101
|
Coulson EJ, Bartlett PF. An exercise path to preventing Alzheimer's disease. J Neurochem 2017; 142:191-193. [DOI: 10.1111/jnc.14038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Elizabeth J. Coulson
- School of Biomedical Sciences; Queensland Brain Institute; The University of Queensland; Brisbane Australia
- Clem Jones Centre for Ageing Dementia Research; Queensland Brain Institute; The University of Queensland; Brisbane Australia
| | - Perry F. Bartlett
- Clem Jones Centre for Ageing Dementia Research; Queensland Brain Institute; The University of Queensland; Brisbane Australia
| |
Collapse
|
102
|
Ramagiri S, Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur J Pharmacol 2017; 803:84-93. [DOI: 10.1016/j.ejphar.2017.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 01/07/2023]
|
103
|
Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res 2017; 1665:1-21. [PMID: 28396009 DOI: 10.1016/j.brainres.2017.03.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Neuronal cell injury, as a consequence of acute or chronic neurological trauma, is a significant cause of mortality around the world. On a molecular level, the condition is characterized by widespread cell death and poor regeneration, which can result in severe morbidity in survivors. Potential therapeutics are of major interest, with a promising candidate being brain-derived neurotrophic factor (BDNF), a ubiquitous agent in the brain which has been associated with neural development and may facilitate protective and regenerative effects following injury. This review summarizes the available information on the potential benefits of BDNF and the molecular mechanisms involved in several pathological conditions, including hypoxic brain injury, stroke, Alzheimer's disease and Parkinson's disease. It further explores the methods in which BDNF can be applied in clinical and therapeutic settings, and the potential challenges to overcome.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Chun-Yin San
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Department of Anaesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qingquan Lian
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
104
|
Bai Q, Song D, Gu L, Verkhratsky A, Peng L. Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine. Psychopharmacology (Berl) 2017; 234:1069-1077. [PMID: 28233032 DOI: 10.1007/s00213-017-4547-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. RESULTS At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes. CONCLUSIONS Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.
Collapse
Affiliation(s)
- Qiufang Bai
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Dan Song
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Li Gu
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China.
| |
Collapse
|
105
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
106
|
Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP, Cheng Y. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer's disease: a meta-analysis study (N=7277). Mol Psychiatry 2017; 22:312-320. [PMID: 27113997 DOI: 10.1038/mp.2016.62] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
Studies suggest that dysfunction of brain-derived neurotrophic factor (BDNF) is a possible contributor to the pathology and symptoms of Alzheimer's disease (AD). Several studies report reduced peripheral blood levels of BDNF in AD, but findings are inconsistent. This study sought to quantitatively summarize the clinical BDNF data in patients with AD and mild cognitive impairment (MCI, a prodromal stage of AD) with a meta-analytical technique. A systematic search of Pubmed, PsycINFO and the Cochrane Library identified 29 articles for inclusion in the meta-analysis. Random-effects meta-analysis showed that patients with AD had significantly decreased baseline peripheral blood levels of BDNF compared with healthy control (HC) subjects (24 studies, Hedges' g=-0.339, 95% confidence interval (CI)=-0.572 to -0.106, P=0.004). MCI subjects showed a trend for decreased BDNF levels compared with HC subjects (14 studies, Hedges' g=-0.201, 95% CI=-0.413 to 0.010, P=0.062). No differences were found between AD and MCI subjects in BDNF levels (11 studies, Hedges' g=0.058, 95% CI=-0.120 to 0.236, P=0.522). Interestingly, the effective sizes and statistical significance improved after excluding studies with reported medication in patients (between AD and HC: 18 studies, Hedges' g=-0.492, P<0.001; between MCI and HC: 11 studies, Hedges' g=-0.339, P=0.003). These results strengthen the clinical evidence that AD or MCI is accompanied by reduced peripheral blood BDNF levels, supporting an association between the decreasing levels of BDNF and the progression of AD.
