101
|
Guo Y, Zhang P, Zhao Q, Wang K, Luan Y. Reduction-Sensitive Polymeric Micelles Based on Docetaxel-Polymer Conjugates Via Disulfide Linker for Efficient Cancer Therapy. Macromol Biosci 2015; 16:420-31. [PMID: 26647779 DOI: 10.1002/mabi.201500317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/15/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Yuanyuan Guo
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Pei Zhang
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Qingyun Zhao
- Hospital of Traditional Chinese Medicine of Jimo; Shandong Province P. R. China
| | - Kaiming Wang
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| |
Collapse
|
102
|
Shaunak S. Perspective: Dendrimer drugs for infection and inflammation. Biochem Biophys Res Commun 2015; 468:435-41. [DOI: 10.1016/j.bbrc.2015.07.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
|
103
|
Chang M, Zhang F, Wei T, Zuo T, Guan Y, Lin G, Shao W. Smart linkers in polymer–drug conjugates for tumor-targeted delivery. J Drug Target 2015; 24:475-91. [DOI: 10.3109/1061186x.2015.1108324] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Minglu Chang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fang Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting Wei
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tiantian Zuo
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yuanyuan Guan
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Guimei Lin
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Shao
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
104
|
Scherer M, Fischer K, Depoix F, Fritz T, Thiermann R, Mohr K, Zentel R. Pentafluorophenyl Ester-based Polymersomes as Nanosized Drug-Delivery Vehicles. Macromol Rapid Commun 2015; 37:60-66. [DOI: 10.1002/marc.201500444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/16/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Martin Scherer
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55099 Mainz Germany
| | - Karl Fischer
- Institute of Physical Chemistry; Johannes Gutenberg University Mainz; Jakob-Welder-Weg 11 55099 Mainz Germany
| | - Frank Depoix
- Institute of Zoology; Johannes Gutenberg University Mainz; J.-J.-Becher-Weg 7 55128 Mainz Germany
| | - Thomas Fritz
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg University Mainz; Staudinger Weg 5 55128 Mainz Germany
| | | | - Kristin Mohr
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55099 Mainz Germany
| |
Collapse
|
105
|
Cui L, Zhang F, Wang Q, Lin H, Yang C, Zhang T, Tong R, An N, Qu F. NIR light responsive core-shell nanocontainers for drug delivery. J Mater Chem B 2015; 3:7046-7054. [PMID: 32262707 DOI: 10.1039/c5tb00709g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel near infrared (NIR)-triggered anticancer drug delivery system has been successfully constructed. Firstly, upconversion nanoparticles (UCNPs, NaYF4:Tm,Yb@NaYF4) were synthesized as a core and mesoporous silica (mSiO2) as a shell to assemble the core-shell nanostructure (UCNP@mSiO2) as the host. Supramolecular nanovalves based on α-cyclodextrin (α-CD) torus encircling a pimelic acid thread and being held in place by a cleavable stopper (nitrobenzyl alcohol) were used as nanoscopic caps to block the pore and inhibit drug diffusion. Upon irradiation with a 980 nm laser on the nanocomposites, the emitted ultraviolet light (UV, 360 nm) photocleaved the o-nitrobenzyl (ONB) photolabile group, causing these α-CD caps to dissociate from the stalk and release the drug. The "Ladder" pulsatile release-profiles, regulated by varying the intensity and time duration of NIR irradiation, further reveal the light-triggered release performance. In addition, without NIR irradiation, few immaturities ensure the high pharmacological efficacy. Moreover, the elaborate cell experiments, by using HeLa as model cancer cells, were also carried out to reveal the good biocompatibility, fast uptake and NIR light-sensitive toxicity. Therefore, the novel NIR light-triggered drug delivery system displays great potential for cancer therapy.
