101
|
Jiang CT, Wu WF, Deng YH, Ge JW. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol Med Rep 2020; 21:2006-2018. [PMID: 32323760 PMCID: PMC7115206 DOI: 10.3892/mmr.2020.11003] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is one of the leading causes of mortality and disability worldwide. However, there is a current lack of effective therapies available. As the resident macrophages of the brain, microglia can monitor the microenvironment and initiate immune responses. In response to various brain injuries, such as ischemic stroke, microglia are activated and polarized into the proinflammatory M1 phenotype or the anti‑inflammatory M2 phenotype. The immunomodulatory molecules, such as cytokines and chemokines, generated by these microglia are closely associated with secondary brain damage or repair, respectively, following ischemic stroke. It has been shown that M1 microglia promote secondary brain damage, whilst M2 microglia facilitate recovery following stroke. In addition, autophagy is also reportedly involved in the pathology of ischemic stroke through regulating the activation and function of microglia. Therefore, this review aimed to provide a comprehensive overview of microglia activation, their functions and changes, and the modulators of these processes, including transcription factors, membrane receptors, ion channel proteins and genes, in ischemic stroke. The effects of autophagy on microglia polarization in ischemic stroke were also reviewed. Finally, future research areas of ischemic stroke and the implications of the current knowledge for the development of novel therapeutics for ischemic stroke were identified.
Collapse
Affiliation(s)
- Cheng-Ting Jiang
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wan-Feng Wu
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yi-Hui Deng
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jin-Wen Ge
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
102
|
Lu E, Wang Q, Li S, Chen C, Wu W, Xu YXZ, Zhou P, Tu W, Lou X, Rao G, Yang G, Jiang S, Zhou K. Profilin 1 knockdown prevents ischemic brain damage by promoting M2 microglial polarization associated with the RhoA/ROCK pathway. J Neurosci Res 2020; 98:1198-1212. [PMID: 32291804 DOI: 10.1002/jnr.24607] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ermei Lu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Qian Wang
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Caiming Chen
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Weibo Wu
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Yang Xin Zi Xu
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
| | - Peng Zhou
- Department of Anatomy Wenzhou Medical University Wenzhou China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Gaofeng Rao
- Department of Rehabilitation Medicine The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| |
Collapse
|
103
|
Hong Q, Yang Y, Wang Z, Xu L, Yan Z. Longxuetongluo capsule alleviates lipopolysaccharide-induced neuroinflammation by regulating multiple signaling pathways in BV2 microglia cells. J Chin Med Assoc 2020; 83:255-265. [PMID: 32134862 DOI: 10.1097/jcma.0000000000000258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Longxuetongluo capsule (LTC), derived from the total phenolic compounds of Chinese dragon's blood, is now used in the treatment of ischemic stroke in convalescence. The aim of this study is to explore the neuroprotective effect of LTC from the perspective of neuroinflammation. METHODS Cell viability and lactate dehydrogenase (LDH) release were measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and LDH assay kit. Proinflammatory mediators and cytokines production including Nitric Oxide (NO), prostaglandin E2, (PGE2), interleukin (IL-β), IL-6, and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA) assay. In addition, western blot was used to detect the expression of inflammatory proteins associated with the mitogen-activated protein kinases (MAPKs), janus kinase/signal transducer and activator of tranions (JAK/STAT), nuclear transcription factor κB (NF-κB), and nuclear factor erythroid-2-related actor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathways. Moreover, immunofluorescence assay and electrophoretic mobility shift assays (EMSA) were performed to determine the Nrf2 translocation and the binding-DNA activity of NF-κB, respectively. RESULTS LTC at 0.5 to 2 μg/mL significantly increased cell viability and decreased LDH, NO, PGE2, IL-1β, IL-6, and TNF-α production in oxygen-glucose deprivation/reoxygenation (OGD/R) and lipopolysaccharide (LPS)-induced BV2 microglia cells. Meanwhile, LTC not only decreased the protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) but also down-regulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and up-regulated HO-1 expression via nuclear translocation of Nrf2. LTC can significantly inhibit the phosphorylation of JAK1/STAT3 and reduce the translocation of NF-κB from cytosol to nucleus as well as the binding-DNA activity. PC12 cell pretreated with LTC-condition medium (CM) significantly alleviated LPS-induced neurotoxicity and increased PC12 cell viability in a dose-dependent manner. CONCLUSION The present study showed that LTC exhibited a strong antineuroinflammatory activity and neuroprotective effects on LPS-stimulated BV2 microglial cells and PC12 cells.
