101
|
Atlı Şekeroğlu Z, Akar A, Şekeroğlu V. Evaluation of the cytogenotoxic damage in immature and mature rats exposed to 900 MHz radiofrequency electromagnetic fields. Int J Radiat Biol 2013; 89:985-92. [DOI: 10.3109/09553002.2013.809170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
102
|
Khalil AM, Abu Khadra KM, Aljaberi AM, Gagaa MH, Issa HS. Assessment of oxidant/antioxidant status in saliva of cell phone users. Electromagn Biol Med 2013; 33:92-7. [DOI: 10.3109/15368378.2013.783855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
103
|
Panagopoulos DJ, Johansson O, Carlo GL. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects. PLoS One 2013; 8:e62663. [PMID: 23750202 PMCID: PMC3672148 DOI: 10.1371/journal.pone.0062663] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. METHODS We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. RESULTS WE FIND THAT: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. CONCLUSIONS SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict the biological effect due to non-linearity.
Collapse
|
104
|
Souza LDCM, Cerqueira EDMM, Meireles JRC. Assessment of nuclear abnormalities in exfoliated cells from the oral epithelium of mobile phone users. Electromagn Biol Med 2013; 33:98-102. [DOI: 10.3109/15368378.2013.783856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
105
|
Tkalec M, Stambuk A, Srut M, Malarić K, Klobučar GIV. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:7-12. [PMID: 23352129 DOI: 10.1016/j.ecoenv.2012.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/22/2012] [Accepted: 12/07/2012] [Indexed: 06/01/2023]
Abstract
Accumulating evidence suggests that exposure to radiofrequency electromagnetic field (RF-EMF) can have various biological effects. In this study the oxidative and genotoxic effects were investigated in earthworms Eisenia fetida exposed in vivo to RF-EMF at the mobile phone frequency (900 MHz). Earthworms were exposed to the homogeneous RF-EMF at field levels of 10, 23, 41 and 120 V m(-1) for a period of 2h using a Gigahertz Transversal Electromagnetic (GTEM) cell. At the field level of 23 V m(-1) the effect of longer exposure (4h) and field modulation (80% AM 1 kHz sinusoidal) was investigated as well. All exposure treatments induced significant genotoxic effect in earthworms coelomocytes detected by the Comet assay, demonstrating DNA damaging capacity of 900 MHz electromagnetic radiation. Field modulation additionally increased the genotoxic effect. Moreover, our results indicated the induction of antioxidant stress response in terms of enhanced catalase and glutathione reductase activity as a result of the RF-EMF exposure, and demonstrated the generation of lipid and protein oxidative damage. Antioxidant responses and the potential of RF-EMF to induce damage to lipids, proteins and DNA differed depending on the field level applied, modulation of the field and duration of E. fetida exposure to 900 MHz electromagnetic radiation. Nature of detected DNA lesions and oxidative stress as the mechanism of action for the induction of DNA damage are discussed.
Collapse
Affiliation(s)
- Mirta Tkalec
- Faculty of Science, Department of Botany, University of Zagreb, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
106
|
Hekmat A, Saboury AA, Moosavi-Movahedi AA. The toxic effects of mobile phone radiofrequency (940 MHz) on the structure of calf thymus DNA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:35-41. [PMID: 23164448 DOI: 10.1016/j.ecoenv.2012.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
Currently, the biological effects of nonionizing electromagnetic fields (EMFs) including radiofrequency (RF) radiation have been the subject of numerous experimental and theoretical studies. The aim of this study is to evaluate the possible biological effects of mobile phone RF (940 MHz, 15 V/m and SAR=40 mW/kg) on the structure of calf thymus DNA (ct DNA) immediately after exposure and 2 h after 45 min exposure via diverse range of spectroscopic instruments. The UV-vis and circular dichroism (CD) experiments depict that mobile phone EMFs can remarkably cause disturbance on ct DNA structure. In addition, the DNA samples, immediately after exposure and 2 h after 45 min exposure, are relatively thermally unstable compared to the DNA solution, which was placed in a small shielded box (unexposed ct DNA). Furthermore, the exposed DNA samples (the DNA samples that were exposed to 940 MHz EMF) have more fluorescence emission when compared with the unexposed DNA, which may have occurred attributable to expansion of the exposed DNA structure. The results of dynamic light scattering (DLS) and zeta potential experiments demonstrate that RF-EMFs lead to increment in the surface charge and size of DNA. The structure of DNA immediately after exposure is not significantly different from the DNA sample 2 h after 45 min exposure. In other words, the EMF-induced conformational changes are irreversible. Collectively, our results reveal that 940 MHz can alter the structure of DNA. The displacement of electrons in DNA by EMFs may lead to conformational changes of DNA and DNA disaggregation. Results from this study could have an important implication on the health effects of RF-EMFs exposure. In addition, this finding could proffer a novel strategy for the development of next generation of mobile phone.