Collapse
Affiliation(s)
- Liru Cui
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Gorshkov NI, Pokhvoshchev YV, Murko AY, Nazarova OV, Zolotova YI, Krasikov VD, Panarin EF. Complexation of N-vinylpyrrolidone–N-allylamine copolymer with perrhenate ion in aqueous solutions. DOKLADY CHEMISTRY 2015. [DOI: 10.1134/s001250081506004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
107
|
Wang X, Li Y, Xu G, Liu M, Xue L, Liu L, Hu S, Zhang Y, Nie Y, Liang S, Wang B, Ding J. Mechanism study of peptide GMBP1 and its receptor GRP78 in modulating gastric cancer MDR by iTRAQ-based proteomic analysis. BMC Cancer 2015; 15:358. [PMID: 25943993 PMCID: PMC4430905 DOI: 10.1186/s12885-015-1361-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/23/2015] [Indexed: 12/28/2022] Open
Abstract
Background Multidrug resistance (MDR) is a major obstacle to the treatment of gastric cancer (GC). Using a phage display approach, we previously obtained the peptide GMBP1, which specifically binds to the surface of MDR gastric cancer cells and is subsequently internalized. Furthermore, GMBP1 was shown to have the potential to reverse the MDR phenotype of gastric cancer cells, and GRP78 was identified as the receptor for this peptide. The present study aimed to investigate the mechanism of peptide GMBP1 and its receptor GRP78 in modulating gastric cancer MDR. Methods Fluorescence-activated cell sorting (FACS) and immunofluorescence staining were used to investigate the subcellular location and mechanism of GMBP1 internalization. iTRAQ was used to identify the MDR-associated downstream targets of GMBP1. Differentially expressed proteins were identified in GMBP1-treated compared to untreated SGC7901/ADR and SGC7901/VCR cells. GO and KEGG pathway analyses of the differentially expressed proteins revealed the interconnection of these proteins, the majority of which are involved in MDR. Two differentially expressed proteins were selected and validated by western blotting. Results GMBP1 and its receptor GRP78 were found to be localized in the cytoplasm of GC cells, and GRP78 can mediate the internalization of GMBP1 into MDR cells through the transferrin-related pathway. In total, 3,752 and 3,749 proteins were affected in GMBP1-treated SGC7901/ADR and SGC7901/VCR cells, respectively, involving 38 and 79 KEGG pathways. Two differentially expressed proteins, CTBP2 and EIF4E, were selected and validated by western blotting. Conclusion This study explored the role and downstream mechanism of GMBP1 in GC MDR, providing insight into the role of endoplasmic reticulum stress protein GRP78 in the MDR of cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1361-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojuan Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Yani Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Muhan Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Lin Xue
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Lijuan Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Sijun Hu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Ying Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Shuhui Liang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Biaoluo Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| | - Jie Ding
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, 710032, China.
| |
Collapse
|
108
|
Chang M, Lu S, Zhang F, Zuo T, Guan Y, Wei T, Shao W, Lin G. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf B Biointerfaces 2015; 129:175-82. [DOI: 10.1016/j.colsurfb.2015.03.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 01/07/2023]
|
109
|
Barghi L, Asgari D, Barar J, Nakhlband A, Valizadeh H. Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles. Asian Pac J Cancer Prev 2015; 15:10281-7. [DOI: 10.7314/apjcp.2014.15.23.10281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
110
|
Lin Z, Li J, He H, Kuang H, Chen X, Xie Z, Jing X, Huang Y. Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra15663c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pH-sensitive drug release system using acetalated-dextran as valves was designed to manipulate smart intracellular release of anticancer drugs.
Collapse
Affiliation(s)
- Zhe Lin
- Research and Development Center
- Changchun University of Chinese Medicine
- Changchun 130117
- P. R. China
| | - Jizhen Li
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Hongyan He
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Huihui Kuang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
111
|
Wang H, He J, Cao D, Zhang M, Li F, Tam KC, Ni P. Synthesis of an acid-labile polymeric prodrug DOX-acetal-PEG-acetal-DOX with high drug loading content for pH-triggered intracellular drug release. Polym Chem 2015. [DOI: 10.1039/c5py00569h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PEGylated doxorubicin (DOX) prodrugs with high drug loading content have been prepared via a combination of CuAAC “click” reaction and ammonolysis reaction, which can be used for pH-triggered delivery of doxorubicin.
