101
|
Hari SB, Merritt EA, Maly DJ. Sequence determinants of a specific inactive protein kinase conformation. ACTA ACUST UNITED AC 2014; 20:806-15. [PMID: 23790491 DOI: 10.1016/j.chembiol.2013.05.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
Only a small percentage of protein kinases have been shown to adopt a distinct inactive ATP-binding site conformation, called the Asp-Phe-Gly-out (DFG-out) conformation. Given the high degree of homology within this enzyme family, we sought to understand the basis of this disparity on a sequence level. We identified two residue positions that sensitize mitogen-activated protein kinases (MAPKs) to inhibitors that stabilize the DFG-out inactive conformation. After characterizing the structure and dynamics of an inhibitor-sensitive MAPK mutant, we demonstrated the generality of this strategy by sensitizing a kinase (apoptosis signal-regulating kinase 1) not in the MAPK family to several DFG-out stabilizing ligands, using the same residue positions. The use of specific inactive conformations may aid the study of noncatalytic roles of protein kinases, such as binding partner interactions and scaffolding effects.
Collapse
Affiliation(s)
- Sanjay B Hari
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
102
|
Xing L, Rai B, Lunney EA. Scaffold mining of kinase hinge binders in crystal structure database. J Comput Aided Mol Des 2013; 28:13-23. [DOI: 10.1007/s10822-013-9700-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022]
|
103
|
Hari SB, Perera BGK, Ranjitkar P, Seeliger MA, Maly DJ. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. ACS Chem Biol 2013; 8:2734-43. [PMID: 24106839 DOI: 10.1021/cb400663k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely related tyrosine kinases, such as Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases.
Collapse
Affiliation(s)
- Sanjay B. Hari
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - B. Gayani K. Perera
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Pratistha Ranjitkar
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Markus A. Seeliger
- Department
of Pharmacological Sciences, Stony Brook University Medical School, Stony
Brook, New York 11794, United States
| | - Dustin J. Maly
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
104
|
Srivastava A, Mishra R, Joshi B, Gupta V, Tandon P. A comparative computational study on molecular structure, NBO analysis, multiple interactions, chemical reactivity and first hyperpolarisability of imatinib mesylate polymorphs using DFT and QTAIM approach. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.848279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
105
|
Finn RD, Miller BL, Clements J, Bateman A. iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Res 2013; 42:D364-73. [PMID: 24297255 PMCID: PMC3965099 DOI: 10.1093/nar/gkt1210] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain–domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain–domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain–domain and 15 500 domain–ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.
Collapse
Affiliation(s)
- Robert D Finn
- HHMI Janelia Farm Research Campus, 19700 Helix Drive, Ashburn VA 20147 USA and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | | | | |
Collapse
|
106
|
Lin YL, Roux B. Computational analysis of the binding specificity of Gleevec to Abl, c-Kit, Lck, and c-Src tyrosine kinases. J Am Chem Soc 2013; 135:14741-53. [PMID: 24001034 PMCID: PMC4026022 DOI: 10.1021/ja405939x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gleevec, a well-known cancer therapeutic agent, is an effective inhibitor of several tyrosine kinases, including Abl and c-Kit, but displays less potency to inhibit closely homologous tyrosine kinases, such as Lck and c-Src. Because many structural features of the binding site are highly conserved in these homologous kinases, the molecular determinants responsible for the binding specificity of Gleevec remain poorly understood. To address this issue, free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent was used to compute the binding affinity of Gleevec to Abl, c-Kit, Lck, and c-Src. The results of the FEP/MD calculations are in good agreement with experiments, enabling a detailed and quantitative dissection of the absolute binding free energy in terms of various thermodynamic contributions affecting the binding specificity of Gleevec to the kinases. Dominant binding free energy contributions arises from the van der Waals dispersive interaction, compensating about two-thirds of the unfavorable free energy penalty associated with the loss of translational, rotational, and conformational freedom of the ligand upon binding. In contrast, the contributions from electrostatic and repulsive interactions nearly cancel out due to solvent effects. Furthermore, the calculations show the importance of the conformation of the kinase activation loop. Among the kinases examined, Abl provides the most favorable binding environment for Gleevec via optimal protein-ligand interactions and a small free energy cost for loss of the translational, rotational, and conformational freedom upon ligand binding. The FEP/MD calculations additionally reveal that Lck and c-Src provide similar nonbinding interactions with the bound-Gleevec, but the former pays less entropic penalty for the ligand losing its translational, rotational, and conformational motions to bind, examining the empirically observed differential binding affinities of Gleevec between the two Src-family kinases.
Collapse
|
107
|
Rabuck JN, Hyung SJ, Ko KS, Fox CC, Soellner MB, Ruotolo BT. Activation state-selective kinase inhibitor assay based on ion mobility-mass spectrometry. Anal Chem 2013; 85:6995-7002. [PMID: 23845095 DOI: 10.1021/ac4012655] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The discovery of activation state dependent kinase inhibitors, which bind specifically to the inactive conformation of the protein, is considered to be a promising pathway to improved cancer treatments. Identifying such inhibitors is challenging, however, because they can have Kd values similar to molecules known to inhibit kinase function by interacting with the active form. Further, while inhibitor induced changes within the kinase tertiary structure are significant, few technologies are able to correctly assign inhibitor binding modes in a high-throughput fashion based exclusively on protein-inhibitor complex formation and changes in local protein structure. We have developed a new assay, using ion mobility-mass spectrometry, capable of both rapidly detecting inhibitor binding and classifying the resultant kinase binding modes. Here, we demonstrate the ability of our approach to classify a broad set of kinase inhibitors, using micrograms of protein, without the need for protein modification or tagging.
