101
|
Mattonen SA, Huang K, Ward AD, Senan S, Palma DA. New techniques for assessing response after hypofractionated radiotherapy for lung cancer. J Thorac Dis 2014; 6:375-86. [PMID: 24688782 PMCID: PMC3968559 DOI: 10.3978/j.issn.2072-1439.2013.11.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/07/2013] [Indexed: 12/25/2022]
Abstract
Hypofractionated radiotherapy (HFRT) is an effective and increasingly-used treatment for early stage non-small cell lung cancer (NSCLC). Stereotactic ablative radiotherapy (SABR) is a form of HFRT and delivers biologically effective doses (BEDs) in excess of 100 Gy10 in 3-8 fractions. Excellent long-term outcomes have been reported; however, response assessment following SABR is complicated as radiation induced lung injury can appear similar to a recurring tumor on CT. Current approaches to scoring treatment responses include Response Evaluation Criteria in Solid Tumors (RECIST) and positron emission tomography (PET), both of which appear to have a limited role in detecting recurrences following SABR. Novel approaches to assess response are required, but new techniques should be easily standardized across centers, cost effective, with sensitivity and specificity that improves on current CT and PET approaches. This review examines potential novel approaches, focusing on the emerging field of quantitative image feature analysis, to distinguish recurrence from fibrosis after SABR.
Collapse
|
102
|
Kelada OJ, Carlson DJ. Molecular imaging of tumor hypoxia with positron emission tomography. Radiat Res 2014; 181:335-49. [PMID: 24673257 DOI: 10.1667/rr13590.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The problem of tumor hypoxia has been recognized and studied by the oncology community for over 60 years. From radiation and chemotherapy resistance to the increased risk of metastasis, low oxygen concentrations in tumors have caused patients with many types of tumors to respond poorly to conventional cancer therapies. It is clear that patients with high levels of tumor hypoxia have a poorer overall treatment response and that the magnitude of hypoxia is an important prognostic factor. As a result, the development of methods to measure tumor hypoxia using invasive and noninvasive techniques has become desirable to the clinical oncology community. A variety of imaging modalities have been established to visualize hypoxia in vivo. Positron emission tomography (PET) imaging, in particular, has played a key role for imaging tumor hypoxia because of the development of hypoxia-specific radiolabelled agents. Consequently, this technique is increasingly used in the clinic for a wide variety of cancer types. Following a broad overview of the complexity of tumor hypoxia and measurement techniques to date, this article will focus specifically on the accuracy and reproducibility of PET imaging to quantify tumor hypoxia. Despite numerous advances in the field of PET imaging for hypoxia, we continue to search for the ideal hypoxia tracer to both qualitatively and quantitatively define the tumor hypoxic volume in a clinical setting to optimize treatments and predict response in cancer patients.
Collapse
Affiliation(s)
- Olivia J Kelada
- a Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut; and
| | | |
Collapse
|
103
|
Laurens E, Yeoh SD, Rigopoulos A, Cao D, Cartwright GA, O'Keefe GJ, Tochon-Danguy HJ, White JM, Scott AM, Ackermann U. Radiolabelling and evaluation of a novel sulfoxide as a PET imaging agent for tumor hypoxia. Nucl Med Biol 2014; 41:419-25. [PMID: 24767600 DOI: 10.1016/j.nucmedbio.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 12/20/2022]
Abstract
[¹⁸F]FMISO is the most widely validated PET radiotracer for imaging hypoxic tissue. However, as a result of the pharmacokinetics of [¹⁸F]FMISO a 2h wait between tracer administration and patient scanning is required for optimal image acquisition. In order to develop hypoxia imaging agents with faster kinetics, we have synthesised and evaluated several F-18 labelled anilino sulfoxides. In this manuscript we report on the synthesis, in vitro and in vivo evaluation of a novel fluoroethyltriazolyl propargyl anilino sulfoxide. The radiolabelling of the novel tracer was achieved via 2-[¹⁸F]fluoroethyl azide click chemistry. Radiochemical yields were 23 ± 4% based on 2-[¹⁸F]fluoroethyl azide and 7 ± 2% based on K[¹⁸F]F. The radiotracer did not undergo metabolism or defluorination in an in vitro assay using S9 liver fractions. Imaging studies using SK-RC-52 tumors in BALB/c nude mice have indicated that the tracer may have a higher pO₂ threshold than [¹⁸F]FMISO for uptake in hypoxic tumors. Although clearance from muscle was faster than [¹⁸F]FMISO, uptake in hypoxic tumors was slower. The average tumor to muscle ratio at 2h post injection in large, hypoxic tumors with a volume greater than 686 mm³ was 1.7, which was similar to the observed ratio of 1.75 for [¹⁸F]FMISO. Although the new tracer showed improved pharmacokinetics when compared with the previously synthesised sulfoxides, further modifications to the chemical structure need to be made in order to offer significant in vivo imaging advantages over [¹⁸F]FMISO.