Collapse
Affiliation(s)
- Hairong Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Dongling Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Fei Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Kam Chiu Tam
- Department of Chemical Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| |
Collapse
|
112
|
Duro-Castano A, Movellan J, Vicent MJ. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater Sci 2015; 3:1321-34. [DOI: 10.1039/c5bm00166h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Branched polymers own special properties derived from their intrinsic characteristics. These properties make them ideal candidates to be used as carriers for an improved generation of polymer-drug conjugates.
Collapse
Affiliation(s)
- A. Duro-Castano
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - J. Movellan
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - M. J. Vicent
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| |
Collapse
|
113
|
Conejos-Sánchez I, Cardoso I, Oteo-Vives M, Romero-Sanz E, Paul A, Sauri AR, Morcillo MA, Saraiva MJ, Vicent MJ. Polymer-doxycycline conjugates as fibril disrupters: an approach towards the treatment of a rare amyloidotic disease. J Control Release 2014; 198:80-90. [PMID: 25481444 DOI: 10.1016/j.jconrel.2014.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/01/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
The term amyloidosis describes neurological diseases where an abnormal protein is misfolded and accumulated as deposits in organs and tissues, known as amyloid, disrupting their normal function. In the most common familial amyloid polyneuropathy (FAP), transthyretin (TTR) displays this role primarily affecting the peripheral nervous system (PNS). Advanced stages of this inherited rare amyloidosis, present as fibril deposits that are responsible for disease progression. In order to stop disease progression, herein we designed an efficient family of nanoconjugates as fibril disrupters. These polymer conjugates are based on doxycycline (doxy), already in phase II trials for Alzheimer's disease, covalently linked to poly-l-glutamic acid (PGA). The conjugates were rationally designed, looking at drug loading and drug release rate by adequate linker design, always considering the physiological conditions at the molecular target site. Conjugation of doxycycline exhibited greater potential towards TTR fibril disaggregation in vitro compared to the parent drug. Exhaustive physico-chemical evaluation of these polymer-drug conjugates concluded that drug release was unnecessary for activity, highlighting the importance of an appropriate linker. Furthermore, biodistribution studies through optical imaging (OI) and the use of radiolabelled polymer-drug conjugates demonstrated conjugate safety profile and renal clearance route of the selected PGA-doxy candidate, settling the adequacy of our conjugate for future in vivo evaluation. Furthermore, preliminary studies in an FAP in vivo model at early stages of disease development showed non-organ toxicity evidences. This nanosized-system raises a promising treatment for advanced stages of this rare amyloidotic disease, and also presents a starting point for possible application within other amyloidosis-related diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Inmaculada Conejos-Sánchez
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Isabel Cardoso
- Instituto de Biología Molecular e Celular (IBMC), Rua do Campo Alegre 823, Porto 4150-180, Portugal
| | - Marta Oteo-Vives
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit, CIEMAT, Av. Complutense 40, Madrid 28040, Spain
| | - Eduardo Romero-Sanz
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit, CIEMAT, Av. Complutense 40, Madrid 28040, Spain
| | - Alison Paul
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Amparo Ruiz Sauri
- Pathology Department, University of Valencia, Blasco Ibáñez 15, Valencia 46010, Spain
| | - Miguel A Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit, CIEMAT, Av. Complutense 40, Madrid 28040, Spain
| | - Maria J Saraiva
- Instituto de Biología Molecular e Celular (IBMC), Rua do Campo Alegre 823, Porto 4150-180, Portugal
| | - María J Vicent
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| |
Collapse
|
114
|
Kojima C, Niki Y, Ogawa M, Magata Y. Prolonged local retention of subcutaneously injected polymers monitored by noninvasive SPECT imaging. Int J Pharm 2014; 476:164-8. [DOI: 10.1016/j.ijpharm.2014.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/19/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
|
115
|
