101
|
Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. SCIENCE ADVANCES 2016; 2:e1501235. [PMID: 26824074 PMCID: PMC4730858 DOI: 10.1126/sciadv.1501235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Collapse
Affiliation(s)
- Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andre Zylstra
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Cecilia Castro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Alexandra V. Turchyn
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
102
|
Kosikova T, Hassan NI, Cordes DB, Slawin AMZ, Philp D. Orthogonal Recognition Processes Drive the Assembly and Replication of a [2]Rotaxane. J Am Chem Soc 2015; 137:16074-83. [DOI: 10.1021/jacs.5b09738] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tamara Kosikova
- School
of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Nurul Izzaty Hassan
- School
of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
- School
of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - David B. Cordes
- School
of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Alexandra M. Z. Slawin
- School
of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Douglas Philp
- School
of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
103
|
Vazart F, Latouche C, Skouteris D, Balucani N, Barone V. CYANOMETHANIMINE ISOMERS IN COLD INTERSTELLAR CLOUDS: INSIGHTS FROM ELECTRONIC STRUCTURE AND KINETIC CALCULATIONS. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/810/2/111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
104
|
de la Escosura A, Briones C, Ruiz-Mirazo K. The systems perspective at the crossroads between chemistry and biology. J Theor Biol 2015; 381:11-22. [DOI: 10.1016/j.jtbi.2015.04.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/26/2015] [Indexed: 01/21/2023]
|
105
|
Kistemaker HAV, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV. On the Synthesis of Oligonucleotides Interconnected through Pyrophosphate Linkages. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
106
|
Abstract
The key issue of the origin of life is the origin of a complex system rather than the abiotic formation of various organic substances, small and large. To consider this “origin problem” it is advantageous to abstract some principles from biology and statistical physics to guide our approach. Referring to these principles, we aim to construct a chemical system called “protometabolism,” which would be a precursor of metabolism.
Collapse
|
107
|
Czárán T, Könnyű B, Szathmáry E. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. J Theor Biol 2015; 381:39-54. [PMID: 26087284 DOI: 10.1016/j.jtbi.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Metabolically Coupled Replicator Systems (MCRS) are a family of models implementing a simple, physico-chemically and ecologically feasible scenario for the first steps of chemical evolution towards life. Evolution in an abiotically produced RNA-population sets in as soon as any one of the RNA molecules become autocatalytic by engaging in template directed self-replication from activated monomers, and starts increasing exponentially. Competition for the finite external supply of monomers ignites selection favouring RNA molecules with catalytic activity helping self-replication by any possible means. One way of providing such autocatalytic help is to become a replicase ribozyme. An additional way is through increasing monomer supply by contributing to monomer synthesis from external resources, i.e., by evolving metabolic enzyme activity. Retroevolution may build up an increasingly autotrophic, cooperating community of metabolic ribozymes running an increasingly complicated and ever more efficient metabolism. Maintaining such a cooperating community of metabolic replicators raises two serious ecological problems: one is keeping the system coexistent in spite of the different replicabilities of the cooperating replicators; the other is constraining parasitism, i.e., keeping "cheaters" in check. Surface-bound MCRS provide an automatic solution to both problems: coexistence and parasite resistance are the consequences of assuming the local nature of metabolic interactions. In this review we present an overview of results published in previous articles, showing that these effects are, indeed, robust in different MCRS implementations, by considering different environmental setups and realistic chemical details in a few different models. We argue that the MCRS model framework naturally offers a suitable starting point for the future modelling of membrane evolution and extending the theory to cover the emergence of the first protocell in a self-consistent manner. The coevolution of metabolic, genetic and membrane functions is hypothesized to follow the progressive sequestration scenario, the conceptual blueprint for the earliest steps of protocell evolution.
Collapse
Affiliation(s)
- Tamás Czárán
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Balázs Könnyű
- Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Eörs Szathmáry
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1,1, D-82049, Munich, Germany.
| |
Collapse
|
108
|
Tetrahedron Perspectives. Tetrahedron 2015. [DOI: 10.1016/s0040-4020(15)00745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
109
|
Plöger TA, von Kiedrowski G. A self-replicating peptide nucleic acid. Org Biomol Chem 2015; 12:6908-14. [PMID: 25065957 DOI: 10.1039/c4ob01168f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the non-enzymatic ligation and template-directed synthesis of peptide nucleic acids (PNA) have been reported since 1995, a case of self-replication of PNA has not been achieved yet. Here, we present evidence for autocatalytic feedback in a template directed synthesis of a self-complementary hexa-PNA from two trimeric building blocks. The course of the reaction was monitored in the presence of increasing initial concentrations of the product by RP-HPLC. Kinetic modeling with the SimFit program revealed parabolic growth characteristics. The observed template effect, as well as the rate of ligation, was significantly influenced by nucleophilic catalysts, pH value, and uncharged co-solvents. Systematic optimization of the reaction conditions allowed us to increase the autocatalytic efficiency of the system by two orders of magnitude. Our findings contribute to the hypothesis that PNA may have served as a primordial genetic molecule and was involved in a potential precursor of a RNA world.