Collapse
Affiliation(s)
- Jessica N Rabuck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | |
Collapse
|
108
|
Richters A, Ketzer J, Getlik M, Grütter C, Schneider R, Heuckmann JM, Heynck S, Sos ML, Gupta A, Unger A, Schultz-Fademrecht C, Thomas RK, Bauer S, Rauh D. Targeting Gain of Function and Resistance Mutations in Abl and KIT by Hybrid Compound Design. J Med Chem 2013; 56:5757-72. [DOI: 10.1021/jm4004076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- André Richters
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Julia Ketzer
- Department of Medical Oncology,
Sarcoma Center, West German Cancer Center, University Duisburg-Essen Medical School, Hufelandstrasse 55, D-45122
Essen, Germany
| | - Matthäus Getlik
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Christian Grütter
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Ralf Schneider
- Chemical Genomics Centre of the Max-Planck-Society,
Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Johannes M. Heuckmann
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
| | - Stefanie Heynck
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
| | - Martin L. Sos
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
| | - Anu Gupta
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Anke Unger
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | | | - Roman K. Thomas
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
- Department of Pathology, University of Cologne, Joseph-Stelzmann Strasse 9,
D-50931 Cologne, Germany
| | - Sebastian Bauer
- Department of Medical Oncology,
Sarcoma Center, West German Cancer Center, University Duisburg-Essen Medical School, Hufelandstrasse 55, D-45122
Essen, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max-Planck-Society,
Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| |
Collapse
|
109
|
Peng YH, Shiao HY, Tu CH, Liu PM, Hsu JTA, Amancha PK, Wu JS, Coumar MS, Chen CH, Wang SY, Lin WH, Sun HY, Chao YS, Lyu PC, Hsieh HP, Wu SY. Protein Kinase Inhibitor Design by Targeting the Asp-Phe-Gly (DFG) Motif: The Role of the DFG Motif in the Design of Epidermal Growth Factor Receptor Inhibitors. J Med Chem 2013; 56:3889-903. [DOI: 10.1021/jm400072p] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yi-Hui Peng
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Hui-Yi Shiao
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chih-Hsiang Tu
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
- Institute of Bioinformatics
and Structural Biology, National Tsing Hua University, 101, Sect.
2, Guangfu Road, Hsinchu 300, Taiwan, ROC
| | - Pang-Min Liu
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - John Tsu-An Hsu
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Prashanth Kumar Amancha
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Jian-Sung Wu
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School
of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014,
India
| | - Chun-Hwa Chen
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Sing-Yi Wang
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Wen-Hsing Lin
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Hsu-Yi Sun
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yu-Sheng Chao
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ping-Chiang Lyu
- Institute of Bioinformatics
and Structural Biology, National Tsing Hua University, 101, Sect.
2, Guangfu Road, Hsinchu 300, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Su-Ying Wu
- Institute of Biotechnology and
Pharmaceutical Research, National Health Research Institutes, 35 Keyan
Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
110
|
Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol Cell Biol 2013; 33:2188-201. [PMID: 23530057 DOI: 10.1128/mcb.01637-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.
Collapse
|
111
|
Alton GR, Lunney EA. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Expert Opin Drug Discov 2013; 3:595-605. [PMID: 23506143 DOI: 10.1517/17460441.3.6.595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The number of drugs in active clinical development or on the market that target the unactivated conformational states of protein kinases is growing and represents a significant portion of kinase research at biopharmaceutical companies. These non-classical kinase inhibitors have a mode of action which may overcome some of the liabilities of classical ATP-site inhibitors that substantially overlap the space that ATP occupies in the activated kinase. OBJECTIVE This review will discuss state-of-the-art methods of inhibiting protein kinases by targeting the unactivated conformations of the enzyme with small molecules directed to the ATP binding region. METHODS Biochemical and structural biology publications and public domain crystal structures were evaluated to identify key concepts in drug discovery for unactivated protein kinase inhibitors that target the ATP binding region. CONCLUSION The potential for enhanced selectivity, potency and duration of pharmacological action may allow non-classical kinase therapeutics to be used for chronic dosing in non-life-threatening indications. Moreover, by targeting additional conformational space on the kinase protein it is possible that new chemical matter will be discovered such that current intellectual property limitations on traditional ATP-site chemical scaffolds may be circumvented.
Collapse
Affiliation(s)
- Gordon R Alton
- Senior Principal Scientist Pfizer Global Research and Development, Department of Biochemical Pharmacology, 10628 Science Center Drive, San Diego, CA 92121, USA +1 858 526 4926 ; 858 526 4236 ;
| | | |
Collapse
|
112
|
Chemogenomics in drug discovery: computational methods based on the comparison of binding sites. Future Med Chem 2013; 4:1971-9. [PMID: 23088277 DOI: 10.4155/fmc.12.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Novel computational methods for understanding relationships between ligands and all possible biological targets have emerged in recent years. Proteins are connected to each other based on the similarity of their ligands or based on the similarity of their binding sites. The assumption is that compounds sharing chemical similarity should share targets and that targets with a similar binding site should also share ligands. A large number of computational techniques have been developed to assess ligand and binding site similarity, which can be used to make quantitative predictions of the most probable biological target of a given compound. This review covers the recent advances in new computational methods for relating biological targets based on the similarity of their binding sites. Binding site comparisons are used for the prediction of their most likely ligands, their possible cross reactivity and selectivity. These comparisons can also be used to infer the function of novel uncharacterized proteins.
Collapse
|
113
|
Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. A Genetically Encoded19F NMR Probe for Tyrosine Phosphorylation. Angew Chem Int Ed Engl 2013; 52:3958-62. [DOI: 10.1002/anie.201300463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 11/09/2022]
|
114
|
Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. A Genetically Encoded19F NMR Probe for Tyrosine Phosphorylation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
115
|
Heinrich T, Seenisamy J, Emmanuvel L, Kulkarni SS, Bomke J, Rohdich F, Greiner H, Esdar C, Krier M, Grädler U, Musil D. Fragment-based discovery of new highly substituted 1H-pyrrolo[2,3-b]- and 3H-imidazolo[4,5-b]-pyridines as focal adhesion kinase inhibitors. J Med Chem 2013; 56:1160-70. [PMID: 23294348 DOI: 10.1021/jm3016014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Focal adhesion kinase (FAK) is considered as an attractive target for oncology, and small-molecule inhibitors are reported to be in clinical testing. In a surface plasmon resonance (SPR)-mediated fragment screening campaign, we discovered bicyclic scaffolds like 1H-pyrazolo[3,4-d]pyrimidines binding to the hinge region of FAK. By an accelerated knowledge-based fragment growing approach, essential pharmacophores were added. The establishment of highly substituted unprecedented 1H-pyrrolo[2,3-b]pyridine derivatizations provided compounds with submicromolar cellular FAK inhibition potential. The combination of substituents on the bicyclic templates and the nature of the core structure itself have a significant impact on the compounds FAK selectivity. Structural analysis revealed that the appropriately substituted pyrrolo[2,3-b]pyridine induced a rare helical DFG-loop conformation. The discovered synthetic route to introduce three different substituents independently paves the way for versatile applications of the 7-azaindole core.
