101
|
Jiang P, Guo Y, Dang R, Yang M, Liao D, Li H, Sun Z, Feng Q, Xu P. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J Neuroinflammation 2017; 14:239. [PMID: 29212498 PMCID: PMC5719935 DOI: 10.1186/s12974-017-1013-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Background The NLRP3 inflammasome activation and neuroinflammation are known to be involved in the pathology of depression, whereas autophagy has multiple effects on immunity, which is partly mediated by the regulation of inflammasome and clearance of proinflammatory cytokines. Given the emerging evidence that autophagy dysfunction plays an essential role in depression, it is very likely that autophagy may interact with the inflammatory process in the development and treatment of depression. Salvianolic acid B (SalB), a naturally occurring compound extracted from Salvia miltiorrhiza, contains anti-inflammatory and antidepression properties and has recently been proven to modulate autophagy. In this study, we sought to investigate whether autophagy is involved in the inflammation-induced depression and the antidepressant effects of SalB. Methods The effects of prolonged lipopolysaccharide (LPS) treatment and SalB administration on behavioral changes, neuroinflammation, autophagic markers and NLRP3 activation in rat hippocampus were determined by using behavioral tests, real-time PCR analysis, western blot, and immunostaining. Results Our data showed that periphery immune challenge by LPS for 2 weeks successfully induced the rats to a depression-like state, accompanied with enhanced expression of pro-inflammatory cytokines and NLRP3 inflammasome activation. Interestingly, autophagic markers, including Beclin-1, and the ratio of LC3II to LC3I were suppressed following prolonged LPS exposure. Meanwhile, co-treatment with SalB showed robust antidepressant effects and ameliorated the LPS-induced neuroinflammation. Additionally, SalB restored the compromised autophagy and overactivated NLRP3 inflammasome in LPS-treated rats. Conclusions Collectively, these data suggest that autophagy may interact with NLRP3 activation to contribute to the development of depression, whereas SalB can promote autophagy and induce the clearance of NLRP3, thereby resulting in neuroprotective and antidepressant actions.
Collapse
Affiliation(s)
- Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China.
| | - Mengqi Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Sun
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingyan Feng
- Department of Neurology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China.
| |
Collapse
|
102
|
Pharmacologic activation of cholinergic alpha7 nicotinic receptors mitigates depressive-like behavior in a mouse model of chronic stress. J Neuroinflammation 2017; 14:234. [PMID: 29197398 PMCID: PMC5712092 DOI: 10.1186/s12974-017-1007-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background It has been shown that chronic stress-induced depression is associated with exaggerated inflammatory response in the brain. Alpha7 nicotinic acetylcholine receptors (α7nAChRs) regulate the cholinergic anti-inflammatory pathway, but the role of cholinergic signaling and α7nAChR in chronic stress has not yet been examined. Methods In this study, we used a well-documented model of depression in which mice were exposed to 6 h of restraint stress for 21 consecutive days. Components of cholinergic signaling and TLR4 signaling were analyzed in the hippocampus. The main targets of neuroinflammation and neuronal damage were also evaluated after a series of tests for depression-like behavior. Results Chronic restraint stress (CRS) induced alterations in components of central cholinergic signaling in hippocampus, including increases in choline acetyltransferase protein expression and decreases in nuclear STAT3 signaling. CRS also increased TLR4 signaling activity, interleukin-1β, and tumor necrosis factor-α expression, microglial activation, and neuronal morphologic changes. Cholinergic stimulation with the α7nAChR agonist DMXBA significantly alleviated CRS-induced depressive-like behavior, neuroinflammation, and neuronal damage, but these effects were abolished by the selective α7nAChR antagonist α-bungarotoxin. Furthermore, activation of α7nAChRs restored the central cholinergic signaling function, inhibited TLR4-mediated inflammatory signaling and microglial activity, and increased the number of regulatory T cells in the hippocampus. Conclusions These findings provide evidence that α7nAChR activation mitigates CRS-induced neuroinflammation and cell death, suggesting that α7nAChRs could be a new therapeutic target for the prevention and treatment of depression. Electronic supplementary material The online version of this article (10.1186/s12974-017-1007-2) contains supplementary material, which is available to authorized users.