Collapse
Affiliation(s)
- Tobias A Plöger
- Ruhr-Universität Bochum, Chair of Organic Chemistry I - Bioorganic Chemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
110
|
Könnyű B, Szilágyi A, Czárán T. In silico ribozyme evolution in a metabolically coupled RNA population. Biol Direct 2015; 10:30. [PMID: 26014147 PMCID: PMC4445502 DOI: 10.1186/s13062-015-0049-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The RNA World hypothesis offers a plausible bridge from no-life to life on prebiotic Earth, by assuming that RNA, the only known molecule type capable of playing genetic and catalytic roles at the same time, could have been the first evolvable entity on the evolutionary path to the first living cell. We have developed the Metabolically Coupled Replicator System (MCRS), a spatially explicit simulation modelling approach to prebiotic RNA-World evolution on mineral surfaces, in which we incorporate the most important experimental facts and theoretical considerations to comply with recent knowledge on RNA and prebiotic evolution. In this paper the MCRS model framework has been extended in order to investigate the dynamical and evolutionary consequences of adding an important physico-chemical detail, namely explicit replicator structure - nucleotide sequence and 2D folding calculated from thermodynamical criteria - and their possible mutational changes, to the assumptions of a previously less detailed toy model. RESULTS For each mutable nucleotide sequence the corresponding 2D folded structure with minimum free energy is calculated, which in turn is used to determine the fitness components (degradation rate, replicability and metabolic enzyme activity) of the replicator. We show that the community of such replicators providing the monomer supply for their own replication by evolving metabolic enzyme activities features an improved propensity for stable coexistence and structural adaptation. These evolutionary advantages are due to the emergent uniformity of metabolic replicator fitnesses imposed on the community by local group selection and attained through replicator trait convergence, i.e., the tendency of replicator lengths, ribozyme activities and population sizes to become similar between the coevolving replicator species that are otherwise both structurally and functionally different. CONCLUSIONS In the most general terms it is the surprisingly high extra viability of the metabolic replicator system that the present model adds to the MCRS concept of the origin of life. Surface-bound, metabolically coupled RNA replicators tend to evolve different, enzymatically active sites within thermodynamically stable secondary structures, and the system as a whole evolves towards the robust coexistence of a complete set of such ribozymes driving the metabolism producing monomers for their own replication.
Collapse
Affiliation(s)
- Balázs Könnyű
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Budapest, Hungary.
| | - András Szilágyi
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary. .,Parmenides Center for the Conceptual Foundations of Science, Munnich/Pullach, Germany.
| | - Tamás Czárán
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary.
| |
Collapse
|
111
|
Andersen JL, Flamm C, Merkle D, Stadler PF. In silicoSupport for Eschenmoser’s Glyoxylate Scenario. Isr J Chem 2015. [DOI: 10.1002/ijch.201400187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
112
|
Bartolami E, Gilles A, Dumy P, Ulrich S. Synthesis of α-PNA containing a functionalized triazine as nucleobase analogue. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
113
|
Dragičević I, Barić D, Kovačević B, Golding BT, Smith DM. Non-enzymatic ribonucleotide reduction in the prebiotic context. Chemistry 2015; 21:6132-43. [PMID: 25754795 DOI: 10.1002/chem.201405741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/02/2015] [Indexed: 12/14/2022]
Abstract
Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non-enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2 S/HS(.) environment, are characterized using computational chemistry. A bio-inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non-cyclical pathways, in which HSS(.) is generated in the final step instead of HS(.) , show a markedly increased thermodynamic driving force (ca. 70 kJ mol(-1) ) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.
Collapse
Affiliation(s)
- Ivan Dragičević
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia); Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar (Bosnia and Herzegovina)
| | | | | | | | | |
Collapse
|
114
|
|
115
|
Srivastava P, Abou El Asrar R, Knies C, Abramov M, Froeyen M, Rozenski J, Rosemeyer H, Herdewijn P. Achiral, acyclic nucleic acids: synthesis and biophysical studies of a possible prebiotic polymer. Org Biomol Chem 2015; 13:9249-60. [DOI: 10.1039/c5ob00898k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for prebiotic, nucleic acid precursors is, at its best, a speculative undertaking.