Collapse
Affiliation(s)
- Timo Heinrich
- Merck Serono Research, Merck KGaA , 64271 Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc Natl Acad Sci U S A 2013; 110:1664-9. [PMID: 23319661 DOI: 10.1073/pnas.1214330110] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tyrosine kinases present attractive drug targets for specific types of cancers. Gleevec, a well-known therapeutic agent against chronic myelogenous leukemia, is an effective inhibitor of Abl tyrosine kinase. However, Gleevec fails to inhibit closely homologous tyrosine kinases, such as c-Src. Because many structural features of the binding site are conserved, the molecular determinants responsible for binding specificity are not immediately apparent. Some have attributed the difference in binding specificity of Gleevec to subtle variations in ligand-protein interactions (binding affinity control), whereas others have proposed that it is the conformation of the DFG motif, in which ligand binding is only accessible to Abl and not to c-Src (conformational selection control). To address this issue, the absolute binding free energy was computed using all-atom molecular dynamics simulations with explicit solvent. The results of the free energy simulations are in good agreement with experiments, thereby enabling a meaningful decomposition of the binding free energy to elucidate the factors controlling Gleevec's binding specificity. The latter is shown to be controlled by a conformational selection mechanism and also by differences in key van der Waals interactions responsible for the stabilization of Gleevec in the binding pocket of Abl.
Collapse
|
117
|
Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamic regulation of Abl kinases. J Biol Chem 2013; 288:5443-50. [PMID: 23316053 DOI: 10.1074/jbc.r112.438382] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity.
Collapse
Affiliation(s)
- Shoghag Panjarian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
118
|
Abstract
The development of inhibitors against Abl has changed the landscape for the treatment of chronic myelogenous leukemia (CML) and cancer in general. Beginning with the monumental discovery and approval of imatinib for CML, a second generation of inhibitors, nilotinib and dasatinib, has now gained approval for the treatment of CML. Notably, these second-generation inhibitors are active against many of the mutations in the Abl kinase that confer resistance to imatinib. However, resistance remains a major problem, and new inhibitors such as ponatinib and GNF2/GNF5 have been developed, with activity towards the common gatekeeper T315I mutation. We review here the mechanisms of Abl inhibition with an emphasis on structural elements that are important for the selectivity and design of new molecules. In particular, we focus on how changes in the conformation of the P-loop, the activation loop, the DFG motif, and other structural elements of Abl have been instrumental in developing an understanding of inhibitor binding.
Collapse
Affiliation(s)
- E Premkumar Reddy
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
119
|
Gopalsamy A, Bennett EM, Shi M, Zhang WG, Bard J, Yu K. Identification of pyrimidine derivatives as hSMG-1 inhibitors. Bioorg Med Chem Lett 2012; 22:6636-41. [PMID: 23021994 DOI: 10.1016/j.bmcl.2012.08.107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
hSMG-1 kinase plays a dual role in a highly conserved RNA surveillance pathway termed nonsense-mediated RNA decay (NMD) and in cellular genotoxic stress response. Since deregulation of cellular responses to stress contributes to tumor growth and resistance to chemotherapy, hSMG-1 is a potential target for cancer treatment. From our screening efforts, we have identified pyrimidine derivatives as hSMG-1 kinase inhibitors. We report structure-based optimization of this pan-kinase scaffold to improve its biochemical profile and overall kinome selectivity, including mTOR and CDK, to generate the first reported selective hSMG-1 tool compound.
Collapse
Affiliation(s)
- Ariamala Gopalsamy
- Worldwide Medicinal Chemistry, Pfizer, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH. Virtual target screening: validation using kinase inhibitors. J Chem Inf Model 2012; 52:2192-203. [PMID: 22747098 PMCID: PMC3488111 DOI: 10.1021/ci300073m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Computational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets. However, correctly interpreting a docking score as a hit for the MOI docked to any individual protein can be problematic. In our method, which we term "Virtual Target Screening (VTS)", a set of small drug-like molecules are docked against each structure in the protein library to produce benchmark statistics. This calibration provides a reference for each protein so that hits can be identified for an MOI. VTS can then be used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying potential metabolites, probing protein structures for allosteric sites, and testing focused libraries (collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty kinase inhibitors were docked to a collection of calibrated protein structures. Here, we report our results where VTS predicted protein kinases as hits in preference to other proteins in our database. Concurrently, a graphical interface for VTS was developed.
Collapse
Affiliation(s)
- Daniel N. Santiago
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Yuri Pevzner
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Ashley A. Durand
- HTS & Chemistry Core, H. Lee Moffitt Cancer Institute & Research Institute, 12902 Magnolia Drive, Drug Discovery-SRB3, Tampa, Florida 33612
| | - MinhPhuong Tran
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Rachel R. Scheerer
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Kenyon Daniel
- HTS & Chemistry Core, H. Lee Moffitt Cancer Institute & Research Institute, 12902 Magnolia Drive, Drug Discovery-SRB3, Tampa, Florida 33612
| | - Shen-Shu Sung
- Department of Pharmacology, Milton S. Hershey Medical Cancer Institute, Pennsylvania State University, 500 University Drive, MC H072, Hershey, Pennsylvania 17033
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620
| | - Wayne C. Guida
- HTS & Chemistry Core, H. Lee Moffitt Cancer Institute & Research Institute, 12902 Magnolia Drive, Drug Discovery-SRB3, Tampa, Florida 33612
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620
| | - Wesley H. Brooks
- HTS & Chemistry Core, H. Lee Moffitt Cancer Institute & Research Institute, 12902 Magnolia Drive, Drug Discovery-SRB3, Tampa, Florida 33612
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| |
Collapse
|
121
|
Brandvold KR, Steffey ME, Fox CC, Soellner MB. Development of a highly selective c-Src kinase inhibitor. ACS Chem Biol 2012; 7:1393-8. [PMID: 22594480 DOI: 10.1021/cb300172e] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Generating highly selective probes to interrogate protein kinase function in biological studies remains a challenge, and new strategies are required. Herein, we describe the development of the first highly selective and cell-permeable inhibitor of c-Src, a key signaling kinase in cancer. Our strategy involves extension of traditional inhibitor design by appending functionality proposed to interact with the phosphate-binding loop of c-Src. Using our selective inhibitor, we demonstrate that selective inhibition is significantly more efficacious than pan-kinase inhibition in slowing the growth of cancer cells. We also show that inhibition of c-Abl kinase, an off-target of most c-Src inhibitors, promotes oncogenic cell growth.