Collapse
Affiliation(s)
- Azadeh Hekmat
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
107
|
Xu S, Chen G, Chen C, Sun C, Zhang D, Murbach M, Kuster N, Zeng Q, Xu Z. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One 2013; 8:e54906. [PMID: 23355902 PMCID: PMC3552808 DOI: 10.1371/journal.pone.0054906] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 12/18/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF) as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. OBJECTIVES To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. METHODS Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. RESULTS Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs), but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. CONCLUSIONS RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.
Collapse
Affiliation(s)
- Shanshan Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunjing Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Sun
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Danying Zhang
- Institute of Occupational Health Assessment, Guangdong Prevention and Treatment Center for Occupational Disease, Guangzhou, China
| | - Manuel Murbach
- Foundation for Research on Information Technologies in Society, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (ZX); (QZ)
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (ZX); (QZ)
| |
Collapse
|
108
|
Hardell L, Carlberg M. Use of Mobile and Cordless Phones and Survival of Patients with Glioma. Neuroepidemiology 2013; 40:101-8. [DOI: 10.1159/000341905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/15/2012] [Indexed: 11/19/2022] Open
|
109
|
Pesnya DS, Romanovsky AV. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 750:27-33. [DOI: 10.1016/j.mrgentox.2012.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/05/2012] [Accepted: 08/30/2012] [Indexed: 01/10/2023]
|
110
|
Hardell L, Carlberg M, Hansson Mild K. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. ACTA ACUST UNITED AC 2012; 20:85-110. [PMID: 23261330 DOI: 10.1016/j.pathophys.2012.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The International Agency for Research on Cancer (IARC) at WHO evaluation of the carcinogenic effect of RF-EMF on humans took place during a 24-31 May 2011 meeting at Lyon in France. The Working Group consisted of 30 scientists and categorised the radiofrequency electromagnetic fields from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields (RF-EMF), as Group 2B, i.e., a 'possible', human carcinogen. The decision on mobile phones was based mainly on the Hardell group of studies from Sweden and the IARC Interphone study. We give an overview of current epidemiological evidence for an increased risk for brain tumours including a meta-analysis of the Hardell group and Interphone results for mobile phone use. Results for cordless phones are lacking in Interphone. The meta-analysis gave for glioma in the most exposed part of the brain, the temporal lobe, odds ratio (OR)=1.71, 95% confidence interval (CI)=1.04-2.81 in the ≥10 years (>10 years in the Hardell group) latency group. Ipsilateral mobile phone use ≥1640h in total gave OR=2.29, 95% CI=1.56-3.37. The results for meningioma were OR=1.25, 95% CI=0.31-4.98 and OR=1.35, 95% CI=0.81-2.23, respectively. Regarding acoustic neuroma ipsilateral mobile phone use in the latency group ≥10 years gave OR=1.81, 95% CI=0.73-4.45. For ipsilateral cumulative use ≥1640h OR=2.55, 95% CI=1.50-4.40 was obtained. Also use of cordless phones increased the risk for glioma and acoustic neuroma in the Hardell group studies. Survival of patients with glioma was analysed in the Hardell group studies yielding in the >10 years latency period hazard ratio (HR)=1.2, 95% CI=1.002-1.5 for use of wireless phones. This increased HR was based on results for astrocytoma WHO grade IV (glioblastoma multiforme). Decreased HR was found for low-grade astrocytoma, WHO grades I-II, which might be caused by RF-EMF exposure leading to tumour-associated symptoms and earlier detection and surgery with better prognosis. Some studies show increasing incidence of brain tumours whereas other studies do not. It is concluded that one should be careful using incidence data to dismiss results in analytical epidemiology. The IARC carcinogenic classification does not seem to have had any significant impact on governments' perceptions of their responsibilities to protect public health from this widespread source of radiation.