Collapse
Affiliation(s)
| | | | - C. Knies
- Organic Materials Chemistry and Bioorganic Chemistry
- Institute or Chemistry
- University of Osnabrück
- 49069 Osnabrück
- Germany
| | - M. Abramov
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| | - M. Froeyen
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| | - J. Rozenski
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| | - H. Rosemeyer
- Organic Materials Chemistry and Bioorganic Chemistry
- Institute or Chemistry
- University of Osnabrück
- 49069 Osnabrück
- Germany
| | - P. Herdewijn
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| |
Collapse
|
116
|
Computer Simulation of Amino Acid Oligomerization in Aqueous Solutions Induced by Condensing Agent. J CHEM-NY 2015. [DOI: 10.1155/2015/563065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physical features of the amino acid oligomerization were studied. Growth model of the L-Glu monomer chain induced by the condensing agent in the aqueous solutions with and without metal ions was proposed. Computer simulation of oligomerization process was conducted and from the comparison of the calculated and experimental data attachment energy of the Leuchs anhydride of L-Glu to the oligomer was estimated.
Collapse
|
117
|
Deans RM, Chandrashaker V, Taniguchi M, Lindsey JS. Complexity in structure-directed prebiotic chemistry. Effect of a defective competing reactant in tetrapyrrole formation. NEW J CHEM 2015. [DOI: 10.1039/c5nj01474c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A reactive but defective pyrrole, derived from the simple β-diketone acetylacetone, terminates chain-growth in a quantitative combinatorial manner in tetrapyrrole formation.
Collapse
Affiliation(s)
- Richard M. Deans
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | | |
Collapse
|
118
|
Ribó JM, Blanco C, Crusats J, El-Hachemi Z, Hochberg D, Moyano A. Absolute Asymmetric Synthesis in Enantioselective Autocatalytic Reaction Networks: Theoretical Games, Speculations on Chemical Evolution and Perhaps a Synthetic Option. Chemistry 2014; 20:17250-71. [DOI: 10.1002/chem.201404534] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Indexed: 11/07/2022]
|
119
|
Tetrahedron Perspectives. Tetrahedron 2014. [DOI: 10.1016/s0040-4020(14)01196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
120
|
Méret M, Kopetzki D, Degenkolbe T, Kleessen S, Nikoloski Z, Tellstroem V, Barsch A, Kopka J, Antonietti M, Willmitzer L. From systems biology to systems chemistry: metabolomic procedures enable insight into complex chemical reaction networks in water. RSC Adv 2014. [DOI: 10.1039/c3ra42384k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
121
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
122
|
Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD. The origin of RNA and "my grandfather's axe". ACTA ACUST UNITED AC 2013; 20:466-74. [PMID: 23601635 DOI: 10.1016/j.chembiol.2013.03.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 12/27/2022]
Abstract
The origin of RNA is one of the most formidable problems facing prebiotic chemists. We consider RNA as a product of evolution, as opposed to the more conventional view of RNA as originally being the product of abiotic processes. We have come to accept that life's informational polymers have changed in chemical structure since their emergence, which presents a quandary similar to the paradox of "My Grandfather's Axe". Here, we discuss reasons why all contemporary components of RNA--the nucleobases, ribose, and phosphate--are not likely the original components of the first informational polymer(s) of life. We also evaluate three distinct models put forth as pathways for how the earliest informational polymers might have assembled. We see the quest to uncover the ancestors of RNA as an exciting scientific journey, one that is already providing additional chemical constraints on the origin of life and one that has the potential to produce self-assembling materials, novel catalysis, and bioactive compounds.
Collapse
Affiliation(s)
- Nicholas V Hud
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
123
|
|
124
|
Bissette AJ, Fletcher SP. Mechanisms of Autocatalysis. Angew Chem Int Ed Engl 2013; 52:12800-26. [DOI: 10.1002/anie.201303822] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 12/17/2022]
|
125
|
Stoop M, Meher G, Karri P, Krishnamurthy R. Chemical etiology of nucleic acid structure: the pentulofuranosyl oligonucleotide systems: the (1'→3')-β-L-ribulo, (4'→3')-α-L-xylulo, and (1'→3')-α-L-xylulo nucleic acids. Chemistry 2013; 19:15336-45. [PMID: 24150882 DOI: 10.1002/chem.201302219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 11/11/2022]
Abstract
Under potentially prebiotic scenarios, ribose (pentose), the component of RNA is formed in meager amounts, as opposed to ribulose and xylulose (pentuloses). Consequently, replacement of ribose in RNA, with pentulose sugars, gives rise to prospective oligonucleotide candidates that are potentially prebiotic structural variants of RNA that could be formed by the same type of chemical pathways that gave rise to RNA from ribose. The potentially natural alternative (1'→3')-ribulo oligonucleotides and (4'→3')- and (1'→3')-xylulo oligonucleotides consisting of adenine and thymine were synthesized and found to exhibit no self-pairing or cross-pairing with RNA. This signifies that even though pentulose sugars may have been abundant in a prebiotic scenario, the pentulose nucleic acids (NAs), if and when formed, would not have been competitors of RNA, or interfered with the emergence of RNA as a functional informational system. The reason for the lack of base pairing in pentulose NA highlights the contrasting and central role played by the furanosyl ring in RNA and pentulose NA, enabling and optimizing the base pairing in RNA, while impeding it in pentulose NA.