Collapse
Affiliation(s)
- Evelyn Laurens
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville VIC 3052, Australia
| | - Shinn Dee Yeoh
- Centre for PET, Austin Health, Level 1 HSB, 145 Studley Road, Heidelberg VIC 3084, Australia
| | - Angela Rigopoulos
- Ludwig Institute for Cancer Research, Melbourne - Austin Branch, Heidelberg VIC 3084, Australia
| | - Diana Cao
- Ludwig Institute for Cancer Research, Melbourne - Austin Branch, Heidelberg VIC 3084, Australia
| | - Glenn A Cartwright
- Ludwig Institute for Cancer Research, Melbourne - Austin Branch, Heidelberg VIC 3084, Australia
| | - Graeme J O'Keefe
- Centre for PET, Austin Health, Level 1 HSB, 145 Studley Road, Heidelberg VIC 3084, Australia
| | - Henri J Tochon-Danguy
- Centre for PET, Austin Health, Level 1 HSB, 145 Studley Road, Heidelberg VIC 3084, Australia; School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville VIC 3052, Australia
| | - Andrew M Scott
- Centre for PET, Austin Health, Level 1 HSB, 145 Studley Road, Heidelberg VIC 3084, Australia; Ludwig Institute for Cancer Research, Melbourne - Austin Branch, Heidelberg VIC 3084, Australia; School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Uwe Ackermann
- Centre for PET, Austin Health, Level 1 HSB, 145 Studley Road, Heidelberg VIC 3084, Australia; Ludwig Institute for Cancer Research, Melbourne - Austin Branch, Heidelberg VIC 3084, Australia; School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne VIC 3010, Australia.
| |
Collapse
|
104
|
Grimes DR, Kelly C, Bloch K, Partridge M. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface 2014; 11:20131124. [PMID: 24430128 PMCID: PMC3899881 DOI: 10.1098/rsif.2013.1124] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022] Open
Abstract
Hypoxia occurs when oxygen levels within a tissue drop below normal physiological levels. In tumours, hypoxia is associated with poor prognosis, increased likelihood of metastasis and resistance to therapy. Imaging techniques, for example, positron emission tomography, are increasingly used in the monitoring of tumour hypoxia and have the potential to help in the planning of radiotherapy. For this application, improved understanding of the link between image contrast and quantitative underlying oxygen distribution would be very useful. Mathematical models of tissue hypoxia and image formation can help understand this. Hypoxia is caused by an imbalance between vascular supply and tissue demand. While much work has been dedicated to the quantitative description of tumour vascular networks, consideration of tumour oxygen consumption is largely neglected. Oxidative respiration in standard two-dimensional cell culture has been widely studied. However, two-dimensional culture fails to capture the complexities of growing three-dimensional tissue which could impact on the oxygen usage. In this study, we build on previous descriptions of oxygen consumption and diffusion in three-dimensional tumour spheroids and present a method for estimating rates of oxygen consumption from spheroids, validated using stained spheroid sections. Methods for estimating the local partial pressure of oxygen, the diffusion limit and the extents of the necrotic core, hypoxic region and proliferating rim are also derived. These are validated using experimental data from DLD1 spheroids at different stages of growth. A relatively constant experimentally derived diffusion limit of 232 ± 22 μm and an O2 consumption rate of 7.29 ± 1.4 × 10(-7) m(3) kg(-1) s(-1) for the spheroids studied was measured, in agreement with laboratory measurements.
Collapse
Affiliation(s)
- David Robert Grimes
- The Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | | | | |
Collapse
|
105
|
Carlin S, Zhang H, Reese M, Ramos NN, Chen Q, Ricketts SA. A comparison of the imaging characteristics and microregional distribution of 4 hypoxia PET tracers. J Nucl Med 2014; 55:515-21. [PMID: 24491409 DOI: 10.2967/jnumed.113.126615] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED We compared the imaging characteristics and hypoxia selectivity of 4 hypoxia PET radiotracers ((18)F-fluoromisonidazole [(18)F-FMISO], (18)F-flortanidazole [(18)F-HX4], (18)F-fluoroazomycin arabinoside [(18)F-FAZA], and (64)Cu-diacetyl-bis(N4-methylsemicarbazone) [(64)Cu-ATSM]) in a single murine xenograft tumor model condition using small-animal PET imaging and combined ex vivo autoradiography and fluorescence immunohistochemistry. METHODS Nude mice bearing SQ20b xenograft tumors were administered 1 of 4 hypoxia PET tracers and images acquired 80-90 min after injection. Frozen sections from excised tumors were then evaluated for tracer distribution using digital autoradiography and compared with histologic markers of tumor hypoxia (pimonidazole, carbonic anydrase 9 [CA9]) and vascular perfusion (Hoechst 33342). RESULTS The highest tumor uptake was observed with (64)Cu-ATSM (maximum standardized uptake values [SUV(max)], 1.26 ± 0.13) and the lowest with (18)F-FAZA (SUVmax, 0.41 ± 0.24). (18)F-FMISO and (18)F-HX4 had similar intermediate tumor uptake (SUV(max), 0.76 ± 0.38 and 0.65 ± 0.19, respectively). Digital autoradiographs of hypoxia tracer distribution were compared pixel by pixel with images of immunohistochemistry stains. The fluorinated nitroimidazoles all showed radiotracer uptake increasing with pimonidazole and CA9 staining. (64)Cu-ATSM showed the opposite pattern, with highest radiotracer uptake observed in regions with the lowest pimonidazole and CA9 staining. CONCLUSION The fluorinated nitroimidazoles showed similar tumor distributions when compared with immunohistochemistry markers of hypoxia. Variations in tumor standardized uptake value and normal tissue distribution may determine the most appropriate clinical setting for each tracer. (64)Cu-ATSM showed the highest tumor accumulation and little renal clearance. However, the lack of correlation between (64)Cu-ATSM distribution and immunohistochemistry hypoxia markers casts some doubt on the hypoxia selectivity of (64)Cu-ATSM.
