101
|
Held T, Harrabi SB, Lang K, Akbaba S, Windisch P, Bernhardt D, Rieken S, Herfarth K, Debus J, Adeberg S. Dose-Limiting Organs at Risk in Carbon Ion Re-Irradiation of Head and Neck Malignancies: An Individual Risk-Benefit Tradeoff. Cancers (Basel) 2019; 11:cancers11122016. [PMID: 31847167 PMCID: PMC6966577 DOI: 10.3390/cancers11122016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Carbon ion re-irradiation (CIR) was evaluated to investigate treatment planning and the consequences of individual risk-benefit evaluations concerning dose-limiting organs at risk (OAR). Methods: A total of 115 consecutive patients with recurrent head and neck cancer (HNC) were analyzed after initial radiotherapy and CIR at the same anatomical site. Toxicities were evaluated in line with the Common Terminology Criteria for Adverse Events 4.03. Results: The median maximum cumulative equivalent doses applied in fractions of 2 Gy (EQD2) to the brainstem, optic chiasm, ipsilateral optic nerve, and spinal cord were 56.8 Gy (range 0.94-103.9), 51.4 Gy (range 0-120.3 Gy), 63.6 Gy (range 0-146.1 Gy), and 28.8 Gy (range 0.2-87.7 Gy). The median follow up after CIR was 24.0 months (range 2.5-72.0 months). The cumulative rates of acute and late severe (≥grade III) side effects after CIR were 1.8% and 14.3%. Conclusion: In recurrent HNC, an individual risk-benefit tradeoff is frequently inevitable due to unfavorable location of tumors in close proximity to vital OAR. There are uncertainties about the dose tolerance of OAR after CIR, which warrant increased awareness about the potential treatment toxicity and further studies on heavy ion re-irradiation.
Collapse
Affiliation(s)
- Thomas Held
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
| | - Semi B. Harrabi
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
| | - Kristin Lang
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
| | - Sati Akbaba
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
| | - Paul Windisch
- University Hospital of Zurich, Department of Radiation Oncology, 8091 Zurich, Switzerland
| | - Denise Bernhardt
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Rieken
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Adeberg
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; (T.H.); (S.B.H.); (S.A.); (D.B.); (S.R.); (K.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
102
|
Accelerated hyperfractionated radiochemotherapy with temozolomide is equivalent to normofractionated radiochemotherapy in a retrospective analysis of patients with glioblastoma. Radiat Oncol 2019; 14:227. [PMID: 31831026 PMCID: PMC6909505 DOI: 10.1186/s13014-019-1427-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background Current standard of treatment for newly diagnosed patients with glioblastoma (GBM) is surgical resection with adjuvant normofractionated radiotherapy (NFRT) combined with temozolomide (TMZ) chemotherapy. Hyperfractionated accelerated radiotherapy (HFRT) which was known as an option from randomized controlled trials before the temozolomide era has not been compared to the standard therapy in a randomized setting combined with TMZ. Methods Data of 152 patients with newly diagnosed GBM treated from 10/2004 until 7/2018 at a single tertiary care institution were extracted from a clinical database and retrospectively analyzed. Thirty-eight patients treated with NFRT of 60 Gy in 30 fractions (34 with simultaneous and 2 with sequential TMZ) were compared to 114 patients treated with HFRT of 54.0 Gy in 30 fraction of 1.8 Gy twice daily (109 with simultaneous and 3 with sequential TMZ). The association between treatment protocol and other variables with overall survival (OS) was assessed using univariable and multivariable Cox regression analysis; the latter was performed using variables selected by the LASSO method. Results Median overall survival (OS) was 20.3 month for the entire cohort. For patients treated with NFRT median OS was 24.4 months compared to 18.5 months in patients treated with HFRT (p = 0.131). In univariable regression analysis the use of dexamethasone during radiotherapy had a significant negative impact on OS in both patient groups, HR 2.21 (95% CI 1.47–3.31, p = 0.0001). In multivariable analysis adjusted for O6-methylguanine-DNA methyl-transferase (MGMT) promotor methylation status, salvage treatment and secondary GBM, the use of dexamethasone was still a negative prognostic factor, HR 1.95 (95% CI 1.21–3.13, p = 0.006). Positive MGMT-methylation status and salvage treatment were highly significant positive prognostic factors. There was no strong association between treatment protocol and OS (p = 0.504). Conclusions Our retrospective analysis supports the hypothesis of equivalence between HFRT and the standard protocol of treatment for GBM. For those patients who are willing to obtain the benefit of shortening the course of radiochemotherapy, HFRT may be an alternative with comparable efficacy although it was not yet tested in a large prospective randomized study against the current standard. The positive influence of salvage therapy and negative impact of concomitant use of corticosteroids should be addressed in future prospective trials. To confirm our results, we plan to perform a pooled analysis with other tertiary clinics in order to achieve better statistical reliability.