Collapse
|
103
|
Li Q, Han X, Lan X, Hong X, Li Q, Gao Y, Luo T, Yang Q, Koehler RC, Zhai Y, Zhou J, Wang J. Inhibition of tPA-induced hemorrhagic transformation involves adenosine A2b receptor activation after cerebral ischemia. Neurobiol Dis 2017; 108:173-182. [PMID: 28830843 PMCID: PMC5675803 DOI: 10.1016/j.nbd.2017.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022] Open
Abstract
Tissue plasminogen activator (tPA) is administered after ischemic stroke to dissolve intravascular clots, but its use can lead to hemorrhagic transformation (HT). Therapeutic strategies to reduce hemorrhagic complications of tPA might be of benefit for stroke patients. Adenosine A2b receptor (A2bR) plays pivotal roles in regulating vascular protection in peripheral organs. This study explored whether A2bR agonist BAY 60-6583 reduces hemorrhage risk after tPA usage. Using a rat transient middle cerebral artery occlusion model, we showed that mRNA and protein expression of A2bR increased to a greater extent after ischemia-reperfusion than did expression of the other three adenosine receptors (A1, A2a, and A3). tPA administration reduced A2bR expression in ischemic brain microvessels. Post-treatment with BAY 60-6583 (1mg/kg) at the start of reperfusion reduced lesion volume in the absence or presence of tPA (10mg/kg) and attenuated brain swelling, blood-brain barrier disruption, and tPA-exacerbated HT at 24h. Additionally, BAY 60-6583 mitigated sensorimotor deficits in the presence of tPA. BAY 60-6583 inhibited tPA-enhanced matrix metalloprotease-9 activation, probably through elevation of tissue inhibitor of matrix metalloproteinases-1 expression, and thereby reduced degradation of tight junction proteins. These effects would likely protect cerebrovascular integrity. A2bR agonists as an adjuvant to tPA could be a promising strategy for decreasing the risk of HT during treatment for ischemic stroke.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaohua Hong
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tianqi Luo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Zhai
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
104
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
105
|
Zhang X, Wu Q, Zhang Q, Lu Y, Liu J, Li W, Lv S, Zhou M, Zhang X, Hang C. Resveratrol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage via Inhibition of NLRP3 Inflammasome Activation. Front Neurosci 2017; 11:611. [PMID: 29163015 PMCID: PMC5675880 DOI: 10.3389/fnins.2017.00611] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Previous studies have demonstrated resveratrol (RSV) has beneficial effects in early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the beneficial effects of RSV and the underlying mechanisms have not been clearly identified. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation plays a crucial role in the EBI pathogenesis. The aim of this study was to investigate the role of RSV on the NLRP3 inflammasome signaling pathway and EBI in rats after SAH. A prechiasmatic cistern injection model was established in rats, and the primary cultured cortical neurons were stimulated with oxyhemoglobin (oxyHb) to induce SAH in vitro. It showed that the NLRP3 inflammasome components, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, mature interleukin-1β (IL-1β), and interleukin-18 (IL-18) were upregulated after SAH, and the enhanced NLRP3 after SAH was mainly located in microglia. Treatment with 60 or 90 mg/kg RSV after SAH dramatically inhibited the expression of NLRP3, but there was no significant difference in the expression of NLRP3 between the SAH + 60 mg/kg RSV and SAH + 90 mg/kg RSV groups. In addition, treatment with 30 mg/kg RSV did not significantly reduced the expression of NLRP3. We next evaluated the neuroprotective effects of RSV against SAH. We determined that SAH-induced NLRP3 inflammasome