Collapse
Affiliation(s)
- Matthias Stoop
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8-9573
| | | | | | | |
Collapse
|
126
|
Tetrahedron Perspectives. Tetrahedron 2013. [DOI: 10.1016/s0040-4020(13)01253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
127
|
Butch C, Cope ED, Pollet P, Gelbaum L, Krishnamurthy R, Liotta CL. Production of tartrates by cyanide-mediated dimerization of glyoxylate: a potential abiotic pathway to the citric acid cycle. J Am Chem Soc 2013; 135:13440-5. [PMID: 23914725 PMCID: PMC3777280 DOI: 10.1021/ja405103r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An abiotic formation of meso- and DL-tartrates in 80% yield via the cyanide-catalyzed dimerization of glyoxylate under alkaline conditions is demonstrated. A detailed mechanism for this conversion is proposed, supported by NMR evidence and (13)C-labeled reactions. Simple dehydration of tartrates to oxaloacetate and an ensuing decarboxylation to form pyruvate are known processes that provide a ready feedstock for entry into the citric acid cycle. While glyoxylate and high hydroxide concentration are atypical in the prebiotic literature, there is evidence for natural, abiotic availability of each. It is proposed that this availability, coupled with the remarkable efficiency of tartrate production from glyoxylate, merits consideration of an alternative prebiotic pathway for providing constituents of the citric acid cycle.
Collapse
Affiliation(s)
- Christopher Butch
- School of Chemical and Biological Engineering and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | | | | | |
Collapse
|
128
|
Noe CR, Freissmuth J, Richter P, Miculka C, Lachmann B, Eppacher S. Formaldehyde-a key monad of the biomolecular system. Life (Basel) 2013; 3:486-501. [PMID: 25369818 PMCID: PMC4187169 DOI: 10.3390/life3030486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/17/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022] Open
Abstract
Experiments will be presented and reviewed to support the hypothesis that the intrinsic reactivity of formaldehyde may lead to the formation of a rather comprehensive set of defined biomolecules, including D-glucose, thus fostering concepts of evolution considering the existence of a premetabolic system as a primordial step in the generation of life.
Collapse
Affiliation(s)
- Christian R. Noe
- Department of Medicinal Chemistry, Faculty of Life Science University of Vienna, Althanstr. 14, Vienna 1090, Austria; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-676-7315051; Fax: +43-4277-9551
| | - Jerome Freissmuth
- Department of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, Frankfurt D-60438, Germany; E-Mails: (J.F.); (P.R.); (C.M.)
| | - Peter Richter
- Department of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, Frankfurt D-60438, Germany; E-Mails: (J.F.); (P.R.); (C.M.)
| | - Christian Miculka
- Department of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, Frankfurt D-60438, Germany; E-Mails: (J.F.); (P.R.); (C.M.)
| | - Bodo Lachmann
- Department of Medicinal Chemistry, Faculty of Life Science University of Vienna, Althanstr. 14, Vienna 1090, Austria; E-Mail:
| | - Simon Eppacher
- Department of Medicinal Chemistry, Faculty of Life Science University of Vienna, Althanstr. 14, Vienna 1090, Austria; E-Mail:
| |
Collapse
|
129
|
Blanco C, Crusats J, El-Hachemi Z, Moyano A, Hochberg D, Ribó JM. Spontaneous Emergence of Chirality in the Limited Enantioselectivity Model: Autocatalytic Cycle Driven by an External Reagent. Chemphyschem 2013; 14:2432-40. [DOI: 10.1002/cphc.201300350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 11/09/2022]
|
130
|
Dubrovskii VG, Sibirev NV, Eliseev IE, Vyazmin SY, Boitsov VM, Natochin YV, Dubina MV. Rate equation approach to understanding the ion-catalyzed formation of peptides. J Chem Phys 2013; 138:244906. [PMID: 23822273 DOI: 10.1063/1.4811280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The salt-induced peptide formation is important for assessing and approaching schemes of molecular evolution. Here, we present experimental data and an exactly solvable kinetic model describing the linear polymerization of L-glutamic amino acid in water solutions with different concentrations of KCl and NaCl. The length distributions of peptides are well fitted by the model. Strikingly, we find that KCl considerably enhances the peptide yield, while NaCl does not show any catalytic effect in most cases under our experimental conditions. The greater catalytic effect of potassium ions is entirely interpreted by one and single parameter, the polymerization rate constant that depends on the concentration of a given salt in the reaction mixture. We deduce numeric estimates for the rate constant at different concentrations of the ions and show that it is always larger for KCl. This leads to an exponential increase of the potassium- to sodium-catalyzed peptide concentration ratio with length. Our results show that the ion-catalyzed peptides have a higher probability to emerge in excess potassium rather than in sodium-rich water solutions.