Collapse
Affiliation(s)
- Kristoffer R. Brandvold
- Department
of Medicinal Chemistry and ‡Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann
Arbor, Michigan 48109, United States
| | - Michael E. Steffey
- Department
of Medicinal Chemistry and ‡Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann
Arbor, Michigan 48109, United States
| | - Christel C. Fox
- Department
of Medicinal Chemistry and ‡Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann
Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Department
of Medicinal Chemistry and ‡Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann
Arbor, Michigan 48109, United States
| |
Collapse
|
122
|
Deng X, Zhou W, Weisberg E, Wang J, Zhang J, Sasaki T, Nelson E, Griffin JD, Jänne PA, Gray NS. An amino-indazole scaffold with spectrum selective kinase inhibition of FLT3, PDGFRα and kit. Bioorg Med Chem Lett 2012; 22:4579-84. [PMID: 22727638 DOI: 10.1016/j.bmcl.2012.05.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Here we describe the synthesis and characterization of a number of 3-amino-1H-indazol-6-yl-benzamides that were designed to target the 'DFG-out' conformation of the kinase activation loop. Several compounds such as 4 and 11 exhibit single-digit nanomolar EC(50)s against FLT3, c-Kit and the gatekeeper T674M mutant of PDGFRα.
Collapse
Affiliation(s)
- Xianming Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Milletti F, Hermann JC. Targeted kinase selectivity from kinase profiling data. ACS Med Chem Lett 2012; 3:383-6. [PMID: 24900482 DOI: 10.1021/ml300012r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/14/2012] [Indexed: 01/17/2023] Open
Abstract
Kinase selectivity plays a major role in the design strategy of lead series and in the ultimate success of kinase drug discovery programs. Although profiling compounds against a large panel of protein kinases has become a standard part of modern drug discovery, data accumulated from these kinase panels may be underutilized for new kinase projects. We present a method that can be used to optimize the selectivity profile of a compound using historical kinase profiling data. This method proposes chemical transformations based on pairs of very similar compounds, which are both active against a desired target kinase and differ in activity against another kinase. We show that these transformations are transferable across scaffolds, thus making this tool valuable to exploit kinase profiling data for unrelated series of compounds.
Collapse
Affiliation(s)
- Francesca Milletti
- pRED Informatics, Roche, 340 Kingsland Street, Nutley, New Jersey 07110,
United States
| | - Johannes C. Hermann
- Discovery
Chemistry, Roche, 340 Kingsland Street,
Nutley, New Jersey 07110, United States
| |
Collapse
|
124
|
Abstract
Abl kinases are prototypic cytoplasmic tyrosine kinases and are involved in a variety of chromosomal aberrations in different cancers. This causes the expression of Abl fusion proteins, such as Bcr-Abl, that are constitutively activated and drivers of tumorigenesis. Over the past decades, biochemical and functional studies on the molecular mechanisms of Abl regulation have gone hand in hand with progression of our structural understanding of autoinhibited and active Abl conformations. In parallel, Abl oncoproteins have become prime molecular targets for cancer therapy, using adenosine triphosphate (ATP)-competitive kinase inhibitors, such as imatinib. Abl-targeting drugs serve as a paradigm for our understanding of kinase inhibitor action, specificity, and resistance development. In this review article, I will review the molecular mechanisms that are responsible for the regulation of Abl kinase activity and how oncogenic Abl fusions signal. Furthermore, past and ongoing efforts to target Abl oncoproteins using ATP-competitive and allosteric inhibitors, as well as future possibilities using combination therapy, will be discussed.
Collapse
Affiliation(s)
- Oliver Hantschel
- École polytechnique fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|
125
|
Levinson NM, Boxer SG. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS One 2012; 7:e29828. [PMID: 22493660 PMCID: PMC3320885 DOI: 10.1371/journal.pone.0029828] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/22/2012] [Indexed: 01/02/2023] Open
Abstract
Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor's activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name "bosutinib", and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity.
Collapse
MESH Headings
- Aniline Compounds/chemistry
- Aniline Compounds/pharmacology
- Benzamides
- Binding Sites
- Dasatinib
- Drug Resistance, Neoplasm
- Escherichia coli
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Isomerism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Mutation
- Nitriles/chemistry
- Nitriles/pharmacology
- Piperazines/chemistry
- Piperazines/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/metabolism
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Quinolines/chemistry
- Quinolines/pharmacology
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Spectrophotometry, Infrared
- Static Electricity
- Thiazoles/chemistry
- Thiazoles/pharmacology
- X-Ray Diffraction
Collapse
Affiliation(s)
- Nicholas M Levinson
- Department of Chemistry, Stanford University, Stanford, California, United States of America.
| | | |
Collapse
|
126
|
Chène P. Can biochemistry drive drug discovery beyond simple potency measurements? Drug Discov Today 2012; 17:388-95. [DOI: 10.1016/j.drudis.2012.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
|
127
|
Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Nat Chem Biol 2012; 8:366-74. [PMID: 22344177 PMCID: PMC3307835 DOI: 10.1038/nchembio.792] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/01/2011] [Indexed: 01/21/2023]
Abstract
Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently discovered from a DNA-templated macrocycle library inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated gatekeeper mutant. We solved two co-crystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide-competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bi-substrate competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties, and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance.
Collapse
Affiliation(s)
- George Georghiou
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | | | | | | | | |
Collapse
|
128
|
Lovera S, Sutto L, Boubeva R, Scapozza L, Dölker N, Gervasio FL. The different flexibility of c-Src and c-Abl kinases regulates the accessibility of a druggable inactive conformation. J Am Chem Soc 2012; 134:2496-9. [PMID: 22280319 DOI: 10.1021/ja210751t] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
c-Src and c-Abl are two closely related protein kinases that constitute important anticancer targets. Despite their high sequence identity, they show different sensitivities to the anticancer drug imatinib, which binds specifically to a particular inactive conformation in which the Asp of the conserved DFG motif points outward (DFG-out). We have analyzed the DFG conformational transition of the two kinases using massive molecular dynamics simulations, free energy calculations, and isothermal titration calorimetry. On the basis of the reconstruction of the free energy surfaces for the DFG-in to DFG-out conformational changes of c-Src and c-Abl, we propose that the different flexibility of the two kinases results in a different stability of the DFG-out conformation and might be the main determinant of imatinib selectivity.
Collapse
Affiliation(s)
- Silvia Lovera
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
129
|
Fabbro D, Cowan-Jacob SW, Möbitz H, Martiny-Baron G. Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol 2012; 795:1-34. [PMID: 21960212 DOI: 10.1007/978-1-61779-337-0_1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.