Collapse
Affiliation(s)
- Lennart Hardell
- Department of Oncology, University Hospital, SE-701 85 Örebro, Sweden.
| | | | | |
Collapse
|
111
|
Genetic damage in human cells exposed to non-ionizing radiofrequency fields: A meta-analysis of the data from 88 publications (1990–2011). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:1-16. [DOI: 10.1016/j.mrgentox.2012.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 01/12/2023]
|
112
|
Zhou H, Chen G, Chen C, Yu Y, Xu Z. Association between extremely low-frequency electromagnetic fields occupations and amyotrophic lateral sclerosis: a meta-analysis. PLoS One 2012. [PMID: 23189129 PMCID: PMC3506624 DOI: 10.1371/journal.pone.0048354] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives To estimate the relationship between exposure to extremely low-frequency electromagnetic fields (ELF-EMF) and the risk of amyotrophic lateral sclerosis (ALS) by a meta-analysis. Methods Through searching PubMed databases (or manual searching) up to April 2012 using the following keywords: “occupational exposure”, “electromagnetic fields” and “amyotrophic lateral sclerosis” or “motor neuron disease”, seventeen studies were identified as eligible for this meta-analysis. The associations between ELF-EMF exposure and the ALS risk were estimated based on study design (case-control or cohort study), and ELF-EMF exposure level assessment (job title or job-exposure matrix). The heterogeneity across the studies was tested, as was publication bias. Results Occupational exposure to ELF-EMF was significantly associated with increased risk of ALS in pooled studies (RR = 1.29, 95%CI = 1.02–1.62), and case-control studies (OR = 1.39, 95%CI = 1.05–1.84), but not cohort studies (RR = 1.16, 95% CI = 0.80–1.69). In sub-analyses, similar significant associations were found when the exposure level was defined by the job title, but not the job-exposure matrix. In addition, significant associations between occupational exposure to ELF-EMF and increased risk of ALS were found in studies of subjects who were clinically diagnosed but not those based on the death certificate. Moderate heterogeneity was observed in all analyses. Conclusions Our data suggest a slight but significant ALS risk increase among those with job titles related to relatively high levels of ELF-EMF exposure. Since the magnitude of estimated RR was relatively small, we cannot deny the possibility of potential biases at work. Electrical shocks or other unidentified variables associated with electrical occupations, rather than magnetic-field exposure, may be responsible for the observed associations with ALS.
Collapse
Affiliation(s)
- Hongjie Zhou
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunjing Chen
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxian Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (YY); (ZX)
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (YY); (ZX)
| |
Collapse
|
113
|
Kumar S, Behari J, Sisodia R. Influence of electromagnetic fields on reproductive system of male rats. Int J Radiat Biol 2012; 89:147-54. [PMID: 23078358 DOI: 10.3109/09553002.2013.741282] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UNLABELLED Abstract Purpose: Reports of declining male fertility have renewed interest in the role of environmental and occupational exposures in the etiology of human infertility. The aim of the present work was to investigate the effect of 10 GHz exposure on the male Wistar rat's reproductive system and to find out the possible causative factors. MATERIALS AND METHODS The study was divided into sham-exposed and exposed groups. Seventy day-old rats were exposed to 10 GHz microwave radiation for 2 h per day for 45 days at power density 0.21 mW/cm(2) and specific absorption rate (SAR) of 0.014 W/kg. After the end of the experiment, blood samples were collected for the estimation of in vivo chromosomal aberration damage and micronucleus test. Spermatozoa were taken out for estimation of Caspase-3, comet assay, testosterone and electron microscopy and compared with sham-exposed. RESULTS The study of scanning electron microscopic revealed shrinkage of the lumen of the seminiferous tubules. Apoptotic bodies were found in exposed group. A flow cytometry examination showed formation of micronuclei body in lymphocytes of exposed group. Comet assay confirmed DNA (deoxyribonucleic acid) strand break. Testosterone level was found significantly decreased with the shrinkage of testicular size. CONCLUSIONS 10 GHz field has an injurious effect on fertility potential of male-exposed animals.
