. We acquired simultaneous fMRI to assess activity of cognitive brain networks and used Fractional Anisotropy (FA) as a measure of WM structure. Results We find that the effects of tDCS on brain network activity in TBI participants are highly dependent on brain state, replicating findings from our previous healthy control study in a separate, patient cohort. We then show that WM structure further modulates the brain-state dependent effects of tDCS on brain network activity. These effects are not unidirectional - in the absence of task with anodal and cathodal tDCS, FA is positively correlated with brain activity in several regions of the default mode network. Conversely, with cathodal tDCS during CRT performance, FA is negatively correlated with brain activity in a salience network region. Conclusions Our results show that experimental and participant factors interact to have unexpected effects on brain network activity, and that these effects are not fully predictable by studying the factors in isolation. We replicated the brain state and polarity dependent effects of tDCS. White matter structure influences tDCS's state-dependent changes in neural activity The parameters of tDCS may operate under a hierarchy of influence.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom.
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Karl Zimmerman
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Science, King's College London, Denmark Hill, London, United Kingdom
| | - Adam Hampshire
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Maneesh C Patel
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - David W Carmichael
- Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - David J Sharp
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom
| | - Lucia M Li
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom.
| |
Collapse
|
147
|
Marciano L, Camerini AL, Morese R. The Developing Brain in the Digital Era: A Scoping Review of Structural and Functional Correlates of Screen Time in Adolescence. Front Psychol 2021; 12:671817. [PMID: 34512437 PMCID: PMC8432290 DOI: 10.3389/fpsyg.2021.671817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
The widespread diffusion of screen-based devices in adolescence has fueled a debate about the beneficial and detrimental effects on adolescents' well-being and development. With the aim of summarizing the existing literature on the associations between screen time (including Internet-related addictions) and adolescent brain development, the present scoping review summarized evidence from 16 task-unrelated and task-related neuroimaging studies, published between 2010 and 2020. Results highlight three important key messages: (i) a frequent and longer duration of screen-based media consumption (including Internet-related addictive behaviors) is related to a less efficient cognitive control system in adolescence, including areas of the Default Mode Network and the Central Executive Network; (ii) online activities act as strong rewards to the brain and repeated screen time augments the tendency to seek short-term gratifications; and (iii) neuroscientific research on the correlates between screen time and adolescent brain development is still at the beginning and in urgent need for further evidence, especially on the underlying causality mechanisms. Methodological, theoretical, and conceptual implications are discussed.
Collapse
Affiliation(s)
- Laura Marciano
- Institute of Public Health, Università della Svizzera italiana, Lugano, Switzerland
| | - Anne-Linda Camerini
- Institute of Public Health, Università della Svizzera italiana, Lugano, Switzerland
| | - Rosalba Morese
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Communication, Culture and Society, Università della Svizzera italiana, Lugano, Switzerland
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| |
Collapse
|
148
|
Marchesi O, Bonacchi R, Valsasina P, Preziosa P, Pagani E, Cacciaguerra L, Meani A, Conti L, Mistri D, Rocca MA, Filippi M. Functional and structural MRI correlates of executive functions in multiple sclerosis. Mult Scler 2021; 28:742-756. [PMID: 34387534 DOI: 10.1177/13524585211033184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Executive dysfunctions, including difficulties in attention, working memory, planning, and inhibition affect 15%-28% of multiple sclerosis (MS) patients. OBJECTIVES To investigate structural and functional magnetic resonance imaging (MRI) abnormalities underlying executive function (EF) in MS patients. METHODS A total 116 MS patients and 65 controls underwent resting-state (RS) and diffusion-weighted sequences and neuropsychological examination, including Wisconsin Card Sorting Test (WCST) to test EF. Brain RS cognitive networks and fractional anisotropy (FA) from a priori selected white matter tracts were derived. Associations of WCST scores with RS functional connectivity (FC) and FA abnormalities were investigated. RESULTS In MS patients, predictors of working memory/updating were: lower corpus callosum (CC) FA, lower left working-memory network (WMN), right WMN RS FC for worse performance; lower executive control network (ECN), higher default-mode network (DMN), and salience network (SN) RS FC for better performance (R2 = 0.35). Predictors of attention were lower CC genu FA, lower left WMN, and DMN RS FC for worse performance; higher left WMN and ECN RS FC for better performance (R2 = 0.24). Predictors of worse shifting/inhibition were lower CC genu and superior cerebellar peduncle (SCP) FA, lower left WMN RS FC for worse performance; and higher ECN RS FC for better performance (R2 = 0.24). CONCLUSIONS CC and SCP microstructural damage and RS FC abnormalities in cognitive networks underlie EF frailty in MS.