Collapse
|
103
|
Gutierrez A, Rompokos V, Li K, Gillies C, D’Souza D, Solda F, Fersht N, Chang YC, Royle G, Amos RA, Underwood T. The impact of proton LET/RBE modeling and robustness analysis on base-of-skull and pediatric craniopharyngioma proton plans relative to VMAT. Acta Oncol 2019; 58:1765-1774. [PMID: 31429359 PMCID: PMC6882303 DOI: 10.1080/0284186x.2019.1653496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/04/2019] [Indexed: 11/04/2022]
Abstract
Purpose: Pediatric craniopharyngioma, adult base-of-skull sarcoma and chordoma cases are all regarded as priority candidates for proton therapy. In this study, a dosimetric comparison between volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy (IMPT) was first performed. We then investigated the impact of physical and biological uncertainties. We assessed whether IMPT plans remained dosimetrically superior when such uncertainty estimates were considered, especially with regards to sparing organs at risk (OARs).Methodology: We studied 10 cases: four chondrosarcoma, two chordoma and four pediatric craniopharyngioma. VMAT and IMPT plans were created according to modality-specific protocols. For IMPT, we considered (i) variable RBE modeling using the McNamara model for different values of (α/β)x, and (ii) robustness analysis with ±3 mm set-up and 3.5% range uncertainties.Results: When comparing the VMAT and IMPT plans, the dosimetric advantages of IMPT were clear: IMPT led to reduced integral dose and, typically, improved CTV coverage given our OAR constraints. When physical robustness analysis was performed for IMPT, some uncertainty scenarios worsened the CTV coverage but not usually beyond that achieved by VMAT. Certain scenarios caused OAR constraints to be exceeded, particularly for the brainstem and optical chiasm. However, variable RBE modeling predicted even more substantial hotspots, especially for low values of (α/β)x. Variable RBE modeling often prompted dose constraints to be exceeded for critical structures.Conclusion: For base-of-skull and pediatric craniopharyngioma cases, both physical and biological robustness analyses should be considered for IMPT: these analyses can substantially affect the sparing of OARs and comparisons against VMAT. All proton RBE modeling is subject to high levels of uncertainty, but the clinical community should remain cognizant possible RBE effects. Careful clinical and imaging follow-up, plus further research on end-of-range RBE mitigation strategies such as LET optimization, should be prioritized for these cohorts of proton patients.
Collapse
Affiliation(s)
- A. Gutierrez
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - V. Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - K. Li
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - C. Gillies
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - D. D’Souza
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - F. Solda
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - N. Fersht
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Y.-C. Chang
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - G. Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - R. A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - T. Underwood
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
104
|
Eulitz J, Troost E, Raschke F, Schulz E, Lutz B, Dutz A, Löck S, Wohlfahrt P, Enghardt W, Karpowitz C, Krause M, Lühr A. Predicting late magnetic resonance image changes in glioma patients after proton therapy. Acta Oncol 2019; 58:1536-1539. [PMID: 31303083 DOI: 10.1080/0284186x.2019.1631477] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. Eulitz
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - E.G.C. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - F. Raschke
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - E. Schulz
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - B. Lutz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, Dresden, Germany
| | - A. Dutz
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - S. Löck
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - P. Wohlfahrt
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W. Enghardt
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C. Karpowitz
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - M. Krause
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - A. Lühr
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Dresden, Germany
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| |
Collapse
|
105
|