Collapse
Affiliation(s)
- Sanjay Kumar
- Bioelectromagnetic Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi
| | | | | |
Collapse
|
114
|
Zeni O, Sannino A, Romeo S, Massa R, Sarti M, Reddy AB, Prihoda TJ, Vijayalaxmi, Scarfì MR. Induction of an adaptive response in human blood lymphocytes exposed to radiofrequency fields: Influence of the universal mobile telecommunication system (UMTS) signal and the specific absorption rate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:29-35. [DOI: 10.1016/j.mrgentox.2012.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/02/2012] [Accepted: 03/20/2012] [Indexed: 01/18/2023]
|
115
|
Çam ST, Seyhan N. Single-strand DNA breaks in human hair root cells exposed to mobile phone radiation. Int J Radiat Biol 2012; 88:420-4. [PMID: 22348707 DOI: 10.3109/09553002.2012.666005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To analyze the short-term effects of radiofrequency radiation (RFR) exposure on genomic deoxyribonucleic acid (DNA) of human hair root cells. SUBJECTS AND METHODS Hair samples were collected from eight healthy human subjects immediately before and after using a 900-MHz GSM (Global System for Mobile Communications) mobile phone for 15 and 30 min. Single-strand DNA breaks of hair root cells from the samples were determined using the 'comet assay'. RESULTS The data showed that talking on a mobile phone for 15 or 30 min significantly increased (p < 0.05) single-strand DNA breaks in cells of hair roots close to the phone. Comparing the 15-min and 30-min data using the paired t-test also showed that significantly more damages resulted after 30 min than after 15 min of phone use. CONCLUSIONS A short-term exposure (15 and 30 min) to RFR (900-MHz) from a mobile phone caused a significant increase in DNA single-strand breaks in human hair root cells located around the ear which is used for the phone calls.
Collapse
Affiliation(s)
- Semra Tepe Çam
- Seyhan Gazi University Faculty of Medicine Biophysics Department, Besevler, Ankara, Turkey.
| | | |
Collapse
|
116
|
Kesari KK, Kumar S, Behari J. 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med 2011; 30:219-34. [DOI: 10.3109/15368378.2011.587930] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
117
|
Říhová B, Etrych T, Šírová M, Tomala J, Ulbrich K, Kovář M. Synergistic effect of EMF–BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma. J Drug Target 2011; 19:890-9. [DOI: 10.3109/1061186x.2011.622403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
118
|
Levis AG, Minicuci N, Ricci P, Gennaro V, Garbisa S. Mobile phones and head tumours. The discrepancies in cause-effect relationships in the epidemiological studies - how do they arise? Environ Health 2011; 10:59. [PMID: 21679472 PMCID: PMC3146917 DOI: 10.1186/1476-069x-10-59] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/17/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Whether or not there is a relationship between use of mobile phones (analogue and digital cellulars, and cordless) and head tumour risk (brain tumours, acoustic neuromas, and salivary gland tumours) is still a matter of debate; progress requires a critical analysis of the methodological elements necessary for an impartial evaluation of contradictory studies. METHODS A close examination of the protocols and results from all case-control and cohort studies, pooled- and meta-analyses on head tumour risk for mobile phone users was carried out, and for each study the elements necessary for evaluating its reliability were identified. In addition, new meta-analyses of the literature data were undertaken. These were limited to subjects with mobile phone latency time compatible with the progression of the examined tumours, and with analysis of the laterality of head tumour localisation corresponding to the habitual laterality of mobile phone use. RESULTS Blind protocols, free from errors, bias, and financial conditioning factors, give positive results that reveal a cause-effect relationship between long-term mobile phone use or latency and statistically significant increase of ipsilateral head tumour risk, with biological plausibility. Non-blind protocols, which instead are affected by errors, bias, and financial conditioning factors, give negative results with systematic underestimate of such risk. However, also in these studies a statistically significant increase in risk of ipsilateral head tumours is quite common after more than 10 years of mobile phone use or latency. The meta-analyses, our included, examining only data on ipsilateral tumours in subjects using mobile phones since or for at least 10 years, show large and statistically significant increases in risk of ipsilateral brain gliomas and acoustic neuromas. CONCLUSIONS Our analysis of the literature studies and of the results from meta-analyses of the significant data alone shows an almost doubling of the risk of head tumours induced by long-term mobile phone use or latency.