Collapse
Affiliation(s)
- Doriano Fabbro
- Novartis Institutes for Biomedical Research, Expertise Platform Kinases, Basel, Switzerland.
| | | | | | | |
Collapse
|
130
|
Dubey KD, Ojha RP. Conformational flexibility and binding energy profile of c-Abl tyrosine kinase complexed with Imatinib: an insight from MD study. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.586346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
131
|
Dar AC, Shokat KM. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 2011; 80:769-95. [PMID: 21548788 DOI: 10.1146/annurev-biochem-090308-173656] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinases are highly regulated enzymes with diverse mechanisms controlling their catalytic output. Over time, chemical discovery efforts for kinases have produced ATP-competitive compounds, allosteric regulators, irreversible binders, and highly specific inhibitors. These distinct classes of small molecules have revealed many novel aspects about kinase-mediated signaling, and some have progressed from simple tool compounds into clinically validated therapeutics. This review explores several small-molecule inhibitors for kinases highlighting elaborate mechanisms by which kinase function is modulated. A complete surprise of targeted kinase drug discovery has been the finding of ATP-competitive inhibitors that behave as agonists, rather than antagonists, of their direct kinase target. These studies hint at a connection between ATP-binding site occupancy and networks of communication that are independent of kinase catalysis. Indeed, kinase inhibitors that induce changes in protein localization, protein-protein interactions, and even enhancement of catalytic activity of the target kinase have been found. The relevance of these findings to the therapeutic efficacy of kinase inhibitors and to the future identification of new classes of drug targets is discussed.
Collapse
Affiliation(s)
- Arvin C Dar
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA.
| | | |
Collapse
|
132
|
Dixit A, Verkhivker GM. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput Biol 2011; 7:e1002179. [PMID: 21998569 PMCID: PMC3188506 DOI: 10.1371/journal.pcbi.1002179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/16/2011] [Indexed: 12/15/2022] Open
Abstract
The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level. Despite recent progress in computational and experimental studies of dynamic regulation in protein kinases, a mechanistic understanding of long-range communication and mechanisms of mutation-induced signaling controlling kinase activity remains largely qualitative. In this study, we have performed a systematic modeling and analysis of allosteric activation in ABL and EGFR kinases at the increasing level of complexity - from catalytic domain to multi-domain regulatory complexes. The results of this study have revealed organizing structural and mechanistic principles of allosteric signaling in protein kinases. Although activation mechanisms in ABL and EGFR kinases have evolved through acquisition of structurally different regulatory complexes, we have found that long-range interdomain communication between common functional segments (αF-helix and αC-helix) may be important for allosteric activation. The results of study have revealed molecular signatures of activating cancer mutations and have shed the light on general mechanistic aspects of mutation-induced signaling in protein kinases. An advanced understanding and further characterization of molecular signatures of kinase mutations may aid in a better rationalization of mutational effects on clinical outcomes and facilitate molecular-based therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
133
|
Campos-Olivas R, Marenchino M, Scapozza L, Gervasio FL. Backbone assignment of the tyrosine kinase Src catalytic domain in complex with imatinib. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:221-224. [PMID: 21523440 DOI: 10.1007/s12104-011-9304-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
The Src tyrosine kinase is the paradigm of an oncogenic kinase, and of regulation by intramolecular inhibitory interactions, as well as an important anticancer target due to its roles in cell proliferation and metastasis. The assignment of backbone (1)H(N), (13)C(α), (13)CO, and (15)N, and sidechain (13)C(β) resonances of the catalytic domain of Src (283 residues) in complex with the anticancer drug Imatinib is reported here. Consistent with previous X-ray studies of the same complex, most signals from the activation loop are not detected, indicating that, even in the presence of the drug, it probably adopts highly heterogeneous conformations in intermediate exchange. For the rest of the polypeptide backbone, assignments have been completed for ~88% of residues, with only a few solvent-exposed amides remaining unassigned.
Collapse
Affiliation(s)
- Ramón Campos-Olivas
- Spectroscopy and NMR Unit, Structural and Computational Biology Programme, Spanish National Cancer Center (CNIO), C. Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | | | | | | |
Collapse
|
134
|
Schwartz PA, Murray BW. Protein kinase biochemistry and drug discovery. Bioorg Chem 2011; 39:192-210. [PMID: 21872901 DOI: 10.1016/j.bioorg.2011.07.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
Abstract
Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Phillip A Schwartz
- Pfizer Worldwide Research and Development, La Jolla, Pfizer Inc., San Diego, CA 92121, United States
| | | |
Collapse
|
135
|
Dubey KD, Ojha RP. Conformational flexibility, binding energy, role of salt bridge and alanine-mutagenesis for c-Abl kinase complex. J Mol Model 2011; 18:1679-89. [DOI: 10.1007/s00894-011-1199-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
136
|
Xu M, Yu L, Wan B, Yu L, Huang Q. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. PLoS One 2011; 6:e22644. [PMID: 21818358 PMCID: PMC3144914 DOI: 10.1371/journal.pone.0022644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/03/2011] [Indexed: 11/19/2022] Open
Abstract
Protein kinases have been found to possess two characteristic conformations in their activation-loops: the active DFG-in conformation and the inactive DFG-out conformation. Recently, it has been very interesting to develop type-II inhibitors which target the DFG-out conformation and are more specific than the type-I inhibitors binding to the active DFG-in conformation. However, solving crystal structures of kinases with the DFG-out conformation remains a challenge, and this seriously hampers the application of the structure-based approaches in development of novel type-II inhibitors. To overcome this limitation, here we present a computational approach for predicting the DFG-out inactive conformation using the DFG-in active structures, and develop related conformational selection protocols for the uses of the predicted DFG-out models in the binding pose prediction and virtual screening of type-II ligands. With the DFG-out models, we predicted the binding poses for known type-II inhibitors, and the results were found in good agreement with the X-ray crystal structures. We also tested the abilities of the DFG-out models to recognize their specific type-II inhibitors by screening a database of small molecules. The AUC (area under curve) results indicated that the predicted DFG-out models were selective toward their specific type-II inhibitors. Therefore, the computational approach and protocols presented in this study are very promising for the structure-based design and screening of novel type-II kinase inhibitors.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Wan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
137
|
DiNitto JP, Wu JC. Molecular mechanisms of drug resistance in tyrosine kinases cAbl and cKit. Crit Rev Biochem Mol Biol 2011; 46:295-309. [PMID: 21539479 DOI: 10.3109/10409238.2011.578612] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inhibition of protein kinases has gained general acceptance as an effective approach to treat a wide range of cancers. However, in many cases, prolonged administration of kinase inhibitors often leads to acquired resistance, and the therapeutic effect is subsequently diminished. The wealth of recent studies using biochemical, kinetic, and structural approaches have revealed the molecular basis for the clinically observed resistance. In this review, we highlight several of the most common molecular mechanisms that lead to acquired resistance to kinase inhibitors observed with the cAbl (cellular form of the Abelson leukemia virus tyrosine kinase) and the type III receptor tyrosine kinase cKit, including a newly identified mechanism resulting from accelerated kinase activation caused by mutations in the activation loop. Strategies to overcome the loss of drug sensitivity that represents a challenge currently facing the field and the emerging approaches to circumvent resistance are discussed.