Collapse
Affiliation(s)
- Sean Carlin
- Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | | | |
Collapse
|
106
|
Chang JH, Wada M, Anderson NJ, Lim Joon D, Lee ST, Gong SJ, Gunawardana DH, Sachinidis J, O'Keefe G, Gan HK, Khoo V, Scott AM. Hypoxia-targeted radiotherapy dose painting for head and neck cancer using (18)F-FMISO PET: a biological modeling study. Acta Oncol 2013; 52:1723-9. [PMID: 23317145 DOI: 10.3109/0284186x.2012.759273] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND This study investigates the use of (18)F-fluoromisonidazole (FMISO) PET-guided radiotherapy dose painting for potentially overcoming the radioresistant effects of hypoxia in head and neck squamous cell carcinoma (HNSCC). MATERIAL AND METHODS The study cohort consisted of eight patients with HNSCC who were planned for definitive radiotherapy. Hypoxic subvolumes were automatically generated on pre-radiotherapy FMISO PET scans. Three radiotherapy plans were generated for each patient: a standard (STD) radiotherapy plan to a dose of 70 Gy, a uniform dose escalation (UDE) plan to the standard target volumes to a dose of 84 Gy, and a hypoxia dose-painted (HDP) plan with dose escalation only to the hypoxic subvolume to 84 Gy. Plans were compared based on tumor control probability (TCP), normal tissue complication probability (NTCP), and uncomplicated tumor control probability (UTCP). RESULTS The mean TCP increased from 73% with STD plans to 95% with the use of UDE plans (p < 0.001) and to 93% with HDP plans (p < 0.001). The mean parotid NTCP increased from 26% to 44% with the use of UDE plans (p = 0.003), and the mean mandible NTCP increased from 2% to 27% with the use of UDE plans (p = 0.001). There were no statistically significant differences between any of the NTCPs between the STD plans and HDP plans. The mean UTCP increased from 48% with STD plans to 66% with HDP plans (p = 0.016) and dropped to 37% with UDE plans (p = 0.138). CONCLUSION Hypoxia-targeted radiotherapy dose painting for head and neck cancer using FMISO PET is technically feasible, increases the TCP without increasing the NTCP, and increases the UTCP. This approach is superior to uniform dose escalation.
Collapse
Affiliation(s)
- Joe H Chang
- Radiation Oncology Centre , Austin Health, Victoria , Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Bhatnagar P, Subesinghe M, Patel C, Prestwich R, Scarsbrook AF. Functional Imaging for Radiation Treatment Planning, Response Assessment, and Adaptive Therapy in Head and Neck Cancer. Radiographics 2013; 33:1909-29. [DOI: 10.1148/rg.337125163] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
108
|
Henriques de Figueiredo B, Merlin T, de Clermont-Gallerande H, Hatt M, Vimont D, Fernandez P, Lamare F. Potential of [18F]-fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther Onkol 2013; 189:1015-9. [PMID: 24173497 DOI: 10.1007/s00066-013-0454-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/05/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Positron-emission tomography (PET) with [(18)F]-fluoromisonidazole (FMISO) permits consideration of radiotherapy dose escalation to hypoxic volumes in head and neck cancers (HNC). However, the definition of FMISO volumes remains problematic. The aims of this study are to confirm that delayed acquisition at 4 h is most appropriate for FMISO-PET imaging and to assess different methods of volume segmentation. PATIENTS AND METHODS A total of 15 HNC patients underwent several FMISO-PET/computed tomography (CT) acquisitions 2, 3 and 4 h after FMISO injection. Three automatic methods of PET image segmentation were tested: fixed threshold, adaptive threshold based on the ratio between tumour-derived and background activities (R(T/B)) and the fuzzy locally adaptive Bayesian (FLAB) method. The hypoxic fraction (HF), which is defined as the ratio between the FMISO and CT volumes, was also calculated. RESULTS The R(T/B) for images acquired at 2, 3 and 4 h differed significantly, with mean values of 2.5 (1.7-2.9), 3 (2-4.5) and 3.4 (2.3-6.1), respectively. The mean tumour volume, as defined manually using CT images, was 39.1 ml (1.2-116 ml). After 4 h, the mean FMISO volumes were 18.9 (0.1-81), 9.5 (0.9-33.1) and 12.5 ml (0.9-38.4 ml) with fixed threshold, adaptive threshold and the FLAB method, respectively; median HF values were 0.47 (0.1-1.93), 0.25 (0.11-0.75) and 0.35 (0.14-1.05), respectively. FMISO volumes were significantly different. CONCLUSION The best contrast is obtained at the 4-hour acquisition time. Large discrepancies were found between the three tested methods of volume segmentation.