Collapse
Affiliation(s)
- Angelo G Levis
- Department of Experimental Biomedical Sciences, Medical School of Padova, Padova, Italy
| | - Nadia Minicuci
- Institute of Neuroscience, National Research Council, Padova, Italy
| | | | | | - Spiridione Garbisa
- Department of Experimental Biomedical Sciences, Medical School of Padova, Padova, Italy
| |
Collapse
|
119
|
Belyaev I. Toxicity and SOS response to ELF magnetic field and nalidixic acid in E. coli cells. Mutat Res 2011; 722:84-8. [PMID: 21453783 DOI: 10.1016/j.mrgentox.2011.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
Extremely low frequency (ELF) magnetic fields have previously been shown to affect conformation of chromatin and cell proliferation. Possible genotoxic and carcinogenic effects of ELF have also been discussed and tested. In this study, we analyzed the effect of ELF on chromatin conformation in E. coli GE499 cells by the anomalous viscosity time dependence (AVTD) technique. Possible genotoxic ELF effects at the specific combination of static and ELF magnetic fields, that has been proven to have effects on chromatin conformation, were investigated by clonogenic assay, cell growth kinetics, and analysis of SOS-response using inducible recA-lacZ fusion and the β-galactosidase assay. Genotoxic agent nalidixic acid (NAL) was used as positive control and in combination with ELF. Nalidixic acid at 3-30μg/ml decreased the AVTD peaks and induced cytotoxic effect. In contrast to NAL, ELF increased AVTD, stimulated cell growth, and increased cloning efficiency. These effects depended on frequency within the frequency range of 7-11Hz. While NAL induced SOS response, ELF exposure did not induce the recA-lacZ fusion. Exposure to ELF did not modify the genotoxic effects of NAL either. All together, the data show that ELF, under specific conditions of exposure, acted as nontoxic but cell growth stimulating agent.
Collapse
Affiliation(s)
- Igor Belyaev
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
120
|
Giorgi G, Marcantonio P, Bersani F, Gavoçi E, Del Re B. Effect of extremely low frequency magnetic field exposure on DNA transposition in relation to frequency, wave shape and exposure time. Int J Radiat Biol 2011; 87:601-8. [PMID: 21504343 DOI: 10.3109/09553002.2011.570855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effect of extremely low frequency magnetic field (ELF-MF) exposure on transposon (Tn) mobility in relation to the exposure time, the frequency and the wave shape of the field applied. MATERIALS AND METHODS Two Escherichia coli model systems were used: (1) Cells unable to express β-galactosidase (LacZ(-)), containing a mini-transposon Tn10 element able to give ability to express β-galactosidase (LacZ(+)) upon its transposition; therefore in these cells transposition activity can be evaluated by analysing LacZ(+) clones; (2) cells carrying Fertility plasmid (F(+)), and a Tn5 element located on the chromosome; therefore in these cells transposition activity can be estimated by a bacterial conjugation assay. Cells were exposed to sinusoidal (SiMF) or pulsed-square wave (PMF) magnetic fields of various frequencies (20, 50, 75 Hz) and for different exposure times (15 and 90 min). RESULTS Both mini-Tn10 and Tn5 transposition decreased under SiMF and increased under PMF, as compared to sham exposure control. No significant difference was found between frequencies and between exposure times. CONCLUSIONS ELF-MF exposure affects transposition activity and the effects critically depend on the wave shape of the field, but not on the frequency and the exposure time, at least in the range observed.