Collapse
Affiliation(s)
- V G Dubrovskii
- St. Petersburg Academic University, Nanotechnology Research and Education Centre RAS, 8∕3 Khlopina str., St. Petersburg 194021, Russia.
| | | | | | | | | | | | | |
Collapse
|
131
|
Prebiotic chemistry: geochemical context and reaction screening. Life (Basel) 2013; 3:331-45. [PMID: 25369745 PMCID: PMC4187135 DOI: 10.3390/life3020331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/23/2022] Open
Abstract
The origin of life on Earth is widely believed to have required the reactions of organic compounds and their self- and/or environmental organization. What those compounds were remains open to debate, as do the environment in and process or processes by which they became organized. Prebiotic chemistry is the systematic organized study of these phenomena. It is difficult to study poorly defined phenomena, and research has focused on producing compounds and structures familiar to contemporary biochemistry, which may or may not have been crucial for the origin of life. Given our ignorance, it may be instructive to explore the extreme regions of known and future investigations of prebiotic chemistry, where reactions fail, that will relate them to or exclude them from plausible environments where they could occur. Come critical parameters which most deserve investigation are discussed.
Collapse
|
132
|
Karri P, Punna V, Kim K, Krishnamurthy R. Base-Pairing Properties of a Structural Isomer of Glycerol Nucleic Acid. Angew Chem Int Ed Engl 2013; 52:5840-4. [DOI: 10.1002/anie.201300795] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/19/2013] [Indexed: 11/09/2022]
|
133
|
Karri P, Punna V, Kim K, Krishnamurthy R. Base-Pairing Properties of a Structural Isomer of Glycerol Nucleic Acid. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
134
|
Dubina MV, Vyazmin SY, Boitsov VM, Nikolaev EN, Popov IA, Kononikhin AS, Eliseev IE, Natochin YV. Potassium ions are more effective than sodium ions in salt induced peptide formation. ORIGINS LIFE EVOL B 2013; 43:109-17. [PMID: 23536046 PMCID: PMC3676736 DOI: 10.1007/s11084-013-9326-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
Abstract
Prebiotic peptide formation under aqueous conditions in the presence of metal ions is one of the plausible triggers of the emergence of life. The salt-induced peptide formation reaction has been suggested as being prebiotically relevant and was examined for the formation of peptides in NaCl solutions. In previous work we have argued that the first protocell could have emerged in KCl solution. Using HPLC-MS/MS analysis, we found that K+ is more than an order of magnitude more effective in the L-glutamic acid oligomerization with 1,1'-carbonyldiimidazole in aqueous solutions than the same concentration of Na+, which is consistent with the diffusion theory calculations. We anticipate that prebiotic peptides could have formed with K+ as the driving force, not Na+, as commonly believed.
Collapse
Affiliation(s)
- Michael V Dubina
- St Petersburg Academic University - Nanotechnology Research and Education Centre RAS, 8/3 Khlopin str, 194021, St Petersburg, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Froese T, Virgo N, Ikegami T. Motility at the origin of life: its characterization and a model. ARTIFICIAL LIFE 2013; 20:55-76. [PMID: 23373982 DOI: 10.1162/artl_a_00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing replicator-first and metabolism-first approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an ximpoverished conception of the phenomenon of life. In particular, we argue that the new consensus has so far failed to consider the relevance of intermediate time scales. We propose that an adequate theory of life must account for the fact that all living beings are situated in at least four distinct time scales, which are typically associated with metabolism, motility, development, and evolution. In this view, self-movement, adaptive behavior, and morphological changes could have already been present at the origin of life. In order to illustrate this possibility, we analyze a minimal model of lifelike phenomena, namely, of precarious, individuated, dissipative structures that can be found in simple reaction-diffusion systems. Based on our analysis, we suggest that processes on intermediate time scales could have already been operative in prebiotic systems. They may have facilitated and constrained changes occurring in the faster- and slower-paced time scales of chemical self-individuation and evolution by natural selection, respectively.