Cui L, Lin H, Yang C, Han X, Zhang T, Qu F. Synthesis of Multifunctional Fe3O4@mSiO2@Au Core-Shell Nanocomposites for pH-Responsive Drug Delivery. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
116
|
Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. Int J Pharm 2014; 473:286-95. [DOI: 10.1016/j.ijpharm.2014.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
|
117
|
Li G, Li Y, Tang Y, Zhang Y, Zhang Y, Yin T, Xu H, Cai C, Tang X. Hydroxyethyl starch conjugates for improving the stability, pharmacokinetic behavior and antitumor activity of 10-hydroxy camptothecin. Int J Pharm 2014; 471:234-44. [DOI: 10.1016/j.ijpharm.2014.05.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/15/2014] [Accepted: 05/19/2014] [Indexed: 11/15/2022]
|
118
|
Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev 2014; 75:32-52. [PMID: 24735676 DOI: 10.1016/j.addr.2014.04.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
Dry powder inhaler (DPI) products have traditionally comprised a simple formulation of micronised drug mixed with a carrier excipient, typically lactose monohydrate. The presence of the carrier is aimed at overcoming issues of poor flowability and dispersibility, associated with the cohesive nature of small, micronised active pharmaceutical ingredient (API) particles. Both the powder blend and the DPI device must be carefully designed so as to ensure detachment of the micronised drug from the carrier excipient on inhalation. Over the last two decades there has been a significant body of research undertaken on the design of carrier-free formulations for DPI products. Many of these formulations are based on sophisticated particle engineering techniques; a common aim in formulation design of carrier-free products being to reduce the intrinsic cohesion of the particles, while maximising dispersion and delivery from the inhaler. In tandem with the development of alternative formulations has been the development of devices designed to ensure the efficient delivery and dispersion of carrier-free powder on inhalation. In this review we examine approaches to both the powder formulation and inhaler design for carrier-free DPI products.
Collapse
|
119
|
Liu X, Yu D, Jin C, Song X, Cheng J, Zhao X, Qi X, Zhang G. A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. NEW J CHEM 2014. [DOI: 10.1039/c4nj00579a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
120
|
Tauhardt L, Pretzel D, Bode S, Czaplewska JA, Kempe K, Gottschaldt M, Schubert US. Synthesis and in vitro
activity of platinum containing 2-oxazoline-based glycopolymers. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lutz Tauhardt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stefan Bode
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Justyna A. Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Dutch Polymer Institute (DPI); John F. Kennedylaan 2; 5612 AB Eindhoven The Netherlands
| |
Collapse
|
121
|
Kinoshita J, Fushida S, Tsukada T, Oyama K, Watanabe T, Shoji M, Okamoto K, Nakanuma S, Sakai S, Makino I, Furukawa H, Hayashi H, Nakamura K, Inokuchi M, Nakagawara H, Miyashita T, Tajima H, Takamura H, Ninomiya I, Fujimura T, Masakazu Y, Hirakawa K, Ohta T. Comparative study of the antitumor activity of Nab-paclitaxel and intraperitoneal solvent-based paclitaxel regarding peritoneal metastasis in gastric cancer. Oncol Rep 2014; 32:89-96. [PMID: 24859429 DOI: 10.3892/or.2014.3210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
Abstract
Intraperitoneal (i.p.) chemotherapy with paclitaxel (PTX) has been shown to be a promising treatment strategy for peritoneal metastasis. The present study focused on the comparative evaluation of the therapeutic efficacy of nanoparticle albumin-bound PTX (Nab-PTX) and i.p. administration of the conventional solvent-based PTX (Sb-PTX). We also investigated the difference in antitumor activity depending on the route of administration in the Nab-PTX treatment. Nab-PTX was administered i.p. or intravenously (i.v.) and Sb-PTX was administered i.p. at equitoxic and equal doses to nude mice bearing gastric cancer OCUM-2MD3 cell subcutaneous and peritoneal xenografts. Therapeutic efficacy of Sb-PTX and Nab-PTX was evaluated as inhibition of tumor growth using a peritoneal metastatic model with subcutaneous xenografts. The survival rate was also investigated using mouse peritoneal models. For assessment of subcutaneous tumors, the change in tumor volume was measured, and for assessment of peritoneal tumors, the weight of ascitic fluid and the total peritoneal tumor burden were measured for each individual mouse. At equitoxic doses, treatment with Nab-PTX resulted in a greater reduction in the size of subcutaneous tumors and the weight of ascites and peritoneal burden as compared with i.p. Sb-PTX (p<0.05). Treatment with i.p. and i.v. Nab-PTX also achieved greater survival benefit than i.p. Sb-PTX (p<0.05). In contrast, there was no significant difference in the degree of tumor reduction and the survival time between both drugs at equal doses. With regard to the route of administration, the antitumor efficacy of Nab-PTX after i.v. administration was equivalent to the efficacy after i.p. administration. These results suggest that i.v. Nab-PTX may be another encouraging treatment option that can target peritoneal dissemination in gastric cancer.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoya Tsukada