Collapse
Affiliation(s)
- Gianfranco Giorgi
- Department of Evolutionary Experimental Biology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
121
|
Belyaev I. Toxicity and SOS-response to ELF magnetic fields and nalidixic acid in E. coli cells. Mutat Res 2011; 722:56-61. [PMID: 21497670 DOI: 10.1016/j.mrgentox.2011.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/11/2011] [Accepted: 03/15/2011] [Indexed: 12/24/2022]
Abstract
Extremely low-frequency magnetic fields (ELF-MF) have previously been shown to affect conformation of chromatin and cell proliferation. Possible genotoxic and carcinogenic effects of ELF-MF have also been discussed and tested. In this study, we analysed the effect of ELF-MF on chromatin conformation in E. coli GE499 cells by the anomalous viscosity time-dependence (AVTD) technique. Possible genotoxic effects of the specific combination of static and ELF-MF, which has been proven to affect chromatin conformation, were investigated by a clonogenic assay, by assessing cell-growth kinetics, and by analysis of the SOS-response by means of inducible recA-lacZ fusion-gene products and the β-galactosidase assay. The genotoxic agent nalidixic acid (NAL) was used as a positive control and in combination with ELF-MF. Nalidixic acid at 3-30μg/ml decreased the AVTD peaks and induced a cytotoxic effect. In contrast to NAL, ELF-MF fields increased AVTD, stimulated cell growth, and increased cloning efficiency. These effects depended on the frequency within the range of 7-11Hz. While NAL induced an SOS-response, exposure to ELF-MF did not induce the recA-lacZ fusion-gene product. Exposure to ELF-MF did not modify the genotoxic effects of NAL either. All together, the data show that ELF-MF, under specific conditions of exposure, acted as a non-toxic but cell-growth stimulating agent.
Collapse
Affiliation(s)
- Igor Belyaev
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic.
| |
Collapse
|
122
|
Lee JW, Kim MS, Kim YJ, Choi YJ, Lee Y, Chung HW. Genotoxic effects of 3 T magnetic resonance imaging in cultured human lymphocytes. Bioelectromagnetics 2011; 32:535-42. [PMID: 21412810 DOI: 10.1002/bem.20664] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/14/2011] [Indexed: 01/07/2023]
Abstract
The clinical and preclinical use of high-field intensity (HF, 3 T and above) magnetic resonance imaging (MRI) scanners have significantly increased in the past few years. However, potential health risks are implied in the MRI and especially HF MRI environment due to high-static magnetic fields, fast gradient magnetic fields, and strong radiofrequency electromagnetic fields. In this study, the genotoxic potential of 3 T clinical MRI scans in cultured human lymphocytes in vitro was investigated by analyzing chromosome aberrations (CA), micronuclei (MN), and single-cell gel electrophoresis. Human lymphocytes were exposed to electromagnetic fields generated during MRI scanning (clinical routine brain examination protocols: three-channel head coil) for 22, 45, 67, and 89 min. We observed a significant increase in the frequency of single-strand DNA breaks following exposure to a 3 T MRI. In addition, the frequency of both CAs and MN in exposed cells increased in a time-dependent manner. The frequencies of MN in lymphocytes exposed to complex electromagnetic fields for 0, 22, 45, 67, and 89 min were 9.67, 11.67, 14.67, 18.00, and 20.33 per 1000 cells, respectively. Similarly, the frequencies of CAs in lymphocytes exposed for 0, 45, 67, and 89 min were 1.33, 2.33, 3.67, and 4.67 per 200 cells, respectively. These results suggest that exposure to 3 T MRI induces genotoxic effects in human lymphocytes.
Collapse
Affiliation(s)
- Joong Won Lee
- Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. Wireless communication has dramatically influenced our lifestyle; its impact on human health has not been completely assessed. Widespread concern continues in the community about the deleterious effects of radiofrequency radiations on human tissues and the subsequent potential threat of carcinogenesis. Exposure to low-frequency electromagnetic field has been linked to a variety of adverse health outcomes. This article surveys the results of early cell phone studies, where exposure duration was too short to expect tumor genesis, and 2 sets of more recent studies with longer exposure duration: the Interphone studies and the Swedish studies led by Hardell.
Collapse
|
124
|
Hänninen O, Huttunen P, Ekman R. Electromagnetic irradiation exposure and its bioindication--an overview. J Environ Sci (China) 2011; 23:1409-1414. [PMID: 22432274 DOI: 10.1016/s1001-0742(10)60600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Man made electromagnetic irradiation and fields cover now the globe due to the recent extensive propagation of mobile telephony. The increased load affects animals and also plants. Especially birds have been studied. Humans are also sensitive. They are good bioindicators as epidemiological methods are available. Humans can also report symptoms which cannot be directly measured with presently available technologies. The nonionizing irradiation can as the ionizing one break the DNA, damage proteins, even increase the blood brain barrier permeability, disturb the night rest, cause fatigue and hormonal disturbances. An increase of the tumours of human head has been described in correlation with the long-term mobile phone use and on that side more exposed. The regulations covering mobile telephony are already about two decades old and need re-evaluation. The multitude of irradiation and the interaction of the different wavelength exposures, i.e., frequency sensitivity is poorly known at present. We should not forget the comparative studies of different species especially those which rely in their lives on electromagnetic orientation physiology. Some countries have issued warnings on the exposures of children. The producers of mobile technology have recently warned the users not to keep those devices in active stage in skin contact.