Collapse
Affiliation(s)
- B Henriques de Figueiredo
- Department of Radiotherapy, Institut Bergonié, 229, cours de l'Argonne, 33076, Bordeaux Cedex, France,
| | | | | | | | | | | | | |
Collapse
|
109
|
Busk M, Jakobsen S, Horsman MR, Mortensen LS, Iversen AB, Overgaard J, Nordsmark M, Ji X, Lee DY, Raleigh JR. PET imaging of tumor hypoxia using 18F-labeled pimonidazole. Acta Oncol 2013; 52:1300-7. [PMID: 23962243 DOI: 10.3109/0284186x.2013.815797] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor hypoxia contributes to loco-regional failure, and for optimal treatment planning, knowledge about tumor hypoxia in individual patients is required. Nitroimidazole-based tracers, which are retained in hypoxic cells, allow PET-based assessment of tumor hypoxia, but current tracers are characterized by slow tracer retention and clearance, resulting in low inter-tissue contrast. Pimonidazole is an immune detectable hypoxia marker widely used for detection of hypoxia in tumor samples. Pimonidazole has excellent chemical properties for hypoxia imaging, but labeling for non- invasive assay has not been attempted. Here we labeled pimonidazole with (18)F ([(18)F]FPIMO). MATERIAL AND METHODS [(18)F]FPIMO was produced by fluorination of 1-[2-O-tosyl-3-(2-nitroimidazole-1-yl)-propyl]-piperidine, which resulted in two isomeric interchangeable forms (named "5" and "6") with a radiochemical purity of 91-100%. [(18)F]FPIMO was tested by incubation of two different tumor cell lines at high and low oxygen levels. [(18)F]FPIMO was also administered to tumor-bearing mice and tracer retention in tumors, non-hypoxic reference tissues and tissues involved in drug metabolism/clearance was evaluated by various techniques. RESULTS AND CONCLUSIONS Retention of [(18)F]FPIMO was strongly hypoxia-driven in vitro, but isomeric form "5" was particularly promising and reached impressive anoxic-to-oxic retention ratios of 36 and 102, in FaDuDD and SiHa cells, respectively, following three hours of tracer incubation. This was equal to or higher than ratios measured using the established hypoxia tracer [(18)F]FAZA. [(18)F]FPIMO also accumulated in tumors grown in mice, and reached tumor levels that were two to six-fold higher than in muscle three hours post-administration. Furthermore, the intra-tumoral distribution of [(18)F]FPIMO (autoradiography) and unlabeled pimonidazole (immunohistochemistry) was largely identical. Nonetheless, [(18)F]FPIMO proved inferior to [(18)F]FAZA, since absolute tumor signal and intra-tumoral contrast was low, thus compromising PET imaging. Low tumor signal was coupled to extensive tracer accumulation in liver and kidneys, and analysis of blood metabolites revealed that [(18)F]FPIMO was metabolized rapidly, with little parent compound remaining 15 minutes post-administration. Ongoing work focuses on the possibility of labeling pimonidazole in different positions with (18)F to improve tracer stability in vivo.
Collapse
Affiliation(s)
- Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital (AUH) , Aarhus , Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Hoeben BAW, Bussink J, Troost EGC, Oyen WJG, Kaanders JHAM. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer. Acta Oncol 2013; 52:1257-71. [PMID: 24003853 DOI: 10.3109/0284186x.2013.812799] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.
Collapse
Affiliation(s)
- Bianca A W Hoeben
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre , Nijmegen , The Netherlands
| | | | | | | | | |
Collapse
|
111
|
Teng FF, Meng X, Sun XD, Yu JM. New strategy for monitoring targeted therapy: molecular imaging. Int J Nanomedicine 2013; 8:3703-13. [PMID: 24124361 PMCID: PMC3794840 DOI: 10.2147/ijn.s51264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeted therapy is becoming an increasingly important component in the treatment of cancer. How to accurately monitor targeted therapy has been crucial in clinical practice. The traditional approach to monitor treatment through imaging has relied on assessing the change of tumor size by refined World Health Organization criteria, or more recently, by the Response Evaluation Criteria in Solid Tumors. However, these criteria, which are based on the change of tumor size, show some limitations for evaluating targeted therapy. Currently, genetic alterations are identified with prognostic as well as predictive potential concerning the use of molecularly targeted drugs. Conversely, considering the limitations of invasiveness and the issue of expression heterogeneity, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively, and has been a particularly attractive tool for monitoring treatment in clinical cancer practice. This review focuses on the applications of different kinds of molecular imaging including positron emission tomography-, magnetic resonance imaging-, ultrasonography-, and computed tomography-based imaging strategies on monitoring targeted therapy. In addition, the key challenges of molecular imaging are addressed to successfully translate these promising techniques in the future.