Collapse
Affiliation(s)
- X-Y Qin
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - C Cao
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - N X Cawley
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - T-T Liu
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - J Yuan
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Y P Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Y Cheng
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
107
|
Guo J, Chang L, Li C, Li M, Yan P, Guo Z, Wang C, Zha Q, Wang Q. SB203580 reverses memory deficits and depression-like behavior induced by microinjection of Aβ 1-42 into hippocampus of mice. Metab Brain Dis 2017; 32:57-68. [PMID: 27488110 DOI: 10.1007/s11011-016-9880-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/19/2016] [Indexed: 11/26/2022]
Abstract
A high co-morbidity between Alzheimer's disease (AD) and depression suggests there might be similar mechanisms underlying the course of these diseases. Previous studies have shown that p38MAPK plays a critical role in the pathophysiology of AD and depression. However, little is known about whether SB203580, a selective inhibitor of p38MAPK, may protect against AD-associated cognitive impairments and depression-like behavior, simultaneously. Herein, we have shown, for the first time, that SB203580 may reverse memory impairments and depression-like behavior induced by hippocampal infusion of β-amyloid 1-42 (Aβ1-42), as measured by novel object recognition, Morris water maze, tail-suspension and forced-swimming tests. In addition, phorbol 12-myristate 13-acetate (PMA), a PKC activator which also activates p38MAPK, significantly abolished the effects of SB203580. Moreover, Aβ1-42 causes increased phosphorylation of p38MAPK and decreased phosphorylation of Ser9-glycogen synthase kinase 3β (GSK3β) and cAMP-response element binding protein (CREB) in the hippocampus of mice, which could be significantly reversed by SB203580. Our results suggest that SB203580 reversed Aβ1-42-induced cognitive impairments and depression-like behavior via inhibiting p38MAPK signaling pathway, which not only supports p38MAPK as a therapeutic target for AD-associated cognitive dysfunction and depression-like behavior, but also provides experimental basis for the use of SB203580 in co-morbidity of AD and depression.
Collapse
Affiliation(s)
- Jiejie Guo
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Lan Chang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Chenli Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Mengmeng Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Peiyun Yan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Zhiping Guo
- School of Medicine, Lishui University, Lishui, Zhejiang, 323000, People's Republic of China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.
| | - Qin Zha
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang, 315200, China.
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.
| |
Collapse
|
108
|
Kim BY, Lee SH, Graham PL, Angelucci F, Lucia A, Pareja-Galeano H, Leyhe T, Turana Y, Lee IR, Yoon JH, Shin JI. Peripheral Brain-Derived Neurotrophic Factor Levels in Alzheimer's Disease and Mild Cognitive Impairment: a Comprehensive Systematic Review and Meta-analysis. Mol Neurobiol 2016; 54:7297-7311. [PMID: 27815832 DOI: 10.1007/s12035-016-0192-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is becoming a growing global problem, and there is an urgent need to identify reliable blood biomarkers of the risk and progression of this condition. A potential candidate is the brain-derived neurotrophic factor (BDNF), which modulates major trophic effects in the brain. However, findings are apparently inconsistent regarding peripheral blood BDNF levels in AD patients vs. healthy people. We thus performed a systematic review and meta-analysis of the studies that have examined peripheral BDNF levels in patients with AD or mild cognitive impairment (MCI) and healthy controls. We searched articles through PubMed, EMBASE, and hand searching. Over a total pool of 2061 potential articles, 26 met all inclusion criteria (including a total of 1584 AD patients, 556 MCI patients, and 1294 controls). A meta-analysis of BDNF levels between early AD and controls showed statistically significantly higher levels (SMD [95 % CI]: 0.72 [0.31, 1.13]) with no heterogeneity. AD patients with a low (<20) mini-mental state examination (MMSE) score had lower peripheral BDNF levels compared with controls (SMD [95 % CI]: -0.33 [-0.60, -0.05]). However, we found no statistically significant difference in blood (serum/plasma) BDNF levels between all AD patients and controls (standard mean difference, SMD [95 % CI]: -0.16 [-0.4, 0.07]), and there was heterogeneity among studies (P < 0.0001, I 2 = 85.8 %). There were no differences in blood BDNF levels among AD or MCI patients vs. controls by subgroup analyses according to age, sex, and drug use. In conclusion, this meta-analysis shows that peripheral blood BDNF levels seem to be increased in early AD and decreased in AD patients with low MMSE scores respectively compared with their age- and sex-matched healthy referents. At present, however, this could not be concluded from individual studies.