Collapse
Affiliation(s)
- Tom Froese
- Universidad Nacional Autónoma de Mexico and, University of Tokyo
| | | | | |
Collapse
|
136
|
Islam S, Aguilar JA, Powner MW, Nilsson M, Morris GA, Sutherland JD. Detection of potential TNA and RNA nucleoside precursors in a prebiotic mixture by pure shift diffusion-ordered NMR spectroscopy. Chemistry 2013; 19:4586-95. [PMID: 23371787 PMCID: PMC3814424 DOI: 10.1002/chem.201202649] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/12/2012] [Indexed: 11/10/2022]
Abstract
In the context of prebiotic chemistry, one of the characteristics of mixed nitrogenous-oxygenous chemistry is its propensity to give rise to highly complex reaction mixtures. There is therefore an urgent need to develop improved spectroscopic techniques if onerous chromatographic separations are to be avoided. One potential avenue is the combination of pure shift methodology, in which NMR spectra are measured with greatly improved resolution by suppressing multiplet structure, with diffusion-ordered spectroscopy, in which NMR signals from different species are distinguished through their different rates of diffusion. Such a combination has the added advantage of working with intact mixtures, allowing analyses to be carried out without perturbing mixtures in which chemical entities are part of a network of reactions in equilibrium. As part of a systems chemistry approach towards investigating the self-assembly of potentially prebiotic small molecules, we have analysed the complex mixture arising from mixing glycolaldehyde and cyanamide, in a first application of pure shift DOSY NMR to the characterisation of a partially unknown reaction composition. The work presented illustrates the potential of pure shift DOSY to be applied to chemistries that give rise to mixtures of compounds in which the NMR signal resolution is poor. The direct formation of potential RNA and TNA nucleoside precursors, amongst other adducts, was observed. These preliminary observations may have implications for the potentially prebiotic assembly chemistry of pyrimidine threonucleotides, and therefore of TNA, by using recently reported chemistries that yield the activated pyridimidine ribonucleotides.
Collapse
Affiliation(s)
- Saidul Islam
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | | | | | |
Collapse
|
137
|
Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat Commun 2013; 3:1109. [PMID: 23047667 PMCID: PMC3493635 DOI: 10.1038/ncomms2122] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023] Open
Abstract
Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes. Epimerization of carbohydrates to rare sugars yields products that have potential applications as anti-viral drugs or chiral building blocks. Here, Sn-Beta zeolite in the presence of sodium tetraborate is shown to catalyze the selective epimerization of aldoses in aqueous media.
Collapse
|
138
|
Hein JE, Blackmond DG. On the origin of single chirality of amino acids and sugars in biogenesis. Acc Chem Res 2012; 45:2045-54. [PMID: 22353168 DOI: 10.1021/ar200316n] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The process of delineating the origins of the chemistry of life starts with the consideration of the molecules that might have existed on prebiotic earth and extends to the discussion of potential mechanisms for assembly of these molecules into informational polymers capable of self-replication and transmittance of genetic information. At some point along this pathway, the property of single chirality emerges as the hallmark of the amino acids and sugars present in biological molecules. In the 20th century, researchers developed abstract mathematical theses for the origin of biomolecular homochirality from a presumably racemic collection of prebiotic molecules. Before the end of that century, experimental findings corroborated a number of basic features of these theoretical models, but these studies involved chemical systems without direct prebiotic relevance. Currently researchers are examining prebiotically plausible conditions that couple chemical and physical processes leading to single chirality of sugars and amino acids with subsequent chemical reactions that enhance molecular complexity. While these studies have been conducted for the most part in the context of the RNA World hypothesis, the experimental findings remain relevant to a "metabolism first" model for the origin of life. To many chemists interested in chembiogenesis, the synthesis of activated pyrimidine ribonucleotides under potentially prebiotic conditions by Sutherland's group provided a landmark demonstration of what Eschenmoser has described as "an intrinsic structural propinquity" between certain elementary chemical structures and modern biological molecules. Even while some synthetic issues for plausible prebiotic construction of RNA remain unsolved, our work has focused on coupling these synthetic advances with concepts for the evolution of biomlolecular homochirality. Drawing on our own findings as well as those from others, we present an intriguing "chicken or egg" scenario for the emergence of single chirality of sugars and amino acids. Our work incorporates both chemical and physical phenomena that allow for the amplification of a small initial imbalance of either sugars by amino acids or amino acid by sugars, suggesting that an enantioenriched chiral pool of one type of molecule could lead to a similarly enantioenriched pool of the other.