Collapse
Affiliation(s)
- Fei-Fei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, People's Republic of China
| | | | | | | |
Collapse
|
112
|
Zegers CML, van Elmpt W, Wierts R, Reymen B, Sharifi H, Öllers MC, Hoebers F, Troost EGC, Wanders R, van Baardwijk A, Brans B, Eriksson J, Windhorst B, Mottaghy FM, De Ruysscher D, Lambin P. Hypoxia imaging with [¹⁸F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 2013; 109:58-64. [PMID: 24044790 DOI: 10.1016/j.radonc.2013.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE [(18)F]HX4 is a promising hypoxia PET-tracer. Uptake, spatio-temporal stability and optimal acquisition parameters for [(18)F]HX4 PET imaging were evaluated in non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS [(18)F]HX4 PET/CT images of 15 NSCLC patients were acquired 2h and 4h after injection (p.i.). Maximum standardized-uptake-value (SUV(max)), tumor-to-blood-ratio (TBR(max)), hypoxic fraction (HF) and contrast-to-noise-ratio (CNR) were determined for all lesions. To evaluate spatio-temporal stability, DICE-similarity and Pearson correlation coefficients were calculated. Optimal acquisition-duration was assessed by comparing 30, 20, 10 and 5 min acquisitions. RESULTS Considerable uptake (TBR >1.4) was observed in 18/25 target lesions. TBR(max) increased significantly from 2 h (1.6 ± 0.3) to 4 h p.i. (2.0 ± 0.6). Uptake patterns at 2 h and 4 h p.i. showed a strong correlation (R=0.77 ± 0.10) with a DICE similarity coefficient of 0.69 ± 0.08 for the 30% highest uptake volume. Reducing acquisition-time resulted in significant changes in SUV(max) and CNR. TBR(max) and HF were only affected for scan-times of 5 min. CONCLUSIONS The majority of NSCLC lesions showed considerable [(18)F]HX4 uptake. The heterogeneous uptake pattern was stable between 2 h and 4 h p.i. [(18)F]HX4 PET imaging at 4 h p.i. is superior to 2 h p.i. to reach highest contrast. Acquisition time may be reduced to 10 min without significant effects on TBR(max) and HF.
Collapse
Affiliation(s)
- Catharina M L Zegers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Bittner MI, Wiedenmann N, Bucher S, Hentschel M, Mix M, Weber WA, Grosu AL. Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother Oncol 2013; 108:511-6. [DOI: 10.1016/j.radonc.2013.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 12/09/2022]
|
114
|
Chino J, Das S, Wong T. Positron Emission Tomography in Radiation Treatment Planning. Radiol Clin North Am 2013; 51:913-25. [DOI: 10.1016/j.rcl.2013.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
115
|
Bittner MI, Grosu AL. Hypoxia in Head and Neck Tumors: Characteristics and Development during Therapy. Front Oncol 2013; 3:223. [PMID: 24010122 PMCID: PMC3755323 DOI: 10.3389/fonc.2013.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/13/2013] [Indexed: 11/23/2022] Open
Abstract
Cancers of the head and neck are a malignancy causing a considerable health burden. In head and neck cancer patients, tumor hypoxia has been shown to be an important predictor of response to therapy and outcome. Several imaging modalities can be used to determine the amount and localization of tumor hypoxia. Especially PET has been used in a number of studies analyzing this phenomenon. However, only few studies have reported the characteristics and development during (chemoradio-) therapy. Yet, the characterization of tumor hypoxia in the course of treatment is of great clinical importance. Successful delineation of hypoxic subvolumes could make an inclusion into radiation treatment planning feasible, where dose painting is hypothesized to improve the tumor control probability. So far, hypoxic subvolumes have been shown to undergo changes during therapy; in most cases, a reduction in tumor hypoxia can be seen, but there are also differing observations. In addition, the hypoxic subvolumes have mostly been described as geographically rather stable. However, studies specifically addressing these issues are needed to provide more data regarding these initial findings and the hypotheses connected with them.
Collapse
|
116
|
Thureau S, Chaumet-Riffaud P, Modzelewski R, Fernandez P, Tessonnier L, Vervueren L, Cachin F, Berriolo-Riedinger A, Olivier P, Kolesnikov-Gauthier H, Blagosklonov O, Bridji B, Devillers A, Collombier L, Courbon F, Gremillet E, Houzard C, Caignon JM, Roux J, Aide N, Brenot-Rossi I, Doyeux K, Dubray B, Vera P. Interobserver agreement of qualitative analysis and tumor delineation of 18F-fluoromisonidazole and 3'-deoxy-3'-18F-fluorothymidine PET images in lung cancer. J Nucl Med 2013; 54:1543-50. [PMID: 23918733 DOI: 10.2967/jnumed.112.118083] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED As the preparation phase of a multicenter clinical trial using (18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG), (18)F-fluoromisonidazole ((18)F-FMISO), and 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) in non-small cell lung cancer (NSCLC) patients, we investigated whether 18 nuclear medicine centers would score tracer uptake intensity similarly and define hypoxic and proliferative volumes for 1 patient and we compared different segmentation methods. METHODS Ten (18)F-FDG, ten (18)F-FMISO, and ten (18)F-FLT PET/CT examinations were performed before and during