Collapse
Affiliation(s)
- Osmo Hänninen
- Department of Physiology, Kuopio Campus, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
125
|
Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, de Seze R, Tenforde T, van Rongen E, Veyret B, Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 2010; 705:252-68. [PMID: 20955816 DOI: 10.1016/j.mrrev.2010.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/17/2022]
Abstract
There has been growing concern about the possibility of adverse health effects resulting from exposure to radiofrequency radiations (RFR), such as those emitted by wireless communication devices. Since the introduction of mobile phones many studies have been conducted regarding alleged health effects but there is still some uncertainty and no definitive conclusions have been reached so far. Although thermal effects are well understood they are not of great concern as they are unlikely to result from the typical low-level RFR exposures. Concern rests essentially with the possibility that RFR-exposure may induce non-thermal and/or long-term health effects such as an increased cancer risk. Consequently, possible genetic effects have often been studied but with mixed results. In this paper we review the data on alleged RFR-induced genetic effects from in vitro and in vivo investigations as well as from human cytogenetic biomonitoring surveys. Attention is also paid to combined exposures of RFR with chemical or physical agents. Again, however, no entirely consistent picture emerges. Many of the positive studies may well be due to thermal exposures, but a few studies suggest that biological effects can be seen at low levels of exposure. Overall, however, the evidence for low-level genotoxic effects is very weak.
Collapse
Affiliation(s)
- L Verschaeve
- O.D. Public Health & Surveillance, Laboratory of Toxicology, Scientific Institute of Public Health, Brussels, and Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:223-46. [PMID: 20674588 DOI: 10.1016/j.pbiomolbio.2010.07.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 12/14/2022]
Abstract
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.
Collapse
Affiliation(s)
- Michal Cifra
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
127
|
Whole body exposure with GSM 900MHz affects spatial memory in mice. PATHOPHYSIOLOGY 2010; 17:179-87. [DOI: 10.1016/j.pathophys.2009.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/01/2009] [Indexed: 01/01/2023] Open
|
128
|
Franzellitti S, Valbonesi P, Ciancaglini N, Biondi C, Contin A, Bersani F, Fabbri E. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat Res 2010; 683:35-42. [PMID: 19822160 DOI: 10.1016/j.mrfmmm.2009.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/16/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022]
Abstract
One of the most controversial issue regarding high-frequency electromagnetic fields (HF-EMF) is their putative capacity to affect DNA integrity. This is of particular concern due to the increasing use of HF-EMF in communication technologies, including mobile phones. Although epidemiological studies report no detrimental effects on human health, the possible disturbance generated by HF-EMF on cell physiology remains controversial. In addition, the question remains as to whether cells are able to compensate their potential effects. We have previously reported that a 1-h exposure to amplitude-modulated 1.8 GHz sinusoidal waves (GSM-217 Hz, SAR=2 W/kg) largely used in mobile telephony did not cause increased levels of primary DNA damage in human trophoblast HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations were considered of interest. In the present work, HTR-8/SVneo cells were exposed for 4, 16 or 24h to 1.8 GHz continuous wave (CW) and different GSM signals, namely GSM-217 Hz and GSM-Talk (intermittent exposure: 5 min field on, 10 min field off). The alkaline comet assay was used to evaluate primary DNA damages and/or strand breaks due to uncompleted repair processes in HF-EMF exposed samples. The amplitude-modulated signals GSM-217 Hz and GSM-Talk induced a significant increase in comet parameters in trophoblast cells after 16 and 24h of exposure, while the un-modulated CW was ineffective. However, alterations were rapidly recovered and the DNA integrity of HF-EMF exposed cells was similar to that of sham-exposed cells within 2h of recovery in the absence irradiation. Our data suggest that HF-EMF with a carrier frequency and modulation scheme typical of the GSM signal may affect the DNA integrity.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Interdepartment Centre for Environmental Science Research, University of Bologna, Ravenna, Italy.
| | | | | | | | | | | | | |
Collapse
|