Collapse
|
138
|
Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP, Treiber DK. Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. ACTA ACUST UNITED AC 2011; 17:1241-9. [PMID: 21095574 DOI: 10.1016/j.chembiol.2010.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/25/2010] [Accepted: 09/14/2010] [Indexed: 01/29/2023]
Abstract
Interactions between kinases and small molecule inhibitors can be activation state dependent. A detailed understanding of inhibitor binding therefore requires characterizing interactions across multiple activation states. We have systematically explored the effects of ABL1 activation loop phosphorylation and PDGFR family autoinhibitory juxtamembrane domain docking on inhibitor binding affinity. For a diverse compound set, the affinity patterns correctly classify inhibitors as having type I or type II binding modes, and we show that juxtamembrane domain docking can have dramatic negative effects on inhibitor affinity. The results have allowed us to associate ligand-induced conformational changes observed in cocrystal structures with specific energetic costs. The approach we describe enables investigation of the complex relationship between kinase activation state and compound binding affinity and should facilitate strategic inhibitor design.
Collapse
Affiliation(s)
- Lisa M Wodicka
- Ambit Biosciences, 4215 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Kar G, Keskin O, Gursoy A, Nussinov R. Allostery and population shift in drug discovery. Curr Opin Pharmacol 2010; 10:715-22. [PMID: 20884293 PMCID: PMC7316380 DOI: 10.1016/j.coph.2010.09.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 02/07/2023]
Abstract
Proteins can exist in a large number of conformations around their native states that can be characterized by an energy landscape. The landscape illustrates individual valleys, which are the conformational substates. From the functional standpoint, there are two key points: first, all functionally relevant substates pre-exist; and second, the landscape is dynamic and the relative populations of the substates will change following allosteric events. Allosteric events perturb the structure, and the energetic strain propagates and shifts the population. This can lead to changes in the shapes and properties of target binding sites. Here we present an overview of dynamic conformational ensembles focusing on allosteric events in signaling. We propose that combining equilibrium fluctuation concepts with genomic screens could help drug discovery.
Collapse
Affiliation(s)
- Gozde Kar
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | | | |
Collapse
|
140
|
Meiselbach H, Sticht H. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. J Mol Model 2010; 17:1927-34. [PMID: 21110053 DOI: 10.1007/s00894-010-0897-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/03/2010] [Indexed: 11/25/2022]
Abstract
The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.
Collapse
Affiliation(s)
- Heike Meiselbach
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität, Fahrstraße 17, 91054 Erlangen-Nürnberg, Germany
| | | |
Collapse
|
141
|
Bruning JB, Parent AA, Gil G, Zhao M, Nowak J, Pace MC, Smith CL, Afonine PV, Adams PD, Katzenellenbogen JA, Nettles KW. Coupling of receptor conformation and ligand orientation determine graded activity. Nat Chem Biol 2010; 6:837-43. [PMID: 20924370 PMCID: PMC2974172 DOI: 10.1038/nchembio.451] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 09/01/2010] [Indexed: 01/03/2023]
Abstract
Small molecules stabilize specific protein conformations from a larger ensemble, enabling molecular switches that control diverse cellular functions. We show here that the converse also holds true: the conformational state of the estrogen receptor can direct distinct orientations of the bound ligand. 'Gain-of-allostery' mutations that mimic the effects of ligand in driving protein conformation allowed crystallization of the partial agonist ligand WAY-169916 with both the canonical active and inactive conformations of the estrogen receptor. The intermediate transcriptional activity induced by WAY-169916 is associated with the ligand binding differently to the active and inactive conformations of the receptor. Analyses of a series of chemical derivatives demonstrated that altering the ensemble of ligand binding orientations changes signaling output. The coupling of different ligand binding orientations to distinct active and inactive protein conformations defines a new mechanism for titrating allosteric signaling activity.
Collapse
Affiliation(s)
- John B. Bruning
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Alex A. Parent
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - German Gil
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Min Zhao
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Jason Nowak
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Margaret C. Pace
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Carolyn L. Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Pavel V. Afonine
- Lawrence Berkeley National Laboratory, BLDG 64R0121, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Lawrence Berkeley National Laboratory, BLDG 64R0121, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | - Kendall W. Nettles
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
142
|
Aleksandrov A, Simonson T. A molecular mechanics model for imatinib and imatinib:kinase binding. J Comput Chem 2010; 31:1550-60. [PMID: 20020482 DOI: 10.1002/jcc.21442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Imatinib is an important anticancer drug, which binds specifically to the Abl kinase and blocks its signalling activity. To model imatinib:protein interactions, we have developed a molecular mechanics force field for imatinib and four close analogues, which is consistent with the CHARMM force field for proteins and nucleic acids. Atomic charges and Lennard-Jones parameters were derived from a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule interacting with imatinib fragments at 32 different positions. We considered both a neutral and a protonated imatinib. The final RMS deviation between the ab initio and force field energies, averaged over both forms, was 0.2 kcal/mol. The model also reproduces the ab initio geometry and flexibility of imatinib. To apply the force field to imatinib:Abl simulations, it is also necessary to determine the most likely imatinib protonation state when it binds to Abl. This was done using molecular dynamics free energy simulations, where imatinib is reversibly protonated during a series of MD simulations, both in solution and in complex with Abl. The simulations indicate that imatinib binds to Abl in its protonated, positively-charged form. To help test the force field and the protonation prediction, we did MD free energy simulations that compare the Abl binding affinities of two imatinib analogs, obtaining good agreement with experiment. Finally, two new imatinib variants were considered, one of which is predicted to have improved Abl binding. This variant could be of interest as a potential drug.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | | |
Collapse
|
143
|
Dubey KD, Ojha RP. Binding free energy calculation with QM/MM hybrid methods for Abl-Kinase inhibitor. J Biol Phys 2010; 37:69-78. [PMID: 22210962 DOI: 10.1007/s10867-010-9199-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/29/2010] [Indexed: 01/12/2023] Open
Abstract