Collapse
Affiliation(s)
- Jason E. Hein
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
139
|
Krishnamurthy R. Role of pK(a) of nucleobases in the origins of chemical evolution. Acc Chem Res 2012; 45:2035-44. [PMID: 22533519 PMCID: PMC3525050 DOI: 10.1021/ar200262x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Indexed: 11/30/2022]
Abstract
The formation of canonical base pairs through Watson-Crick hydrogen bonding sits at the heart of the genetic apparatus. The specificity of the base pairing of adenine with thymine/uracil and guanine with cytosine preserves accurate information for the biochemical blueprint and replicates the instructions necessary for carrying out biological function. The chemical evolution question of how these five canonical nucleobases were selected over various other possibilities remains intriguing. Since these and alternative nucleobases would have been available for chemical evolution, the reasons for the emergence of this system appear to be primarily functional. While investigating the base-pairing properties of structural nucleic acid analogs, we encountered a relationship between the pK(a) of a series of nonstandard (and canonical) nucleobases and the pH of the aqueous medium. This relationship appeared to correspond with the propensity of these molecules to self-assemble via Watson-Crick-type base-pairing interactions. A simple correlation of the "magnitude of the difference between the pK(a) and pH" (pK(a)-pH correlation) enables a general prediction of which types of heterocyclic recognition elements form hydrogen-bonded base pairs in aqueous media. Using the pK(a)-pH relationship, we can rationalize why nature chose the canonical nucleobases in terms of hydrophobic and hydrophilic interactions, and further extrapolate its significance within the context of chemical evolution. The connection between the physicochemical properties of bioorganic compounds and the interactions with their aqueous environment directly affects structure and function, at both a molecular and a supramolecular level. A general structure-function pattern emerges in biomolecules and biopolymers in aqueous media near neutral pH. A pK(a) - pH < 2 generally prompts catalytic functions, central to metabolism, but a difference in pK(a) - pH > 2 seems to result in the emergence of structure, central to replication. While this general trend is observed throughout extant biology, it could have also been an important factor in chemical evolution.
Collapse
Affiliation(s)
- Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
140
|
Abstract
Although it has been notoriously difficult to pin down precisely what is it that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and, in particular, that top-down (or downward) causation-where higher levels influence and constrain the dynamics of lower levels in organizational hierarchies-may be a major contributor to the hierarchal structure of living systems. Here, we propose that the emergence of life may correspond to a physical transition associated with a shift in the causal structure, where information gains direct and context-dependent causal efficacy over the matter in which it is instantiated. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
Collapse
|
141
|
Murtas G. Early self-reproduction, the emergence of division mechanisms in protocells. MOLECULAR BIOSYSTEMS 2012; 9:195-204. [PMID: 23232904 DOI: 10.1039/c2mb25375e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic Biology approaches are proposing model systems and providing experimental evidences that life can arise as spontaneous chemical self-assembly process where the ability to reproduce itself is an essential feature of the living system. The appearance of early cells has required an amphiphilic membrane compartment to confine molecular information against diffusion, and the ability to self-replicate the boundary layer and the genetic information. The initial spontaneous self-replication mechanisms based on thermodynamic instability would have evolved in a prebiotic and later biological catalysis. Early studies demonstrate that fatty acids spontaneously assemble into bilayer membranes, building vesicles able to grow by incorporation of free lipid molecules and divide. Early replication mechanisms may have seen inorganic molecules playing a role as the first catalysts. The emergence of a short ribozyme or short catalytic peptide may have initiated the first prebiotic membrane lipid synthesis required for vesicle growth. The evolution of early catalysts towards the simplest translation machine to deliver proteins from RNA sequences was likely to give early birth to one single enzyme controlling protocell membrane division. The cell replication process assisted by complex enzymes for lipid synthesis is the result of evolved pathways in early cells. Evolution from organic molecules to protocells and early cells, thus from chemistry to biology, may have occurred in and out of the boundary layer. Here we review recent experimental work describing membrane and vesicle division mechanisms based on chemico-physical spontaneous processes, inorganic early catalysis and enzyme based mechanisms controlling early protocell division and finally the feedback from minimal genome studies.
Collapse
Affiliation(s)
- Giovanni Murtas
- Istituto di Farmacologia Traslazionale, CNR, via fosso del Cavaliere 100, 00133, Roma, Italy.
| |
Collapse
|
142
|
|
143
|
Abstract
Synthetic life: the origin of life on the early Earth, and the ex novo transition of non-living matter to artificial living systems are deep scientific challenges that provide a context for the development of new chemistries with unknown technological consequences. This Essay attempts to re-frame some of the epistemological difficulties associated with these questions into an integrative framework of proto-life science. Chemistry is at the heart of this endeavour.
Collapse
Affiliation(s)
- Stephen Mann
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, UK.