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Katsunobu Oyama
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Toshihumi Watanabe
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Masatoshi Shoji
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Seisho Sakai
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroyuki Furukawa
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Keishi Nakamura
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Masahumi Inokuchi
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hidehiro Tajima
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Fujimura
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yashiro Masakazu
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Tetsuo Ohta
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
122
|
Georgieva D, Kostova B, Ivanova S, Rachev D, Tzankova V, Kondeva-Burdina M, Christova D. pH-Sensitive cationic copolymers of different macromolecular architecture as potential dexamethasone sodium phosphate delivery systems. J Pharm Sci 2014; 103:2406-13. [PMID: 24961490 DOI: 10.1002/jps.24059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023]
Abstract
This paper describes the synthesis and characterization of cationic copolymers with different macromolecular architecture and drug delivery properties of the corresponding dexamethasone sodium phosphate (DSP)-loaded systems. Copolyelectrolytes comprising poly[2-(acryloyloxy)ethyl] trimethylammonium chloride (PAETMAC) and poly(ethylene glycol) blocks as well as a tri-arm star-shaped PAETMAC were synthesized using cerium(IV) ion-mediated polymerization method. The obtained copolyelectrolytes and corresponding ionic associates with DSP have been characterized by (1)H NMR, Fourier Transform Infrared spectroscopy, and differential scanning calorimetry. The average diameter, size distribution, and ζ-potential of the copolymers and DSP-copolymer ionic associates were determined by dynamic light scattering, and particles were visualized by scanning electron microscopy and transmission electron microscopy. The biocompatibility and cytotoxicity of obtained copolymers were determined. In vitro drug release experiments were carried out to estimate the ability of the obtained nanoparticles for sustained release of DSP for a period of 24 h.
Collapse
Affiliation(s)
- Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University - Sofia, 1000 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
123
|
Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J. Smart chemistry in polymeric nanomedicine. Chem Soc Rev 2014; 43:6982-7012. [DOI: 10.1039/c4cs00133h] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
124
|
McRae
Page S, Henchey E, Chen X, Schneider S, Emrick T. Efficacy of polyMPC-DOX prodrugs in 4T1 tumor-bearing mice. Mol Pharm 2014; 11:1715-20. [PMID: 24750072 PMCID: PMC4018119 DOI: 10.1021/mp500009r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 01/22/2023]
Abstract
We report the in vivo efficacy, in tumor-bearing mice, of cancer prodrugs consisting of poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) conjugated to doxorubicin (DOX). Our synthesis of polyMPC-DOX conjugates established prodrugs with tunable drug loading, pH sensitive release kinetics, and a maximum tolerated dose in the range of 30-50 mg/kg (DOX equivalent) in healthy mice. Here we show prolonged circulation of polyMPC-DOX, with a measured in vivo half-life (t1/2) 8 times greater than that of the free drug. We observed reduced drug uptake in healthy tissue, and 2-3 times enhanced drug accumulation in tumors for polyMPC-DOX prodrugs compared to free DOX, using BALB/c mice bearing 4T1 tumors. Prolonged survival and reduced tumor growth were observed in mice receiving the polyMPC-DOX prodrug treatment. Moreover, we evaluated immunogenicity of polyMPC-DOX prodrugs by examining complete blood count (CBC) and characteristic cytokine responses, demonstrating no apparent innate or adaptive immune system response.