Patel KS, Ng E, Kaur T, Miao T, Kaprealian T, Lee P, Pouratian N, Selch MT, De Salles AAF, Gopen Q, Tenn S, Yang I. Increased cochlear radiation dose predicts delayed hearing loss following both stereotactic radiosurgery and fractionated stereotactic radiotherapy for vestibular schwannoma. J Neurooncol 2019; 145:329-337. [PMID: 31552587 DOI: 10.1007/s11060-019-03299-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (fSRT) are noninvasive therapies for vestibular schwannomas providing excellent tumor control. However, delayed hearing loss after radiation therapy remains an issue. One potential target to for improving hearing rates is limiting radiation exposure to the cochlea. METHODS We retrospectively reviewed 100 patients undergoing either SRS with 12 Gy (n = 43) or fSRT with 50 Gy over 28 fractions (n = 57) for vestibular schwannoma. Univariate and multivariate analysis were carried out to identify predictors of hearing loss as measured by the Gardner Robertson scale after radiation therapy. RESULTS Deterioration of hearing occurred in 30% of patients with SRS and 26% with fSRT. The overall long term (> 2 year) progression rates were 20% for SRS and 16% for fSRT. Patients with a decrease in their Gardner Robertson hearing score and those that loss serviceable hearing had significantly higher average minimal doses to the cochlea in both SRS and fSRT cohorts. ROC analysis showed that a cut off of 5 Gy and 35 Gy, for SRS and fSRT respectively, predicted hearing loss with high sensitivity/specificity. CONCLUSION Our data suggests the minimal dose of radiation that the cochlear volume is exposed to is a predictor of delayed hearing loss after either SRS or fSRT. A threshold of 5 Gy/35 Gy may lead to improved hearing preservation after radiotherapy. Further prospective multi center studies can further elucidate this mechanism.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Edwin Ng
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Taranjit Kaur
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Tyler Miao
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Tania Kaprealian
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Percy Lee
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael T Selch
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Antonio A F De Salles
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Quinton Gopen
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephen Tenn
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA.
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA.
- Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, UCLA Jonsson Comprehensive Cancer Center, 300 Stein Plaza, Ste. 562, 5th Floor Wasserman Bldg., Los Angeles, CA, 900-95-6901, USA.
| |
Collapse
|
106
|
Palma G, Monti S, Conson M, Pacelli R, Cella L. Normal tissue complication probability (NTCP) models for modern radiation therapy. Semin Oncol 2019; 46:210-218. [PMID: 31506196 DOI: 10.1053/j.seminoncol.2019.07.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Mathematical models of normal tissue complication probability (NTCP) able to robustly predict radiation-induced morbidities (RIM) play an essential role in the identification of a personalized optimal plan, and represent the key to maximizing the benefits of technological advances in radiation therapy (RT). Most modern RT techniques pose, however, new challenges in estimating the risk of RIM. The aim of this report is to schematically review NTCP models in the framework of advanced radiation therapy techniques. Issues relevant to hypofractionated stereotactic body RT and ion beam therapy are critically reviewed. Reirradiation scenarios for new or recurrent malignances and NTCP are also illustrated. A new phenomenological approach to predict RIM is suggested.
Collapse
Affiliation(s)
- Giuseppe Palma
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Serena Monti
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Laura Cella
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy.
| |
Collapse
|
107
|
Nystrom H, Jensen MF, Nystrom PW. Treatment planning for proton therapy: what is needed in the next 10 years? Br J Radiol 2019; 93:20190304. [PMID: 31356107 DOI: 10.1259/bjr.20190304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Treatment planning is the process where the prescription of the radiation oncologist is translated into a deliverable treatment. With the complexity of contemporary radiotherapy, treatment planning cannot be performed without a computerized treatment planning system. Proton therapy (PT) enables highly conformal treatment plans with a minimum of dose to tissues outside the target volume, but to obtain the most optimal plan for the treatment, there are a multitude of parameters that need to be addressed. In this review areas of ongoing improvements and research in the field of PT treatment planning are identified and discussed. The main focus is on issues of immediate clinical and practical relevance to the PT community highlighting the needs for the near future but also in a longer perspective. We anticipate that the manual tasks performed by treatment planners in the future will involve a high degree of computational thinking, as many issues can be solved much better by e.g. scripting. More accurate and faster dose calculation algorithms are needed, automation for contouring and planning is required and practical tools to handle the variable biological efficiency in PT is urgently demanded just to mention a few of the expected improvements over the coming 10 years.