curative-intent radiotherapy in 5 patients with NSCLC. The gold standards for uptake intensity and volume delineation were defined by experts. The between-center agreement (18 nuclear medicine departments connected with a dedicated network, SFMN-net [French Society of Nuclear Medicine]) in the scoring of uptake intensity (5-level scale, then divided into 2 levels: 0, normal; 1, abnormal) was quantified by κ-coefficients (κ). The volumes defined by different physicians were compared by overlap and κ. The uptake areas were delineated with 22 different methods of segmentation, based on fixed or adaptive thresholds of standardized uptake value (SUV). RESULTS For uptake intensity, the κ values between centers were, respectively, 0.59 for (18)F-FDG, 0.43 for (18)F-FMISO, and 0.44 for (18)F-FLT using the 5-level scale; the values were 0.81 for (18)F-FDG and 0.77 for both (18)F-FMISO and (18)F-FLT using the 2-level scale. The mean overlap and mean κ between observers were 0.13 and 0.19, respectively, for (18)F-FMISO and 0.2 and 0.3, respectively, for (18)F-FLT. The segmentation methods yielded significantly different volumes for (18)F-FMISO and (18)F-FLT (P < 0.001). In comparison with physicians, the best method found was 1.5 × maximum SUV (SUVmax) of the aorta for (18)F-FMISO and 1.3 × SUVmax of the muscle for (18)F-FLT. The methods using the SUV of 1.4 and the method using 1.5 × the SUVmax of the aorta could be used for (18)F-FMISO and (18)F-FLT. Moreover, for (18)F-FLT, 2 other methods (adaptive threshold based on 1.5 or 1.6 × muscle SUVmax) could be used. CONCLUSION The reproducibility of the visual analyses of (18)F-FMISO and (18)F-FLT PET/CT images was demonstrated using a 2-level scale across 18 centers, but the interobserver agreement was low for the (18)F-FMISO and (18)F-FLT volume measurements. Our data support the use of a fixed threshold (1.4) or an adaptive threshold using the aorta background to delineate the volume of increased (18)F-FMISO or (18)F-FLT uptake. With respect to the low tumor-on-background ratio of these tracers, we suggest the use of a fixed threshold (1.4).
Collapse
Affiliation(s)
- Sébastien Thureau
- Nuclear Medicine and Radiotherapy, Henri Becquerel Cancer Center and Rouen University Hospital, and QuantIF-LITIS (EA [Equipe d'Accueil] 4108), Faculty of Medicine, University of Rouen, Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Escott EJ. Role of positron emission tomography/computed tomography (PET/CT) in head and neck cancer. Radiol Clin North Am 2013; 51:881-93. [PMID: 24010911 DOI: 10.1016/j.rcl.2013.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Positron emission tomography/computed tomography (PET/CT) has an important role in the diagnosis and treatment of head and neck cancer. The technique can aid in the detection of an unknown primary tumor, assist in locoregional staging, evaluate for distant metastases or second primary tumors, and be a component of restaging and tumor surveillance. This article reviews the basic principles, pitfalls, and uses of PET/CT in head and neck cancer, as well as potential future applications.
Collapse
Affiliation(s)
- Edward J Escott
- Department of Radiology, Division of Neuroradiology, University of Kentucky Medical Center, 800 Rose Street, Room HX-319A, Lexington, KY 40536-0293, USA.
| |
Collapse
|
118
|
Thorwarth D, Leibfarth S, Mönnich D. Potential role of PET/MRI in radiotherapy treatment planning. Clin Transl Imaging 2013. [DOI: 10.1007/s40336-013-0006-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
119
|
CASTALDI P, LECCISOTTI L, BUSSU F, MICCICHÈ F, RUFINI V. Role of (18)F-FDG PET-CT in head and neck squamous cell carcinoma. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2013; 33:1-8. [PMID: 23620633 PMCID: PMC3631810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022]
Abstract
The role of PET-CT imaging in head and neck squamous cell carcinoma during pre-treatment staging, radiotherapy planning, treatment response assessment and post-therapy follow-up is reviewed with focus on current evidence, controversial issues and future clinical applications. In staging, the role of (18)F-FDG PET-CT is well recognized for detecting cervical nodal involvement as well as for exclusion of distant metastases and synchronous primary tumours. In the evaluation of treatment response, the high negative predictive value of (18)F-FDG PET-CT performed at least 8 weeks from the end of radio-chemotherapy allows prevention of unnecessary diagnostic invasive procedures and neck dissection in many patients, with a significant impact on clinical outcome. On the other hand, in this setting, the low positive predictive value due to possible post-radiation inflammation findings requires special care before making a clinical decision. Controversial data are currently available on the role of PET imaging during the course of radio-chemotherapy. The prognostic role of (18)F-FDG PET-CT imaging in head and neck squamous cell carcinoma is recently emerging, in addition to the utility of this technique in evaluation of the tumour volume for planning radiation therapy. Additionally, new PET radiopharmaceuticals could provide considerable information on specific tumour characteristics, thus overcoming the limitations of (18)F-FDG.