We report a Quantum mechanics/Molecular Mechanics-Poisson-Boltzmann/ Surface Area (QM/MM-PB/SA) method to calculate the binding free energy of c-Abl human tyrosine kinase by combining the QM and MM principles where the ligand is treated quantum mechanically and the rest of the receptor by classical molecular mechanics. To study the role of entropy and the flexibility of the protein ligand complex in a solvated environment, molecular dynamics calculations are performed using a hybrid QM/MM approach. This work shows that the results of the QM/MM approach are strongly correlated with the binding affinity. The QM/MM interaction energy in our reported study confirms the importance of electronic and polarization contributions, which are often neglected in classical MM-PB/SA calculations. Moreover, a comparison of semi-empirical methods like DFTB-SCC, PM3, MNDO, MNDO-PDDG, and PDDG-PM3 is also performed. The results of the study show that the implementation of a DFTB-SCC semi-empirical Hamiltonian that is derived from DFT gives better results than other methods. We have performed such studies using the AMBER molecular dynamic package for the first time. The calculated binding free energy is also in agreement with the experimentally determined binding affinity for c-Abl tyrosine kinase complex with Imatinib.Electronic supplementary material The online version of this article (doi:10.1007/s10867-010-9199-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kshatresh Dutta Dubey
- Biophysics Unit, Department of Physics, DDU Gorakhpur University, Gorakhpur, 273009 India
| | | |
Collapse
|
144
|
Milletti F, Vulpetti A. Predicting Polypharmacology by Binding Site Similarity: From Kinases to the Protein Universe. J Chem Inf Model 2010; 50:1418-31. [DOI: 10.1021/ci1001263] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Milletti
- CADD, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, CH4002 Basel, Switzerland
| | - Anna Vulpetti
- CADD, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, CH4002 Basel, Switzerland
| |
Collapse
|
145
|
Simard JR, Getlik M, Grütter C, Schneider R, Wulfert S, Rauh D. Fluorophore labeling of the glycine-rich loop as a method of identifying inhibitors that bind to active and inactive kinase conformations. J Am Chem Soc 2010; 132:4152-60. [PMID: 20201574 DOI: 10.1021/ja908083e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Targeting protein kinases with small organic molecules is a promising strategy to regulate unwanted kinase activity in both chemical biology and medicinal chemistry research. Traditionally, kinase inhibitors are identified in activity-based screening assays using enzymatically active kinase preparations to measure the perturbation of substrate phosphorylation, often resulting in the enrichment of classical ATP competitive (Type I) inhibitors. However, addressing enzymatically incompetent kinase conformations offers new opportunities for targeted therapies and is moving to the forefront of kinase inhibitor research. Here we report the development of a new FLiK (Fluorescent Labels in Kinases) binding assay to detect small molecules that induce changes in the conformation of the glycine-rich loop. Due to cross-talk between the glycine-rich loop and the activation loop in kinases, this alternative labeling approach can also detect ligands that stabilize inactive kinase conformations, including slow-binding Type II and Type III kinase inhibitors. Protein X-ray crystallography validated the assay results and identified a novel DFG-out binding mode for a quinazoline-based inhibitor in p38alpha kinase. We also detected the high-affinity binding of a clinically relevant and specific VEGFR2 inhibitor, and we provide structural details of its binding mode in p38alpha, in which it stabilizes the DFG-out conformation. Last, we demonstrate the power of this new FLiK labeling strategy to detect the binding of Type I ligands that induce conformational changes in the glycine-rich loop as a means of gaining affinity for the target kinase. This approach may be a useful alternative to develop direct binding assays for kinases that do not adopt the DFG-out conformation while also avoiding the use of expensive kits, detection reagents, or radioactivity frequently employed with activity-based assays.
Collapse
Affiliation(s)
- Jeffrey R Simard
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
146
|
Weisberg E, Choi HG, Ray A, Barrett R, Zhang J, Sim T, Zhou W, Seeliger M, Cameron M, Azam M, Fletcher JA, Debiec-Rychter M, Mayeda M, Moreno D, Kung AL, Janne PA, Khosravi-Far R, Melo JV, Manley PW, Adamia S, Wu C, Gray N, Griffin JD. Discovery of a small-molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRalpha, Kit, and Src kinases: novel type II inhibitor of gatekeeper mutants. Blood 2010; 115:4206-16. [PMID: 20299508 PMCID: PMC2879103 DOI: 10.1182/blood-2009-11-251751] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/13/2010] [Indexed: 12/22/2022] Open
Abstract
Many clinically validated kinases, such as BCR-ABL, c-Kit, PDGFR, and EGFR, become resistant to adenosine triphosphate-competitive inhibitors through mutation of the so-called gatekeeper amino acid from a threonine to a large hydrophobic amino acid, such as an isoleucine or methionine. We have developed a new class of adenosine triphosphate competitive inhibitors, exemplified by HG-7-85-01, which is capable of inhibiting T315I- BCR-ABL (clinically observed in chronic myeloid leukemia), T670I-c-Kit (clinically observed in gastrointestinal stromal tumors), and T674I/M-PDGFRalpha (clinically observed in hypereosinophilic syndrome). HG-7-85-01 is unique among all currently reported kinase inhibitors in having the ability to accommodate either a gatekeeper threonine, present in the wild-type forms of these kinases, or a large hydrophobic amino acid without becoming a promiscuous kinase inhibitor. The distinctive ability of HG-7-85-01 to simultaneously inhibit both wild-type and mutant forms of several kinases of clinical relevance is an important step in the development of the next generation of tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology/Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, MA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Namboodiri HV, Bukhtiyarova M, Ramcharan J, Karpusas M, Lee Y, Springman EB. Analysis of imatinib and sorafenib binding to p38alpha compared with c-Abl and b-Raf provides structural insights for understanding the selectivity of inhibitors targeting the DFG-out form of protein kinases. Biochemistry 2010; 49:3611-8. [PMID: 20337484 DOI: 10.1021/bi100070r] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein kinases c-Abl, b-Raf, and p38alpha are recognized as important targets for therapeutic intervention. c-Abl and b-Raf are major targets of marketed oncology drugs Imatinib (Gleevec) and Sorafenib (Nexavar), respectively, and BIRB-796 is a p38alpha inhibitor that reached Phase II clinical trials. A shared feature of these drugs is the fact that they bind to the DFG-out forms of their kinase targets. Although the discovery of this class of kinase inhibitors has increased the level of emphasis on the design of DFG-out inhibitors, the structural determinants for their binding and stabilization of the DFG-out conformation remain unclear. To improve our understanding of these determinants, we determined cocrystal structures of Imatinib and Sorafenib with p38alpha. We also conducted a detailed analysis of Imatinib and Sorafenib binding to p38alpha in comparison with BIRB-796, including binding kinetics, binding interactions, the solvent accessible surface area (SASA) of the ligands, and stabilization of key structural elements of the protein upon ligand binding. Our results yield an improved understanding of the structural requirements for stabilizing the DFG-out form and a rationale for understanding the genesis of ligand selectivity among DFG-out inhibitors of protein kinases.