Collapse
Affiliation(s)
- Hakan Nystrom
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Skandionkliniken, Uppsala, Sweden
| | | | - Petra Witt Nystrom
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Skandionkliniken, Uppsala, Sweden
| |
Collapse
|
108
|
Beddok A, Vela A, Calugaru V, Tessonnier T, Kubes J, Dutheil P, Gérard A, Vidal M, Goudjil F, Florescu C, Kammerer E, Bénézery K, Hérault J, Bourhis J, Thariat J. [Proton therapy for head and neck squamous cell carcinomas: From physics to clinic]. Cancer Radiother 2019; 23:439-448. [PMID: 31358445 DOI: 10.1016/j.canrad.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022]
Abstract
Intensity-modulated radiation therapy (IMRT) is presently the recommended technique for the treatment of locally advanced head and neck carcinomas. Proton therapy would allow to reduce the volume of irradiated normal tissue and, thus, to decrease the risk of late dysphagia, xerostomia, dysgeusia and hypothyroidism. An exhaustive research was performed with the search engine PubMed by focusing on the papers about the physical difficulties that slow down use of proton therapy for head and neck carcinomas. Range uncertainties in proton therapy (±3 %) paradoxically limit the use of the steep dose gradient in distality. Calibration uncertainties can be important in the treatment of head and neck cancer in the presence of materials of uncertain stoichiometric composition (such as with metal implants, dental filling, etc.) and complex heterogeneities. Dental management for example may be different with IMRT or proton therapy. Some uncertainties can be somewhat minimized at the time of optimization. Inter- and intrafractional variations and uncertainties in Hounsfield units/stopping power can be integrated in a robust optimization process. Additional changes in patient's anatomy (tumour shrinkage, changes in skin folds in the beam patch, large weight loss or gain) require rescanning. Dosimetric and small clinical studies comparing photon and proton therapy have well shown the interest of proton therapy for head and neck cancers. Intensity-modulated proton therapy is a promising treatment as it can reduce the substantial toxicity burden of patients with head and neck squamous cell carcinoma compared to IMRT. Robust optimization will allow to perform an optimal treatment and to use proton therapy in current clinical practice.
Collapse
Affiliation(s)
- A Beddok
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - A Vela
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - V Calugaru
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - T Tessonnier
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - J Kubes
- Proton Therapy Centre Czech, Prague, République tchèque
| | - P Dutheil
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - A Gérard
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - M Vidal
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - F Goudjil
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - C Florescu
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - E Kammerer
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - K Bénézery
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - J Hérault
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - J Bourhis
- Département d'oncologie-radiothérapie, centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - J Thariat
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France; Laboratoire de physique corpusculaire IN2P3/Ensicaen - UMR6534, Unicaen - Normandie Université, 14000 Caen, France.
| | -
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France; Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Proton Therapy Centre Czech, Prague, République tchèque; Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France; Département d'oncologie-radiothérapie, centre hospitalier universitaire vaudois, Lausanne, Suisse; Laboratoire de physique corpusculaire IN2P3/Ensicaen - UMR6534, Unicaen - Normandie Université, 14000 Caen, France
| |
Collapse
|
109
|
Dale JE, Molinelli S, Vitolo V, Vischioni B, Bonora M, Magro G, Pettersen HES, Mairani A, Hasegawa A, Dahl O, Valvo F, Fossati P. Optic nerve constraints for carbon ion RT at CNAO - Reporting and relating outcome to European and Japanese RBE. Radiother Oncol 2019; 140:175-181. [PMID: 31310888 DOI: 10.1016/j.radonc.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Until now, carbon ion RT (CIRT) dose constraints for the optic nerve (ON) have only been validated and reported in the NIRS RBE-weighted dose (DNIRS). The aim of this work is to improve CNAO's RBE-weighted dose (DLEM) constraints by analyzing institutional toxicity data and by relating it to DNIRS. MATERIAL AND METHODS A total of 65 ONs from 38 patients treated with CIRT to the head and neck region in the period 2013-14 were analyzed. The absorbed dose (DAbs) of the treatment plans was reproduced and subsequently both DLEM and DNIRS were applied, thus relating CNAO clinical toxicity to DNIRS. RESULTS Median FU was 47 (26-67) months. Visual acuity was preserved for the 56 ONs in which the old constraints were respected. Three ONs developed visual decline at DLEM|1% ≥71 Gy(RBE)/DLEM|20% ≥68 Gy(RBE), corresponding to DNIRS|1% ≥68 Gy(RBE)/DNIRS|20% ≥62 Gy(RBE). Dose recalculation revealed that NIRS constraints of DNIRS|1% ≤40 Gy(RBE)/DNIRS|20% ≤28 Gy(RBE) corresponded to DLEM|1% ≤50 Gy(RBE)/DLEM|20% ≤40 Gy(RBE). Reoptimization of treatment plans with these new DLEM constraints showed that the dose distribution still complied with NIRS constraints when evaluated in DNIRS. However, due to uncertainties in the method, and to comply with the EQD2-based constraints used at GSI/HIT, a more moderate constraint relaxation to DLEM|1% ≤45 Gy(RBE)/DLEM|20% ≤37 Gy(RBE) has been implemented in CNAO clinical routine since October 2018. CONCLUSION New DLEM constraints for the ON were derived by analyzing CNAO toxicity data and by linking our results to the experience of NIRS and GSI/HIT. This work demonstrates the value of recalculating and reporting results in both DLEM and DNIRS.