Collapse
Affiliation(s)
- Samantha McRae
Page
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Elizabeth Henchey
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, Massachusetts 01199, United States
| | - Xiangji Chen
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Sallie Schneider
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, Massachusetts 01199, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
125
|
Guo Y, Yuan H, Claudio NM, Kura S, Shakerdge N, Mempel TR, Bacskai BJ, Josephson L. PEG-like nanoprobes: multimodal, pharmacokinetically and optically tunable nanomaterials. PLoS One 2014; 9:e95406. [PMID: 24781778 PMCID: PMC4004541 DOI: 10.1371/journal.pone.0095406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/25/2014] [Indexed: 11/21/2022] Open
Abstract
“PEG-like Nanoprobes” (PN’s) are pharmacokinetically and optically tunable nanomaterials whose disposition in biological systems can be determined by fluorescence or radioactivity. PN’s feature a unique design where a single PEG polymer surrounds a short fluorochrome and radiometal bearing peptide, and endows the resulting nanoprobe with pharmacokinetic control (based on molecular weight of the PEG selected) and optical tunability (based on the fluorochrome selected), while the chelate provides a radiolabeling option. PN’s were used to image brain capillary angiography (intravital 2-photon microscopy), tumor capillary permeability (intravital fluorescent microscopy), and the tumor enhanced permeability and retention (EPR) effect (111In-PN and SPECT). Clinical applications of PN’s include use as long blood half-life fluorochromes for intraoperative angiography, for measurements of capillary permeability in breast cancer lesions, and to image EPR by SPECT, for stratifying patient candidates for long-circulating nanomedicines that may utilize the EPR mechanism.
Collapse
Affiliation(s)
- Yanyan Guo
- Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hushan Yuan
- Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Natalie M. Claudio
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Sreekanth Kura
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Naomi Shakerdge
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Thorsten R. Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Brian J. Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Lee Josephson
- Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
126
|
Lächelt U, Wittmann V, Müller K, Edinger D, Kos P, Höhn M, Wagner E. Synthetic polyglutamylation of dual-functional MTX ligands for enhanced combined cytotoxicity of poly(I:C) nanoplexes. Mol Pharm 2014; 11:2631-9. [PMID: 24754871 DOI: 10.1021/mp500017u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The antifolate drug methotrexate (MTX) can serve as a dual-functional ligand in antitumoral drug delivery, inducing both a folate receptor mediated cellular uptake and an intracellular cytotoxic action. Bioactivity of MTX however changes by conjugation; the activity can be affected by the hampered intracellular conversion to more potent poly-γ-glutamyl derivatives. Therefore, in a cancer combination therapy approach for the codelivery of cytotoxic dsRNA polyinosinic-polycytidylic acid poly(I:C), a set of molecularly precise oligo(ethanamino)amides were synthesized comprising poly(ethylene glycol) conjugated MTX ligands. The conjugates differed in the number of additional glutamic acid residues to investigate the effect of different degrees of synthetic "a priori" polyglutamylation. The bioactivity of these compounds concerning dihydrofolate reductase (DHFR) inhibition, cytotoxicity, nucleic acid binding potency, cellular uptake of poly(I:C) polyplexes, and combined antifolate/poly(I:C) toxicity was investigated. Synthetic polyglutamylation had a crucial impact on several stages of efficient poly(I:C) delivery and combined MTX cytotoxicity. DHFR inhibition of the conjugates significantly increased with increasing polyglutamate chain length. The library member with highest glutamylation degree even outperformed free MTX in direct comparison. Studies in KB cells showed the corresponding enhanced cytotoxicity by polyglutamylation. Also poly(I:C) polyplexes of the glutamylated MTX variants exhibited higher cellular uptake in the folate receptor positive cell line. Finally, a synergistic combined cytotoxicity of polyglutamylated MTX ligands and complexed poly(I:C) cargo was observed in transfected KB cells. The present structure-activity relationship study of MTX-based ligands pinpoints the concept of synthetic polyglutamylation as a promising approach for optimizing bioactivity of antifolate conjugates, which might be considered as a useful tool also in context of other drug delivery systems.