Collapse
Affiliation(s)
- Haridasan V Namboodiri
- Department of Biology, Locus Pharmaceuticals, Inc, Four Valley Square, 512 East Township Line Rd,Blue Bell, Pennsylvania 19422, USA.
| | | | | | | | | | | |
Collapse
|
148
|
Sylvester JE, Kron SJ. A bead-based activity screen for small-molecule inhibitors of signal transduction in chronic myelogenous leukemia cells. Mol Cancer Ther 2010; 9:1469-81. [PMID: 20423990 PMCID: PMC2868067 DOI: 10.1158/1535-7163.mct-10-0157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic myelogenous leukemia is characterized by the presence of the chimeric BCR-ABL gene, which is expressed as the constitutively active Bcr-Abl kinase. Although kinase activity is directly responsible for the clinical phenotype, current diagnostic and prognostic methods focus on a genetic classification system in which molecularly distinct subcategories are used to predict patient responses to small-molecule inhibitors of the Bcr-Abl kinase. Point mutations in the kinase domain are a central factor regulating inhibitor resistance; however, compensatory signaling caused by the activation of unrelated kinases can influence inhibitor efficacy. Kinase activity profiling can be used as a complementary approach to genetic screening and allows direct screening of small-molecule inhibitors. We developed a quantitative assay to monitor tyrosine kinase activities and inhibitor sensitivities in a model of chronic myelogenous leukemia using peptide reporters covalently immobilized on Luminex beads. Kinase activity is quantified by nonlinear regression from well-specific internal standard curves. Using optimized synthetic substrates and peptides derived from native substrates as probes, we measured kinase inhibition in cell lysates by the signal transduction inhibitors imatinib and dasatinib. Taking advantage of a convenient 96-well plate format, this assay also allows a straightforward and quantitative analysis of the differential effects of ATP and inhibitors on kinase activity. This method for analyzing a focused signaling network benefits from rigorous statistical analysis and short processing times, thereby offering a powerful tool for drug discovery and clinical testing.
Collapse
MESH Headings
- Antineoplastic Agents/analysis
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Calibration
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor/methods
- Drug Screening Assays, Antitumor/standards
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Microspheres
- Models, Biological
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/analysis
- Protein Kinase Inhibitors/isolation & purification
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Pyridones/pharmacology
- Pyridones/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Signal Transduction/drug effects
- Small Molecule Libraries/analysis
- Time Factors
Collapse
Affiliation(s)
- Juliesta E. Sylvester
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
149
|
Crystal structure of an Aurora-A mutant that mimics Aurora-B bound to MLN8054: insights into selectivity and drug design. Biochem J 2010; 427:19-28. [PMID: 20067443 DOI: 10.1042/bj20091530] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of selective protein kinase inhibitors is often frustrated by the similarity of the enzyme active sites. For this reason, it is challenging to design inhibitors that discriminate between the three Aurora kinases, which are important targets in cancer drug discovery. We have used a triple-point mutant of Aurora-A (AurAx3) which mimics the active site of Aurora-B to investigate the structural basis of MLN8054 selectivity. The bias toward Aurora-A inhibition by MLN8054 is fully recapitulated by AurAx3 in vitro. X-ray crystal structures of the complex suggest that the basis for the discrimination is electrostatic repulsion due to the T217E substitution, which we have confirmed using a single-point mutant. The activation loop of Aurora-A in the AurAx3-MLN8054 complex exhibits an unusual conformation in which Asp274 and Phe275 side chains point into the interior of the protein. There is to our knowledge no documented precedent for this conformation, which we have termed DFG-up. The sequence requirements of the DFG-up conformation suggest that it might be accessible to only a fraction of kinases. MLN8054 thus circumvents the problem of highly homologous active sites. Binding of MLN8054 to Aurora-A switches the character of a pocket within the active site from polar to a hydrophobic pocket, similar to what is observed in the structure of Aurora-A bound to a compound that induces DFG-out. We propose that targeting this pocket may be a productive route in the design of selective kinase inhibitors and describe the structural basis for the rational design of these compounds.
Collapse
|
150
|
Aleksandrov A, Simonson T. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. J Biol Chem 2010; 285:13807-15. [PMID: 20200154 DOI: 10.1074/jbc.m110.109660] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinases transmit cellular signals through a complex mechanism, involving their phosphorylation and switching between inactive and active conformations. The cancer drug imatinib binds tightly to several homologous kinases, including Abl, but weakly to others, including Src. Imatinib specifically targets the inactive, so-called "DFG-out" conformation of Abl, which differs from the preferred, "DFG-in" conformation of Src in the orientation of a conserved Asp-Phe-Gly (DFG) activation loop. However, recent x-ray structures showed that Src can also adopt the DFG-out conformation and uses it to bind imatinib. The Src/Abl-binding free energy difference can thus be decomposed into two contributions. Contribution i measures the different protein-imatinib interactions when either kinase is in its DFG-out conformation. Contribution ii depends on the ability of imatinib to select or induce this conformation, i.e. on the relative stabilities of the DFG-out and DFG-in conformations of each kinase. Neither contribution has been measured experimentally. We use molecular dynamics simulations to show that contribution i is very small, 0.2 +/- 0.6 kcal/mol; imatinib interactions are very similar in the two kinases, including long range electrostatic interactions with the imatinib positive charge. Contribution ii, deduced using the experimental binding free energy difference, is much larger, 4.4 +/- 0.9 kcal/mol. Thus, conformational selection, easy in Abl, difficult in Src, underpins imatinib specificity. Contribution ii has a simple interpretation; it closely approximates the stability difference between the DFG-out and DFG-in conformations of apo-Src. Additional calculations show that conformational selection also governs the relative binding of imatinib to the kinases c-Kit and Lck. These results should help clarify the current framework for engineering kinase signaling.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|