Collapse
Affiliation(s)
- Jon Espen Dale
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Norway.
| | | | - Viviana Vitolo
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Maria Bonora
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Andrea Mairani
- National Center of Oncological Hadrontherapy, Pavia, Italy; Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Azusa Hasegawa
- National Center of Oncological Hadrontherapy, Pavia, Italy; Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Norway
| | | | - Piero Fossati
- National Center of Oncological Hadrontherapy, Pavia, Italy; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
110
|
Weber DC, Lim PS, Tran S, Walser M, Bolsi A, Kliebsch U, Beer J, Bachtiary B, Lomax T, Pica A. Proton therapy for brain tumours in the area of evidence-based medicine. Br J Radiol 2019; 93:20190237. [PMID: 31067074 DOI: 10.1259/bjr.20190237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ADVANCES IN KNOWLEDGE This review details the indication of brain tumors for proton therapy and give a list of the open prospective trials for these challenging tumors.
Collapse
Affiliation(s)
- Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,University of Bern, Bern, Switzerland.,University of Zürich, Zürich, Switzerland
| | - Pei S Lim
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Sebastien Tran
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Ulrike Kliebsch
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Jürgen Beer
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Barbara Bachtiary
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Tony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH, Zürich, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
111
|
Correia D, Terribilini D, Zepter S, Pica A, Bizzocchi N, Volken W, Stieb S, Ahlhelm F, Herrmann E, Fix MK, Manser P, Aebersold DM, Weber DC. Whole-ventricular irradiation for intracranial germ cell tumors: Dosimetric comparison of pencil beam scanned protons, intensity-modulated radiotherapy and volumetric-modulated arc therapy. Clin Transl Radiat Oncol 2019; 15:53-61. [PMID: 30734001 PMCID: PMC6357692 DOI: 10.1016/j.ctro.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 10/29/2022] Open
Abstract
Background Whole-ventricular radiotherapy (WV-RT) followed by a boost to the tumor bed (WV-RT/TB) is recommended for intracranial germ cell tumors (IGCT). As the critical brain areas are mainly in the target volume vicinity, it is unclear if protons indeed substantially spare neurofunctional organs at risk (NOAR). Therefore, a dosimetric comparison study of WV-RT/TB was conducted to assess whether proton or photon radiotherapy achieves better NOAR sparing. Methods Eleven children with GCT received 24 Gy(RBE) WV-RT and a boost up to 40 Gy(RBE) in 25 fractions of 1.6 Gy(RBE) with pencil beam scanning proton therapy (PBS-PT). Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans were generated for these patients. NOAR were delineated and treatment plans were compared for target volume coverage (TVC), homogeneity index (HI), inhomogeneity coefficient (IC) and (N)OAR sparing. Results TVC was comparable for all three modalities. Compared to IMRT and VMAT, PBS-PT showed statistically significant optimized IC, as well as dose reduction, among others, in mean and integral dose to the: normal brain (-35.2%, -32.7%; -35.2%, -33.0%, respectively), cerebellum (-53.7%, -33.1%; -53.6%, -32.7%) and right temporal lobe (-14.5%, -31.9%; -14.7%, -29.9%). The Willis' circle was better protected with PBS-PT than IMRT (-7.1%; -7.8%). The left hippocampus sparing was higher with IMRT. Compared to VMAT, the dose to the hippocampi, amygdalae and temporal lobes was significantly decreased in the IMRT plans. Conclusions Dosimetric comparison of WV-RT/TB in IGCT suggests PBS-PT's advantage over photons in conformality and NOAR sparing, whereas IMRT's superiority over VMAT, thus potentially minimizing long-term sequelae.