| |
Collapse
|
144
|
Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS. Primordial oil slick and the formation of hydrophobic tetrapyrrole macrocycles. ASTROBIOLOGY 2012; 12:1055-1068. [PMID: 23095096 PMCID: PMC3491618 DOI: 10.1089/ast.2012.0857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/26/2012] [Indexed: 06/01/2023]
Abstract
The functional end products of the extant biosynthesis of tetrapyrrole macrocycles in photosynthetic organisms are hydrophobic: chlorophylls and bacteriochlorophylls. A model for the possible prebiogenesis of hydrophobic analogues of nature's photosynthetic pigments was investigated by reaction of acyclic reactants in five media: aqueous solution (pH 7, 60°C, 24 h); aqueous solution containing 0.1 M decanoic acid (which forms a turbid suspension of vesicles); or aqueous solution accompanied by dodecane, mesitylene, or a five-component organic mixture (each of which forms a phase-separated organic layer). The organic mixture was composed of equimolar quantities of decanoic acid, dodecane, mesitylene, naphthalene, and pentyl acetate. The reaction of 1,5-dimethoxy-3-methylpentan-2,4-dione and 1-aminobutan-2-one to give etioporphyrinogens was enhanced in the presence of decanoic acid, affording (following chemical oxidation) etioporphyrins (tetraethyltetramethylporphyrins) in yields of 1.4-10.8% across the concentration range of 3.75-120 mM. The yield of etioporphyrins was greater in the presence of the five-component organic mixture (6.6% at 120 mM) versus that with dodecane or mesitylene (2.1% or 2.9%, respectively). The reaction in aqueous solution with no added oil-slick constituents resulted in phase separation-where the organic reactants themselves form an upper organic layer-and the yield of etioporphyrins was 0.5-2.6%. Analogous reactions leading to uroporphyrins (hydrophilic, eight carboxylic acids) or coproporphyrins (four carboxylic acids) were unaffected by the presence of decanoic acid or dodecane, and all yields were at most ∼2% or ∼8%, respectively. Taken together, the results indicate a facile means for the formation of highly hydrophobic constituents of potential value for prebiotic photosynthesis.
Collapse
Affiliation(s)
- Ana R M Soares
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
145
|
|
146
|
Cintas P, Viedma C. On the physical basis of asymmetry and homochirality. Chirality 2012; 24:894-908. [PMID: 22678980 DOI: 10.1002/chir.22028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/03/2012] [Indexed: 11/05/2022]
Abstract
Mirror symmetry breaking is ubiquitous in our visible universe taking place in elementary particles, atoms, and molecules. Molecular chirality is not biogenic in itself, although its detection is often considered a biosignature, a conjecture inferred from the fact that we do not know life devoid of homochirality. The question of whether there is a connection between the cosmic preference for one enantiomer, as imposed by the weak force, and the single chirality displayed on Earth is vividly debated. This article gives a glimpse on the origin of asymmetry from a cosmological perspective and on physical transformations that lead to an enantiomeric imbalance, leaving chemical reactions essentially aside. These processes are more plausible as sources of prebiotic chirality than asymmetric amplifications requiring unnatural substrates and conditions and fighting against racemization. The latter may actually be a friend, not foe, and a driving force for enantioselection.
Collapse
Affiliation(s)
- Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| | | |
Collapse
|
147
|
Bauwe H, Hagemann M, Kern R, Timm S. Photorespiration has a dual origin and manifold links to central metabolism. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:269-75. [PMID: 22284850 DOI: 10.1016/j.pbi.2012.01.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 12/27/2011] [Accepted: 01/05/2012] [Indexed: 05/19/2023]
Abstract
Photorespiration is a Janus-headed metabolic process: it makes oxygenic photosynthesis possible by scavenging its major toxic by-product, 2-phosphoglycolate, but also leads to high losses of freshly assimilated CO(2) from most land plants. Photorespiration has been often classified as a wasteful process but is now increasingly appreciated as a key ancillary component of photosynthesis and therefore the global carbon cycle. As such, the photorespiratory cycle is one of the major highways for the flow of carbon in the terrestrial biosphere. Recent research revealed that this important pathway originated as a partner of oxygenic photosynthesis billions of years ago and is multiply linked to other pathways of central metabolism of contemporary land plants.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Department of Plant Physiology, Rostock, Germany.
| | | | | | | |
Collapse
|
148
|
Kajjout M, Hebting Y, Albrecht P, Adam P. Reductive coupling of aldehydes by h(2) s in aqueous solutions, a C--C bond forming reaction of prebiotic interest. Chem Biodivers 2012; 9:714-26. [PMID: 22492490 DOI: 10.1002/cbdv.201100124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report here a novel reductive coupling reaction of conjugated, non- or poorly enolizable aldehydes induced by H(2) S and operative in aqueous solutions under prebiotically relevant conditions. This reaction leads from retinal to β-carotene, and from benzylic aldehydes to the corresponding diarylethylenes. This novel reaction also opens a new potentially prebiotic pathway leading from glyoxylic acid to various compounds that are involved in the reductive tricarboxylic acid cycle. This C--C bond forming reaction of prebiotic interest might have been operative, notably, in the sulfide-rich environments of hydrothermal vents, which have been postulated as possible sites for the first steps of organic chemical evolution.
Collapse
Affiliation(s)
- Mohammed Kajjout
- Laboratoire de Biogéochimie Moléculaire, Université de Strasbourg, Institut de Chimie de Strasbourg, Strasbourg
| | | | | | | |
Collapse
|
149
|
Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution. PLoS One 2012; 7:e34166. [PMID: 22493682 PMCID: PMC3320909 DOI: 10.1371/journal.pone.0034166] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 02/05/2023] Open
Abstract
Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities.
Collapse
|
150
|
Huck J, Philp D. Replication Processes-From Autocatalysis to Systems Chemistry. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|