Collapse
Affiliation(s)
| | | | | | - F. MICCICHÈ
- Institute of Radiotherapy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - V. RUFINI
- Institute of Nuclear Medicine,Address for correspondence: Vittoria Rufini, Istituto di Medicina Nucleare, Università Cattolica del Sacro Cuore, l.go A. Gemelli 8, 00168 Roma, Italy. Tel. +39 06 30154978. Fax +39 06 3058185. E-mail:
| |
Collapse
|
120
|
Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, Kuge Y, Shirato H, Tamaki N. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med 2013; 54:201-7. [PMID: 23321456 DOI: 10.2967/jnumed.112.109330] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Tumor hypoxia is well known to be radiation resistant. (18)F-fluoromisonidazole ((18)F-FMISO) PET has been used for noninvasive evaluation of hypoxia. Quantitative evaluation of (18)F-FMISO uptake is thus expected to play an important role in the planning of dose escalation radiotherapy. However, the reproducibility of (18)F-FMISO uptake has remained unclarified. We therefore investigated the reproducibility of tumor hypoxia by using quantitative analysis of (18)F-FMISO uptake. METHODS Eleven patients with untreated head and neck cancer underwent 2 (18)F-FMISO PET/CT scans ((18)F-FMISO(1) and (18)F-FMISO(2)) with a 48-h interval prospectively. All images were acquired at 4 h after (18)F-FMISO injection for 10 min. The maximum standardized uptake (SUVmax), tumor-to-blood ratio (TBR), and tumor-to-muscle ratio (TMR) of (18)F-FMISO uptake were statistically compared between the 2 (18)F-FMISO scans by use of intraclass correlation coefficients (ICCs). The hypoxic volume was calculated as the area with a TBR of greater than or equal to 1.5 or the area with a TMR of greater than or equal to 1.25 to assess differences in hypoxic volume between the 2 (18)F-FMISO scans. The distances from the maximum uptake locations of the (18)F-FMISO(1) images to those of the (18)F-FMISO(2) images were measured to evaluate the locations of (18)F-FMISO uptake. RESULTS The SUVmax (mean ± SD) for (18)F-FMISO(1) and (18)F-FMISO(2) was 3.16 ± 1.29 and 3.02 ± 1.12, respectively, with the difference between the 2 scans being 7.0% ± 4.6%. The TBRs for (18)F-FMISO(1) and (18)F-FMISO(2) were 2.98 ± 0.83 and 2.97 ± 0.64, respectively, with a difference of 9.9% ± 3.3%. The TMRs for (18)F-FMISO(1) and (18)F-FMISO(2) were 2.25 ± 0.71 and 2.19 ± 0.67, respectively, with a difference of 7.1% ± 5.3%. The ICCs for SUVmax, TBR, and TMR were 0.959, 0.913, and 0.965, respectively. The difference in hypoxic volume based on TBR was 1.8 ± 1.8 mL, and the difference in hypoxic volume based on TMR was 0.9 ± 1.3 mL, with ICCs of 0.986 and 0.996, respectively. The maximum uptake locations of the (18)F-FMISO(1) images were different from those of the (18)F-FMISO(2) images and were within the full width at half maximum of the PET/CT scanner, except in 1 case. CONCLUSION The values for (18)F-FMISO PET uptake and hypoxic volume in head and neck tumors between the 2 (18)F-FMISO scans were highly reproducible. Such high reproducibility of tumor hypoxia is promising for accurate radiation planning.
Collapse
Affiliation(s)
- Shozo Okamoto
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 2012; 9:674-87. [DOI: 10.1038/nrclinonc.2012.171] [Citation(s) in RCA: 422] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
122
|
Blanchard P, Tao Y, Veresezan O, Lusinchi A, Le Ridant AM, Janot F, Daly-Schveitzer N, Bourhis J. Definitive radiotherapy for squamous cell carcinoma of the pyriform sinus. Radiother Oncol 2012; 105:232-7. [DOI: 10.1016/j.radonc.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 11/28/2022]
|
123
|
|
124
|
Lin A, Hahn SM. Hypoxia Imaging Markers and Applications for Radiation Treatment Planning. Semin Nucl Med 2012; 42:343-52. [DOI: 10.1053/j.semnuclmed.2012.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
125
|
Radiotherapy for head and neck tumours in 2012 and beyond: conformal, tailored, and adaptive? Lancet Oncol 2012; 13:e292-300. [PMID: 22748268 DOI: 10.1016/s1470-2045(12)70237-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intensity-modulated radiation therapy (IMRT) is a conformal irradiation technique that enables steep dose gradients. In head and neck tumours this approach spares parotid-gland function without compromise to treatment efficacy. Anatomical and molecular imaging modalities may be used to tailor treatment by enabling proper selection and delineation of target volumes and organs at risk, which in turn lead to dose prescriptions that take into account the underlying tumour biology (eg, human papillomavirus status). Therefore, adaptations can be made throughout the course of radiotherapy, as required. Planned dose increases to parts of the target volumes may also be used to match the radiosensitivity of tumours (so-called dose-painting), assessed by molecular imaging. For swift implementation of tailored and adaptive IMRT, tools and procedures, such as accurate image acquisition and reconstruction, automatic segmentation of target volumes and organs at risk, non-rigid image and dose registration, and dose summation methods, need to be developed and properly validated.