Collapse
Affiliation(s)
- Bo Yi Kim
- College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seon Heui Lee
- Department of Nursing Science, College of Nursing, Gachon University, Incheon, South Korea
| | - Petra L Graham
- Department of Statistics, Macquarie University, Sydney, Australia
| | - Francesco Angelucci
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alejandro Lucia
- Research Institute of Hospital 12 de Octubre (i+12), European University of Madrid, Madrid, Spain
| | - Helios Pareja-Galeano
- Research Institute of Hospital 12 de Octubre (i+12), European University of Madrid, Madrid, Spain
| | - Thomas Leyhe
- Center of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland
| | - Yuda Turana
- Department of Neurology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - I Re Lee
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seoul, 120-752, Republic of Korea
| | - Ji Hye Yoon
- College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
109
|
Serum Markers of Neurodegeneration in Maple Syrup Urine Disease. Mol Neurobiol 2016; 54:5709-5719. [PMID: 27660262 DOI: 10.1007/s12035-016-0116-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.
Collapse
|
110
|
Wei S. Potential therapeutic action of natural products from traditional Chinese medicine on Alzheimer's disease animal models targeting neurotrophic factors. Fundam Clin Pharmacol 2016; 30:490-501. [PMID: 27414248 DOI: 10.1111/fcp.12222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells leads to memory loss and cognitive decline. To reduce the death rate and improve the biological activity of neurocytes, neurotrophic factors (NTFs) exhibit therapeutic effect on AD. However, therapeutic application of exogenous NTFs in treatment of AD is largely limited due to short half-life, poor stability, etc. Various extracts of traditional Chinese medicine (TCM) have been shown to exhibit therapeutic effects on AD, and some of these effects are associated with regulation on the expression of nerve growth factor, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) and their associated receptors. This article reviews the progress on promotion of Panax ginseng, Rehmannia glutinosa Libosch., Epimedium, Polygala tenuifolia Willd, and seven other TCMs on secretion of NTFs during AD, with a view to preparation development and clinical application of these TCMs on AD.
Collapse
Affiliation(s)
- Shuyong Wei
- Southwest University Rongchang Campus, No. 160 Xueyuan Road, Rongchang, Chongqing, 402460, China
| |
Collapse
|
111
|
Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci 2016; 158:121-9. [DOI: 10.1016/j.lfs.2016.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
|
112
|
Vevera J, Fišar Z, Nekovářová T, Vrablík M, Zlatohlávek L, Hroudová J, Singh N, Raboch J, Valeš K. Statin-induced changes in mitochondrial respiration in blood platelets in rats and human with dyslipidemia. Physiol Res 2016; 65:777-788. [PMID: 27429121 DOI: 10.33549/physiolres.933264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used drugs for lowering blood lipid levels and preventing cardiovascular diseases. However, statins can have serious adverse effects, which may be related to development of mitochondrial dysfunctions. The aim of study was to demonstrate the in vivo effect of high and therapeutic doses of statins on mitochondrial respiration in blood platelets. Model approach was used in the study. Simvastatin was administered to rats at a high dose for 4 weeks. Humans were treated with therapeutic doses of rosuvastatin or atorvastatin for 6 weeks. Platelet mitochondrial respiration was measured using high-resolution respirometry. In rats, a significantly lower physiological respiratory rate was found in intact platelets of simvastatin-treated rats compared to controls. In humans, no significant changes in mitochondrial respiration were detected in intact platelets; however, decreased complex I-linked respiration was observed after statin treatment in permeabilized platelets. We propose that the small in vivo effect of statins on platelet energy metabolism can be attributed to drug effects on complex I of the electron transport system. Both intact and permeabilized platelets can be used as a readily available biological model to study changes in cellular energy metabolism in patients treated with statins.