activation was significantly inhibited in the SAH + 60 mg/kg RSV group. Meanwhile, 60 mg/kg RSV administration could markedly inhibit microglia activation and neutrophils infiltration after SAH. Concomitant with the decreased cerebral inflammation, RSV evidently reduced cortical apoptosis, brain edema, and neurobehavioral impairment after SAH. In vitro experiments, RSV treatment also clearly protected primary cortical neurons against oxyHb insults, including reduced the proportion of neuronal apoptosis, alleviated neuronal degeneration, and improved cell viabilities. These in vitro data further confirm that RSV has an efficient neuroprotection against SAH. Taken together, these in vivo and in vitro findings suggested RSV could protect against EBI after SAH, at least partially via inhibiting NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qingrong Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jingpeng Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
106
|
Liang Y, Zhou T, Chen Y, Lin D, Jing X, Peng S, Zheng D, Zeng Z, Lei M, Wu X, Huang K, Yang L, Xiao S, Liu J, Tao E. Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology 2017; 63:137-145. [PMID: 28986232 DOI: 10.1016/j.neuro.2017.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
Mitochondrial and autophagic dysfunction, as well as neuroinflammation, are associated with the pathophysiology of Parkinson's disease (PD). Rotenone, an inhibitor of mitochondrial complex I, has been associated as an environmental neurotoxin related to PD. Our previous studies reported that rifampicin inhibited microglia activation and production of proinflammatory mediators induced by rotenone, but the precise mechanism has not been completely elucidated. BV2 cells were pretreated for 2h with rifampicin followed by 0.1μM rotenone, alone or in combination with chloroquine. Here, we demonstrate that rifampicin pretreatment alleviated rotenone induced release of IL-1β and IL-6, and its effects were suppressed when autophagy was inhibited by chloroquine. Moreover, preconditioning with 50μM rifampicin significantly increased viability of SH-SY5Y cells cocultured with rotenone-treated BV2 cells in the transwell coculture system. Chloroquine partially abolished the neuroprotective effects of rifampicin pretreatment. Rifampicin pretreatment significantly reversed rotenone-induced mitochondrial membrane potential reduction and reactive oxygen species accumulation. We suggest that the mechanism for rifampicin-mediated anti-inflammatory and antioxidant effects is the enhancement of autophagy. Indeed, the ratio of LC3-II/LC3-I in rifampicin-pretreated BV2 cells was significantly higher than that in cells without pretreatment. Fluorescence and electron microscopy analyses indicate an increase of lysosomes colocalized with mitochondria in cells pretreated with rifampicin, which confirms that the damaged mitochondria were cleared through autophagy (mitophagy). Taken together, the data provide further evidence that rifampicin exerts neuroprotection against rotenone-induced microglia inflammation, partially through the autophagy pathway. Modulation of autophagy by rifampicin is a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Tianen Zhou
- Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Danyu Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Dezhi Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Zhifen Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Ming Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Xia Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Kaixun Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Lianhong Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Songhua Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Jun Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Enxiang Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China.