Collapse
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-University Munich , Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
Syntheses of Macromolecular Ruthenium Compounds: A New Approach for the Search of Anticancer Drugs. INORGANICS 2014. [DOI: 10.3390/inorganics2010096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
128
|
Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5076-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release 2014; 178:25-45. [DOI: 10.1016/j.jconrel.2013.12.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022]
|
130
|
Fonseca NA, Gregório AC, Valério-Fernandes A, Simões S, Moreira JN. Bridging cancer biology and the patients' needs with nanotechnology-based approaches. Cancer Treat Rev 2014; 40:626-35. [PMID: 24613464 DOI: 10.1016/j.ctrv.2014.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 01/27/2023]
Abstract
Cancer remains as stressful condition and a leading cause of death in the western world. Actual cornerstone treatments of cancer disease rest as an elusive alternative, offering limited efficacy with extensive secondary effects as a result of severe cytotoxic effects in healthy tissues. The advent of nanotechnology brought the promise to revolutionize many fields including oncology, proposing advanced systems for cancer treatment. Drug delivery systems rest among the most successful examples of nanotechnology. Throughout time they have been able to evolve as a function of an increased understanding from cancer biology and the tumor microenvironment. Marketing of Doxil® unleashed a remarkable impulse in the development of drug delivery systems. Since then, several nanocarriers have been introduced, with aspirations to overrule previous technologies, demonstrating increased therapeutic efficacy besides decreased toxicity. Spatial and temporal targeting to cancer cells has been explored, as well as the use of drug combinations co-encapsulated in the same particle as a mean to take advantage of synergistic interactions in vivo. Importantly, targeted delivery of siRNA for gene silencing therapy has made its way to the clinic for a "first in man" trial using lipid-polymeric-based particles. Focusing in state-of-the-art technology, this review will provide an insightful vision on nanotechnology-based strategies for cancer treatment, approaching them from a tumor biology-driven perspective, since their early EPR-based dawn to the ones that have truly the potential to address unmet medical needs in the field of oncology, upon targeting key cell subpopulations from the tumor microenvironment.
Collapse
Affiliation(s)
- Nuno A Fonseca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana C Gregório
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Angela Valério-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João N Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
131
|
|
132
|
Emoto S, Sunami E, Yamaguchi H, Ishihara S, Kitayama J, Watanabe T. Drug development for intraperitoneal chemotherapy against peritoneal carcinomatosis from gastrointestinal cancer. Surg Today 2014; 44:2209-20. [PMID: 24482110 DOI: 10.1007/s00595-014-0848-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022]
Abstract
Intraperitoneal (IP) chemotherapy for peritoneal carcinomatosis (PC) from gastrointestinal cancer has been investigated and applied clinically for several decades. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy have been considered to be the optimal treatment options for selected patients with colorectal and gastric cancers with PC. Accumulating evidence suggests that the administration of IP paclitaxel for patients with PC from gastric cancer may improve the patient survival. The pharmacokinetics of such treatment should be considered to optimize IP chemotherapy. In addition, newly emerging molecular-targeted therapies and research into new drug delivery systems, such as nanomedicine or controlled absorption/release methods, are essential to improve the effects of IP chemotherapy. This review summarizes the current status and future prospects of IP chemotherapy for the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
133
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
134
|
Abstract
Cancer nanotechnology is currently under intense development for applications in cancer imaging, molecular diagnosis and targeted therapy. The basic rationale is that nanometer-sized particles, such as biodegradable micelles, semiconductor quantum dots and iron oxide nanocrystals, have functional or structural properties that are not available from either molecular or macroscopic agents. When linked with biotargeting ligands, such as monoclonal antibodies, peptides or small molecules, these nanoparticles are used to target malignant tumors with high affinity and specificity. In the 'mesoscopic' size range of 5-100 nm in diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic or magnetic) and therapeutic (e.g., anticancer) agents. Recent advances have led to multifunctional nanoparticle probes for molecular and cellular imaging, nanoparticle drugs for targeted therapy, and integrated nanodevices for early cancer detection and screening. These developments have opened exciting opportunities for personalized oncology in which cancer detection, diagnosis and therapy are tailored to each individual's molecular profile, and also for predictive oncology, in which genetic/molecular information is used to predict tumor development, progression and clinical outcome.