Collapse
Affiliation(s)
- J Vevera
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
UNLABELLED Tauopathies are neurodegenerative diseases characterized by intraneuronal inclusions of hyperphosphorylated tau protein and abnormal expression of brain-derived neurotrophic factor (BDNF), a key modulator of neuronal survival and function. The severity of both these pathological hallmarks correlate with the degree of cognitive impairment in patients. However, how tau pathology specifically modifies BDNF signaling and affects neuronal function during early prodromal stages of tauopathy remains unclear. Here, we report that the mild tauopathy developing in retinal ganglion cells (RGCs) of the P301S tau transgenic (P301S) mouse induces functional retinal changes by disrupting BDNF signaling via the TrkB receptor. In adult P301S mice, the physiological visual response of RGCs to pattern light stimuli and retinal acuity decline significantly. As a consequence, the activity-dependent secretion of BDNF in the vitreous is impaired in P301S mice. Further, in P301S retinas, TrkB receptors are selectively upregulated, but uncoupled from downstream extracellular signal-regulated kinase (ERK) 1/2 signaling. We also show that the impairment of TrkB signaling is triggered by tau pathology and mediates the tau-induced dysfunction of visual response. Overall our results identify a neurotrophin-mediated mechanism by which tau induces neuronal dysfunction during prodromal stages of tauopathy and define tau-driven pathophysiological changes of potential value to support early diagnosis and informed therapeutic decisions. SIGNIFICANCE STATEMENT This work highlights the potential molecular mechanisms by which initial tauopathy induces neuronal dysfunction. Combining clinically used electrophysiological techniques (i.e., electroretinography) and molecular analyses, this work shows that in a relevant model of early tauopathy, the retina of the P301S mutant human tau transgenic mouse, mild tau pathology results in functional changes of neuronal activity, likely due to selective impairment of brain-derived neurotrophic factor signaling via its receptor, TrkB. These findings may have important translational implications for early diagnosis in a subset of Alzheimer's disease patients with early visual symptoms and emphasize the need to clarify the pathophysiological changes associated with distinct tauopathy stages to support informed therapeutic decisions and guide drug discovery.
Collapse
|
114
|
Campos C, Rocha NBF, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Rev Neurother 2016; 16:723-34. [PMID: 27086703 DOI: 10.1080/14737175.2016.1179582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.
Collapse
Affiliation(s)
- Carlos Campos
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,b School of Allied Health Sciences , Polytechnic Institute of Porto , Porto , Portugal
| | - Nuno Barbosa F Rocha
- b School of Allied Health Sciences , Polytechnic Institute of Porto , Porto , Portugal
| | - Eduardo Lattari
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Flávia Paes
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - António E Nardi
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Sérgio Machado
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,c Physical Activity Neuroscience Laboratory , Physical Activity Sciences Postgraduate Program - Salgado de Oliveira University (UNIVERSO) , Niterói , Brazil
| |
Collapse
|
115
|
Taliyan R, Ramagiri S. Delayed neuroprotection against cerebral ischemia reperfusion injury: putative role of BDNF and GSK-3β. J Recept Signal Transduct Res 2015; 36:402-10. [DOI: 10.3109/10799893.2015.1108338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
116
|
Chen J, Wang M, Waheed Khan RA, He K, Wang Q, Li Z, Shen J, Song Z, Li W, Wen Z, Jiang Y, Xu Y, Shi Y, Ji W. The GSK3B gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. J Affect Disord 2015; 185:149-155. [PMID: 26186530 DOI: 10.1016/j.jad.2015.06.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glycogen synthease kinase-3B is a key gene encoding a protein kinase which is abundant in brain, and is involved in signal transduction cascades of neuronal cell development and energy metabolism. Previous researches proposed GSK3B as a potential region for schizophrenia. METHOD To validate the susceptibility of GSK3B to major depressive disorder, and to investigate the overlapping risk conferred by GSK3B for mental disorders, we performed a large-scale case-control study, analyzed 6 tag single nucleotide polymorphisms using TaqMan® technology in 1,045 major depressive disorder patients, 1,235 schizophrenia patients and 1,235 normal controls of Han Chinese origin. RESULTS We found rs334535 (Pallele=2.79E-03, Pgenotype=5.00E-03, OR=1.429) and rs2199503 (Pallele=0.020, Pgenotype= 0.040, OR=1.157) showed association with major depressive disorder before Bonferroni correction. rs6771023 (adjusted Pallele=1.64E-03, adjusted Pgenotype=6.00E-03, OR=0.701) and rs2199503 (adjusted Pallele=0.001, adjusted Pgenotype=0.002, OR=1.251) showed significant association with schizophrenia after Bonferroni correction. rs2199503 (adjusted Pallele=1.70E-03, adjusted Pgenotype=0.006, OR=1.208) remained to be significant in the combined cases of major depressive disorder and schizophrenia after Bonferroni correction. LIMITATIONS Further validations of our findings in samples with larger scale are suggested, and functional genomic study is needed to elucidate the role of GSK3B in signal pathway and psychiatric disorders. CONCLUSIONS Our results provide evidence that the GSK3B gene could be a promising region which contains genetic risk for both major depressive disorder and schizophrenia in the Han Chinese population. The study on variants conferring overlapping risk for multiple psychiatric disorders could be tangible pathogenesis support and clinical or diagnostic references.