Collapse
Affiliation(s)
- Olga Marchesi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Conti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Damiano Mistri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
149
|
Stephens TM, Young IM, O'Neal CM, Dadario NB, Briggs RG, Teo C, Sughrue ME. Akinetic mutism reversed by inferior parietal lobule repetitive theta burst stimulation: Can we restore default mode network function for therapeutic benefit? Brain Behav 2021; 11:e02180. [PMID: 34145791 PMCID: PMC8413751 DOI: 10.1002/brb3.2180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation is a noninvasive treatment used to modulate cortical excitability. Its use over the last two decades has expanded, ranging from psychiatric disorders to traumatic brain injury and poststroke rehabilitation. OBJECTIVES We present the case of a 59-year-old male patient who presented in a decreased state of consciousness due to a right frontal glioblastoma, wherein his state was not improved by a successful surgery and could not be explained by any other condition. Due to his poor prognosis, we examine the benefits of receiving transcranial magnetic stimulation treatment to improve his akinetic mutism. METHODS We utilized independent component analysis with resting-state functional magnetic resonance imaging (rsfMRI) to better understand his cortical functionality. The imaging suggested absence of the default mode network (DMN). The patient underwent five sessions of navigated intermittent theta burst stimulation to the ipsilesional inferior parietal lobule and inferior frontal gyrus, with the aim of improving his default mode network functionality. RESULTS No other treatments resulted in an improvement of this patient's condition; however, 3 weeks following transcranial magnetic stimulation treatment, the patient was more alert and interactive, and his follow-up rsfMRI scan demonstrated a partially intact default mode network. CONCLUSION This case raises important questions regarding the clinical utility of transcranial magnetic stimulation to improve the connectivity of important cerebral networks and subsequent related functional recovery.
Collapse
Affiliation(s)
- Tressie M Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Japan
| | | | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Japan
| | | | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Japan
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia
| |
Collapse
|
150
|
Jargow J, Zwosta K, Korb FM, Ruge H, Wolfensteller U. Low-Frequency TMS Results in Condition-Related Dynamic Activation Changes of Stimulated and Contralateral Inferior Parietal Lobule. Front Hum Neurosci 2021; 15:684367. [PMID: 34366812 PMCID: PMC8342925 DOI: 10.3389/fnhum.2021.684367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 01/27/2023] Open
Abstract
Non-invasive brain stimulation is a promising approach to study the causal relationship between brain function and behavior. However, it is difficult to interpret behavioral null results as dynamic brain network changes have the potential to prevent stimulation from affecting behavior, ultimately compensating for the stimulation. The present study investigated local and remote changes in brain activity via functional magnetic resonance imaging (fMRI) after offline disruption of the inferior parietal lobule (IPL) or the vertex in human participants via 1 Hz repetitive transcranial magnetic stimulation (rTMS). Since the IPL acts as a multimodal hub of several networks, we implemented two experimental conditions in order to robustly engage task-positive networks, such as the fronto-parietal control network (on-task condition) and the default mode network (off-task condition). The condition-dependent neural after-effects following rTMS applied to the IPL were dynamic in affecting post-rTMS BOLD activity depending on the exact time-window. More specifically, we found that 1 Hz rTMS applied to the right IPL led to a delayed activity increase in both, the stimulated and the contralateral IPL, as well as in other brain regions of a task-positive network. This was markedly more pronounced in the on-task condition suggesting a condition-related delayed upregulation. Thus together, our results revealed a dynamic compensatory reorganization including upregulation and intra-network compensation which may explain mixed findings after low-frequency offline TMS.
Collapse
Affiliation(s)
- Janine Jargow
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Katharina Zwosta
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Franziska M Korb
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Ruge
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Uta Wolfensteller
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|