Collapse
|
126
|
Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study. Radiother Oncol 2012; 105:41-8. [PMID: 22682748 DOI: 10.1016/j.radonc.2012.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/08/2012] [Accepted: 05/18/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. MATERIALS AND METHODS Ten canine sinonasal cancer patients underwent PET/CT scans of [(18)F]FDG (FDG(pre)), [(18)F]FLT (FLT(pre)), and [(61)Cu]Cu-ATSM (Cu-ATSM(pre)). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at 3 months (FDG(post)). Regression of standardized uptake values in baseline FDG(pre), FLT(pre) and Cu-ATSM(pre) tumour voxels to those in FDG(post) images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R(2). Hypothesis testing of coefficients over the patient population was performed. RESULTS Multivariate linear model fits of FDG(pre) to FDG(post) were significantly positive over the population (FDG(post) ~ 0.17 · FDG(pre), p = 0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p = 0.01). Generalized-linear model fits related FDG(pre) to FDG(post) by a linear power law (FDG(post) ~ FDG(pre)(0.93),p<0.001). Univariate mixture model fits of FDG(pre) improved R(2) from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. CONCLUSIONS Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent.
Collapse
|
127
|
Timmers HJLM, Taieb D, Pacak K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012; 44:367-72. [PMID: 22399235 PMCID: PMC4714588 DOI: 10.1055/s-0031-1299712] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
After establishing a biochemical diagnosis, pheochromocytomas and extra-adrenal paragangliomas (PPGLs) can be localized using different anatomical and functional imaging modalities. These include computed tomography, magnetic resonance imaging, single-photon emission computed tomography (SPECT) using 123I-metaiodobenzylguanidine or 111In-DTPA-pentetreotide, and positron emission tomography (PET) using 6-[18F]-fluorodopamine (18F-FDA), 6-[18F]-fluoro-l-3,4-dihydroxyphenylalanine (18F-DOPA), and 2-[18F]-fluoro-2-deoxy-d-glucose. We review the currently available data on the performance of anatomical imaging, SPECT, and PET for the detection of (metastatic) PPGL as well as parasympathetic head and neck paragangliomas. We show that there appears to be no 'gold-standard' imaging technique for all patients with (suspected) PPGL. A tailor-made approach is warranted, guided by clinical, biochemical, and genetic characteristics. In the current era of a growing number of PET tracers, PPGL imaging has moved beyond tumor localization towards functional characterization of tumors.
Collapse
Affiliation(s)
- H. J. L. M. Timmers
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - D. Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - K. Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
128
|
Rossier C, Dunet V, Matzinger O, Prior J. TEP/TDM en radiothérapie : indications et perspectives. Cancer Radiother 2012; 16:152-63. [DOI: 10.1016/j.canrad.2012.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 12/12/2022]
|
129
|
Can “early” and “late” 18F-FDG PET–CT be used as prognostic factors for the clinical outcome of patients with locally advanced head and neck cancer treated with radio-chemotherapy? Radiother Oncol 2012; 103:63-8. [DOI: 10.1016/j.radonc.2012.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/15/2012] [Accepted: 03/04/2012] [Indexed: 12/15/2022]
|
130
|
Hoff CM, Grau C, Overgaard J. Effect of smoking on oxygen delivery and outcome in patients treated with radiotherapy for head and neck squamous cell carcinoma--a prospective study. Radiother Oncol 2012; 103:38-44. [PMID: 22385797 DOI: 10.1016/j.radonc.2012.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Head and neck cancer patients with high hemoglobin respond better to irradiation compared to patients with low hemoglobin possibly due to hypoxia induced radioresistance. The hemoglobin level is, however, a crude indicator of the amount of oxygen available to the tissue and may be influenced by a number of factors, smoking being of potential importance. The aim of the present study was to examine the effect of smoking on available oxygen to tumors and the effect on outcome in head and neck cancer patients treated with radiotherapy in a prospective study. MATERIALS AND METHODS A total of 232 consecutive patients with squamous cell carcinoma of the larynx, pharynx and oral cavity completed questionnaires on smoking habits prior to treatment. Venous blood samples were collected before and/or during treatment to determine the hemoglobin and carboxyhemoglobin level. Patients were treated with primary curative radiotherapy 62-68 Gy, 2 Gy/fx, 5 fx/week. RESULTS All but 12 patients had a history of smoking, 35 were long term quitters, 23 recent quitters, 54 moderate smokers and 108 heavy smokers (>1 pack/day). There was no relationship between total hemoglobin and carboxyhemoglobin, but effective hemoglobin and carboxyhemoglobin were linearly correlated. The amount of carboxyhemoglobin increased with increasing smoking status. Actuarial 5-year univariate analysis showed that heavy smokers had a significantly reduced probability of loco-regional control (44% vs. 65%, p = 0.001), disease-specific (56% vs. 77%, p = 0.003) and overall survival (39% vs. 66%, p = 0.0004) compared to non-smoking patients. Multivariate analyses showed that patients characterized as non-smokers, with low T and N classifications and high hemoglobin level had the best outcome measurements. A rise in carboxyhemoglobin significantly decreased the probability of loco-regional control and each additional pack year increased the risk of death. Smokers and former smokers develop secondary cancers. CONCLUSION The study showed a significant negative impact of smoking during radiotherapy for head and neck cancer and the risk of death was increased with each additional pack year of smoking. The effect on loco-regional control could be explained by a rise in carboxyhemoglobin level in smokers, e.g. a reduced oxygen supply to tumors. The data strongly advocate that smoking should be avoided in order to improve the therapeutic efficacy of radiotherapy and development of other smoking-related diseases and/or secondary cancers.
Collapse
Affiliation(s)
- Camilla Molich Hoff
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | |
Collapse
|
131
|
|
132
|
|