| |
Collapse
|
107
|
Jeon SA, Lee E, Hwang I, Han B, Park S, Son S, Yang J, Hong S, Kim CH, Son J, Yu JW. NLRP3 Inflammasome Contributes to Lipopolysaccharide-induced Depressive-Like Behaviors via Indoleamine 2,3-dioxygenase Induction. Int J Neuropsychopharmacol 2017; 20:896-906. [PMID: 29016824 PMCID: PMC5737528 DOI: 10.1093/ijnp/pyx065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation may play a significant role in the pathogenesis of depression, although the molecular target for the treatment of inflammation-mediated depressive symptoms remains to be elucidated. Recent studies have implicated the NLRP3 inflammasome in various psychiatric disorders, including depression. However, the underlying mechanism by which NLRP3 inflammasome activation mediates the progression of depressive-like behaviors remains poorly understood. METHODS We examined whether NLRP3 deficiency influenced depressive-like behaviors and cerebral inflammation following systemic administration of lipopolysaccharide in mice. To further assess the contribution of the NLRP3 inflammasome to the progression of depression, we evaluated the effects of NLRP3 signaling on levels of indoleamine 2,3-dioxygenase. RESULTS Nlrp3-deficient mice exhibited significant attenuation of depressive-like behaviors and cerebral caspase-1 activation in a lipopolysaccharide-induced model of depression. Treatment with the antidepressant amitriptyline failed to block NLRP3-dependent activation of caspase-1, but inhibited lipopolysaccharide-promoted production of interleukin-1β mRNA via suppressing NF-κB signaling in mouse mixed glial cultures. Interestingly, lipopolysaccharide administration produced NLRP3-dependent increases in indoleamine 2,3-dioxygenase expression and activity of mouse brain. Furthermore, inflammasome-activating stimulations, but not treatment with the inflammasome product interleukin-1β, triggered indoleamine 2,3-dioxygenase mRNA induction in mixed glial cells. CONCLUSIONS Our data indicate that the NLRP3 inflammasome is significantly implicated in the progression of systemic inflammation-induced depression. NLRP3-dependent caspase-1 activation produced significant increases in indoleamine 2,3-dioxygenase levels, which may play a significant role in lipopolysaccharide-induced depression. Collectively, our findings suggest that indoleamine 2,3-dioxygenase is a potential downstream mediator of the NLRP3 inflammasome in inflammation-mediated depressive-like behaviors.
Collapse
Affiliation(s)
- Seon-A Jeon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Eunju Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Boyoung Han
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Sangjun Park
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Seunghwan Son
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Jungmin Yang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Sujeong Hong
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Chul Hoon Kim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Junghyun Son
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim)
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Ms Jeon, Ms Lee, Ms Hwang, Ms Han, Dr Park, Mr Son, Mr Yang, Ms Hong, and Dr Yu); Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (Ms Han and Dr Son); Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (Dr Kim).,Correspondence: Je-Wook Yu, PhD, Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea ()
| |
Collapse
|
108
|
Repeated daily administration of increasing doses of lipopolysaccharide provides a model of sustained inflammation-induced depressive-like behaviour in mice that is independent of the NLRP3 inflammasome. Behav Brain Res 2017; 352:99-108. [PMID: 28760701 DOI: 10.1016/j.bbr.2017.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Mounting preclinical evidence has implicated the NLRP3 inflammasome in depression-related behaviours elicited by chronic stress or acute lipopolysaccharide (LPS) challenge. However, the relevance of acute LPS as a model of depression has been questioned and behavioural time-courses of its effects can be inconsistent. The aims of this study were (1) to develop a novel protocol for repeated daily LPS administration and (2) to use this model to assess the involvement of NLRP3 inflammasome signalling in sustained inflammation-induced depressive-like behaviour in adult C57BL/6J mice deficient in NLRP3. Acute LPS (0.83mg/kg; i.p.) induced sickness behaviour evident as hypolocomotor activity. However, there was no significant increase in depressive-like behaviour in the forced swim test 24h post-administration. Interestingly, depressive-like behaviours were observed in the female urine sniffing test and in the sucrose preference test at 24h, but not 48h, post-administration of acute LPS. To mimic a period of sustained inflammation, 3-day repeated increasing LPS doses (0.1, 0.42 and 0.83mg/kg; i.p.) was compared to constant LPS doses (0.83mg/kg; i.p.). Sickness behaviour was seen in response to increasing doses, but tolerance developed to repeated constant doses of LPS. Furthermore, 3-day increasing doses of LPS resulted in a significant increase in immobility time in the forced swim test, consistent with depressive-like behaviour. When NLRP3-/- mice received this 3-day increasing dose regimen of LPS, sickness behaviours were attenuated compared to wild-type mice. The behaviour in the forced swim test was not significantly altered in NLRP3-/- mice. We propose that this increasing repeated dosing LPS model of inflammation-induced depressive-like behaviour may better model the sustained inflammation observed in depression and may provide a more translationally relevant paradigm to study the inflammatory mechanisms that contribute to depression.
Collapse
|