Collapse
Affiliation(s)
- Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200042, PR China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Kuanjun He
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, PR China
| | - Qingzhong Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yiwen Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200042, PR China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200042, PR China.
| | - Weidong Ji
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200042, PR China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200042, PR China.
| |
Collapse
|
117
|
Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis 2015; 6:331-41. [PMID: 26425388 DOI: 10.14336/ad.2015.0825] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022] Open
Abstract
Aging is a normal physiological process accompanied by cognitive decline. This aging process has been the primary risk factor for development of aging-related diseases such as Alzheimer's disease (AD). Cognitive deficit is related to alterations of neurotrophic factors level such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF). These strong relationship between aging and AD is important to investigate the time which they overlap, as well as, the pathophysiological mechanism in each event. Considering that aging and AD are related to cognitive impairment, here we discuss the involving these neurotrophic factors in the aging process and AD.
Collapse
Affiliation(s)
- Josiane Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tatiani Bellettini-Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Francielle Mina
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michelle Lima Garcez
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra Ioppi Zugno
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
118
|
Gomazkov OA. Signaling molecules and disturbances of cognitive functions in brain diseases. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
119
|
Ahn SM, Kim YR, Kim HN, Choi YW, Lee JW, Kim CM, Baek JU, Shin HK, Choi BT. Neuroprotection and spatial memory enhancement of four herbal mixture extract in HT22 hippocampal cells and a mouse model of focal cerebral ischemia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:202. [PMID: 26122524 PMCID: PMC4486694 DOI: 10.1186/s12906-015-0741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/23/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Four traditional Korean medicinal herbs which act in retarding the aging process, Polygonum multiflorum Thunb., Rehmannia glutinosa (Gaertn) Libosch., Polygala tenuifolia Willd., and Acorus gramineus Soland., were prepared by systematic investigation of Dongeuibogam (Treasured Mirror of Eastern Medicine), published in the early 17th century in Korea. This study was performed to evaluate beneficial effects of four herbal mixture extract (PMC-12) on hippocampal neuron and spatial memory. METHODS High performance liquid chromatography (HPLC) analysis was performed for standardization of PMC-12. Cell viability, lactate dehydrogenase, flow cytometry, reactive oxygen species (ROS), and Western blot assays were performed in HT22 hippocampal cells and immunohistochemistry and behavioral tests were performed in a mouse model of focal cerebral ischemia in order to observe alterations of hippocampal cell survival and subsequent memory function. RESULTS In the HPLC analysis, PMC-12 was standardized to contain 3.09% 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, 0.35% 3',6-disinapoyl sucrose, and 0.79% catalpol. In HT22 cells, pretreatment with PMC-12 resulted in significantly reduced glutamate-induced apoptotic cell death. Pretreatment with PMC-12 also resulted in suppression of ROS accumulation in connection with cellular Ca(2+) level after exposure to glutamate. Expression levels of phosphorylated p38 mitogen-activated protein kinases (MAPK) and dephosphorylated phosphatidylinositol-3 kinase (PI3K) by glutamate exposure were recovered by pretreatment with either PMC-12 or anti-oxidant N-acetyl-L-cysteine (NAC). Expression levels of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB) were significantly enhanced by treatment with either PMC-12 or NAC. Combination treatment with PMC-12, NAC, and intracellular Ca(2+) inhibitor BAPTA showed similar expression levels. In a mouse model of focal cerebral ischemia, we observed higher expression of mature BDNF and phosphorylation of CREB in the hippocampus and further confirmed improved spatial memory by treatment with PMC-12. CONCLUSIONS Our results suggest that PMC-12 mainly exerted protective effects on hippocampal neurons through suppression of Ca(2+)-related ROS accumulation and regulation of signaling pathways of p38 MAPK and PI3K associated with mature BDNF expression and CREB phosphorylation and subsequently enhanced spatial memory.
Collapse
|
120
|
The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients. Sci Rep 2015; 5:8148. [PMID: 25640280 PMCID: PMC4313085 DOI: 10.1038/srep08148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023] Open
Abstract
BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.
Collapse
|
121
|
Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy. Mol Neurobiol 2014; 52:1477-1493. [PMID: 25354497 DOI: 10.1007/s12035-014-8958-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.
Collapse
|