101
|
Hennings TG, Chopra DG, DeLeon ER, VanDeusen HR, Sesaki H, Merrins MJ, Ku GM. In Vivo Deletion of β-Cell Drp1 Impairs Insulin Secretion Without Affecting Islet Oxygen Consumption. Endocrinology 2018; 159:3245-3256. [PMID: 30052866 PMCID: PMC6107751 DOI: 10.1210/en.2018-00445] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
Abstract
Mitochondria are dynamic organelles that undergo frequent fission and fusion events. Mitochondrial fission is required for ATP production, the tricarboxylic acid cycle, and processes beyond metabolism in a cell-type specific manner. Ex vivo and cell line studies have demonstrated that Drp1, a central regulator of mitochondrial fission, is required for glucose-stimulated insulin secretion (GSIS) in pancreatic β cells. Herein, we set out to interrogate the role of Drp1 in β-cell insulin secretion in vivo. We generated β-cell-specific Drp1 knockout (KO) mice (Drp1β-KO) by crossing a conditional allele of Drp1 to Ins1cre mice, in which Cre recombinase replaces the coding region of the Ins1 gene. Drp1β-KO mice were glucose intolerant due to impaired GSIS but did not progress to fasting hyperglycemia as adults. Despite markedly abnormal mitochondrial morphology, Drp1β-KO islets exhibited normal oxygen consumption rates and an unchanged glucose threshold for intracellular calcium mobilization. Instead, the most profound consequences of β-cell Drp1 deletion were impaired second-phase insulin secretion and impaired glucose-stimulated amplification of insulin secretion. Our data establish Drp1 as an important regulator of insulin secretion in vivo and demonstrate a role for Drp1 in metabolic amplification and calcium handling without affecting oxygen consumption.
Collapse
Affiliation(s)
- Thomas G Hennings
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California
| | - Deeksha G Chopra
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Elizabeth R DeLeon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Halena R VanDeusen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Gregory M Ku
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, San Francisco, California
- Correspondence: Gregory M. Ku, MD, PhD, 513 Parnassus Avenue, HSW 1027, San Francisco, California 94143. E-mail:
| |
Collapse
|
102
|
Huang C, Walker EM, Dadi PK, Hu R, Xu Y, Zhang W, Sanavia T, Mun J, Liu J, Nair GG, Tan HYA, Wang S, Magnuson MA, Stoeckert CJ, Hebrok M, Gannon M, Han W, Stein R, Jacobson DA, Gu G. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca 2+ Sensitivity of Insulin Secretion Vesicles. Dev Cell 2018; 45:347-361.e5. [PMID: 29656931 PMCID: PMC5962294 DOI: 10.1016/j.devcel.2018.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca2+ concentrations, suggesting differences in the Ca2+ sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca2+ binding paralog of the β cell Ca2+ sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca2+ sensing plays in regulating β cell maturation.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Wenjian Zhang
- China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Tiziana Sanavia
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jisoo Mun
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Jennifer Liu
- Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | | | - Hwee Yim Angeline Tan
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Singapore, Singapore
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Christian J Stoeckert
- Institute for Biomedical Informatics and Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Maureen Gannon
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Singapore, Singapore
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA.
| |
Collapse
|
103
|
Rourke JL, Hu Q, Screaton RA. AMPK and Friends: Central Regulators of β Cell Biology. Trends Endocrinol Metab 2018; 29:111-122. [PMID: 29289437 DOI: 10.1016/j.tem.2017.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 02/08/2023]
Abstract
If left unchecked, prediabetic hyperglycemia can progress to diabetes and often life-threatening attendant secondary complications. Central to the process of glucose homeostasis are pancreatic β cells, which sense elevations in plasma glucose and additional dietary components and respond by releasing the appropriate quantity of insulin, ensuring the arrest of hepatic glucose output and glucose uptake in peripheral tissues. Given that β cell failure is associated with the transition from prediabetes to diabetes, improved β cell function ('compensation') has a central role in preventing type 2 diabetes mellitus (T2DM). Recent data have shown that both insulin secretion and β cell mass dynamics are regulated by the liver kinase B1-AMP-activated kinase (LKB1-AMPK) pathway and related kinases of the AMPK family; thus, an improved understanding of the biological roles of AMPK in the β cell is now of considerable interest.
Collapse
Affiliation(s)
- Jillian L Rourke
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ONT, M4N 3M5, Canada
| | - Queenie Hu
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ONT, M4N 3M5, Canada
| | - Robert A Screaton
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ONT, M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|