Collapse
Affiliation(s)
- Dora Correia
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Aargau, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Dario Terribilini
- Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Stefan Zepter
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Aargau, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Aargau, Switzerland
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Aargau, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Sonja Stieb
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Frank Ahlhelm
- Department of Radiology, Cantonal Hospital Baden, Baden, Aargau, Switzerland
| | - Evelyn Herrmann
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Aargau, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
112
|
Eekers DBP, Roelofs E, Cubillos-Mesías M, Niël C, Smeenk RJ, Hoeben A, Minken AWH, Granzier M, Janssens GO, Kaanders JHAM, Lambin P, Troost EGC. Intensity-modulated proton therapy decreases dose to organs at risk in low-grade glioma patients: results of a multicentric in silico ROCOCO trial. Acta Oncol 2019; 58:57-65. [PMID: 30474448 DOI: 10.1080/0284186x.2018.1529424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Patients with low-grade glioma (LGG) have a prolonged survival expectancy due to better discriminative tumor classification and multimodal treatment. Consequently, long-term treatment toxicity gains importance. Contemporary radiotherapy techniques such as intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), tomotherapy (TOMO) and intensity-modulated proton therapy (IMPT) enable high-dose irradiation of the target but they differ regarding delivered dose to organs at risk (OARs). The aim of this comparative in silico study was to determine these dosimetric differences in delivered doses. MATERIAL AND METHODS Imaging datasets of 25 LGG patients having undergone postoperative radiotherapy were included. For each of these patients, in silico treatment plans to a total dose of 50.4 Gy to the target volume were generated for the four treatment modalities investigated (i.e., IMRT, VMAT, TOMO, IMPT). Resulting treatment plans were analyzed regarding dose to target and surrounding OARs comparing IMRT, TOMO and IMPT to VMAT. RESULTS In total, 100 treatment plans (four per patient) were analyzed. Compared to VMAT, the IMPT mean dose (Dmean) for nine out of 10 (90%) OARs was statistically significantly (p < .02) reduced, for TOMO this was true in 3/10 (30%) patients and for 1/10 (10%) patients for IMRT. IMPT was the prime modality reducing dose to the OARs followed by TOMO. DISCUSSION The low dose volume to the majority of OARs was significantly reduced when using IMPT compared to VMAT. Whether this will lead to a significant reduction in neurocognitive decline and improved quality of life is to be determined in carefully designed future clinical trials.
Collapse
Affiliation(s)
- Daniëlle B. P. Eekers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Proton Therapy Centre South-East Netherlands (ZON-PTC), Maastricht, The Netherlands
| | - Erik Roelofs
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Radiation Oncology (The D-Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Macarena Cubillos-Mesías
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Cal Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Dresden, Germany
| | - Charles Niël
- Department of Radiation Oncology, Radiotherapiegroep, Deventer, The Netherlands
| | - Robert Jan Smeenk
- Department of Radiation Oncology, RadboudUMC, Nijmegen, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andre W. H. Minken
- Department of Radiation Oncology, Radiotherapiegroep, Deventer, The Netherlands
| | - Marlies Granzier
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Geert O. Janssens
- Department of Radiation Oncology, RadboudUMC, Nijmegen, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Philippe Lambin
- Department of Radiation Oncology (The D-Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Esther G. C. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Cal Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- mNational Center for Tumor Diseases (NCT) Partner Site Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz Association/Helmholtz-Zentrum Dresden, Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
113
|
Grau C, Baumann M, Weber DC. Optimizing clinical research and generating prospective high-quality data in particle therapy in Europe: Introducing the European Particle Therapy Network (EPTN). Radiother Oncol 2018; 128:1-3. [PMID: 30049367 DOI: 10.1016/j.radonc.2018.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Cai Grau
- The Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | |
Collapse
|
114
|
Pötter R, Balosso J, Baumann M, Bert C, Davies J, Enghardt W, Fossati P, Harris S, Jones B, Krämer M, Mayer R, Mock U, Pullia M, Schreiner T, Dosanjh M, Debus J, Orecchia R, Georg D. Union of light ion therapy centers in Europe (ULICE EC FP7) – Objectives and achievements of joint research activities. Radiother Oncol 2018; 128:83-100. [DOI: 10.1016/j.radonc.2018.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/21/2018] [Indexed: 12/25/2022]
|