Collapse
Affiliation(s)
- Qian Hong
- The 71st Group Army Hospital of CPLA Army (Affiliated Huaihai Hospital of Xuzhou Medical University), Xuzhou, China
| | | | | | | | | |
Collapse
|
104
|
Fang X, Ni J, Su B, An H, Li M, Wang J, Wu X. Effects of cluster needling of scalp acupuncture on neurofilament protein 200 and signal transducer and activator of transcription 3 in rats with acute cerebral ischemia. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
105
|
Li L, Sun L, Qiu Y, Zhu W, Hu K, Mao J. Protective Effect of Stachydrine Against Cerebral Ischemia-Reperfusion Injury by Reducing Inflammation and Apoptosis Through P65 and JAK2/STAT3 Signaling Pathway. Front Pharmacol 2020; 11:64. [PMID: 32132924 PMCID: PMC7041339 DOI: 10.3389/fphar.2020.00064] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Stachydrine, a constituent of Leonurus japonicus Houtt which also called Japanese motherwort has been shown to improve vascular microcirculation and ameliorate endothelial dysfunction. This study investigated the neuroprotective effect of stachydrine. Male Sprague-Dawley (SD) rats were randomly divided into sham, control, and stachydrine groups. The neurological deficit score was evaluated and the infarct size of the brain was measured using 2,3,5-triphenyltetra-zolium (TTC) chloride staining assay, and the pathological changes in the brain tissues were examined by HE staining. Nissl and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) staining were performed to assess the numbers of Nissl bodies and the levels of apoptosis in the neurons. The activities of superoxide dismutase (SOD) and the levels of malondialdehyde (MDA) were also measured. The release of inflammatory factors IL-1β and TNF-α were detected by Enzyme-linked immunosorbent assay (ELISA). Compared with the control group, the stachydrine group showed a significant prevention of neurological deficit, as indicated by the reduced infarct volume in the brain. Moreover, the stachydrine treatment reduced the activities of SOD, the levels of MDA and decreased the amount of IL-1β, and TNF-α, indicating that it could function to decrease the level of inflammation, thus reducing brain damage. The ischemic stroke model of PC12 cells was prepared via oxygen-glucose deprivation (OGD) protocol for 6 h. The expression of P65 and JAK2/STAT3 signaling pathway related proteins was measured by western blot. The treatment group was found to have the survival rate of PC12 cells improved and the release of inflammatory factors reduced when compared with the OGD group. This study demonstrated that stachydrine could improve nerve function by inhibiting the phosphorylation of P65/JAK2 and STAT3.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Lili Sun
- Department of Pharmacy, Shanghai Punan Hospital, Shanghai, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wenjun Zhu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Kangyuan Hu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Junqin Mao
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
106
|
Inhibition of JAK2/STAT3 signaling pathway protects mice from the DDP-induced acute kidney injury in lung cancer. Inflamm Res 2019; 68:751-760. [DOI: 10.1007/s00011-019-01258-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
|
107
|
Zhou K, Chen J, Wu J, Xu Y, Wu Q, Yue J, Song Y, Li S, Zhou P, Tu W, Yang G, Jiang S. Profilin 2 Promotes Proliferation and Metastasis of Head and Neck Cancer Cells by Regulating PI3K/AKT/β-Catenin Signaling Pathway. Oncol Res 2019; 27:1079-1088. [PMID: 31122311 PMCID: PMC7848265 DOI: 10.3727/096504019x15579146061957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Profilin 2 (PFN2) was found to be mainly expressed in neurons and involved in the development of the brain. In recent years, emerging evidence indicated that PFN2 is also significantly upregulated in various cancers including head and neck cancer (HNSC) and influences cancer cell proliferation, migration, and invasion. However, the role of PFN2 in HNSC development and progression remains unclear. The aim of our study was to investigate the role of PFN2 in the development of HNSC and its possible molecular mechanisms. Bioinformatics showed that increased expression of PFN2 in tumors correlated highly with poor prognosis of HNSC patients. Our results indicated that PFN2 was highly expressed in HNSC tissues and in HNSC cell lines. Knockdown of PFN2 inhibited proliferation, invasion, and migration of HNSC cells, while PFN2 overexpression produced the opposite effects. Using a nude mouse xenograft model, we substantiated the tumor-promoting effect of PFN2 on HNSC in vivo. Furthermore, we found that PFN2 downregulation reduced the phosphorylation of Akt and GSK-3β and reduced the expression of β-catenin in HNSC cells. The opposite was observed when PFN2 was overexpressed. Collectively, these results suggest that PFN2 promotes the proliferation and metastasis of HNSC by activating the PI3K/Akt/β-catenin signaling pathway. Although further validation is needed, we speculate that PFN2 plays a crucial role in HNSC and may be a promising therapeutic target and prognostic biomarker.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jie Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jiayu Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yangxinzi Xu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qiaoyun Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yu Song
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, P.R. China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Peng Zhou
- Department of Anatomy, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|