Collapse
Affiliation(s)
- May D Wang
- Georgia Institute of Technology, Department of Biomedical Engineering, and Emory University, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
135
|
Zhu D, Wen HM, Li W, Cui XB, Ma L, Kang A. pH-responsive drug release from porous zinc sulfide nanospheres based on coordination bonding. RSC Adv 2014. [DOI: 10.1039/c4ra05277c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pH responsive system is reported based on the “COOH–Zn2+–drug” architecture via coordination bonding in ZnS nanospheres' mesopores.
Collapse
Affiliation(s)
- Dong Zhu
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023, P. R. China
| | - Hong-Mei Wen
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023, P. R. China
| | - Wei Li
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023, P. R. China
| | - Xiao-Bing Cui
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023, P. R. China
| | - Li Ma
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023, P. R. China
| | - An Kang
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023, P. R. China
| |
Collapse
|
136
|
Holowka EP, Bhatia SK. Controlled-Release Systems. Drug Deliv 2014. [DOI: 10.1007/978-1-4939-1998-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
137
|
Bui DT, Nicolas J, Maksimenko A, Desmaële D, Couvreur P. Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chem Commun (Camb) 2014; 50:5336-8. [DOI: 10.1039/c3cc47427e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
138
|
Polymer–Drug Conjugate in Focal Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
139
|
Steinbach T, Wurm F, Klok HA. Squaric acid mediated bioconjugation expanded to polymers prepared by ATRP. Polym Chem 2014. [DOI: 10.1039/c4py00168k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
140
|
Chytil P, Hoffmann S, Schindler L, Kostka L, Ulbrich K, Caysa H, Mueller T, Mäder K, Etrych T. Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release II: Impact of release rate on biodistribution. J Control Release 2013; 172:504-12. [DOI: 10.1016/j.jconrel.2013.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 01/21/2023]
|
141
|
Yu X, Yang X, Horte S, Kizhakkedathu JN, Brooks DE. A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment. Biomaterials 2013; 35:278-86. [PMID: 24112803 DOI: 10.1016/j.biomaterials.2013.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/16/2013] [Indexed: 01/24/2023]
Abstract
Solid tumors generally exhibit an acidic microenvironment which has been recognized as a potential route to distinguishing tumor from normal tissue for purposes of drug delivery or imaging. To this end we describe a pH and temperature sensitive polymeric adhesive that can be derivatized to carry drugs or other agents and can be tuned synthetically to bind to tumor cells at pH 6.8 but not at pH 7.4 at 37 °C. The adhesive is based on the universal reaction between membrane phosphatidyl choline (PC) molecules and polymers derivatized with multiple copies of the inverse motif, choline phosphate (CP). The polymer family we use is a linear copolymer of a CP terminated tetraethoxymethacrylate and dimethylaminoethyl (DMAE) methacrylate, the latter providing pH sensitivity. The copolymer exhibits a lower critical solution temperature (LCST) just below 37 °C when the DMAE is uncharged at pH 7.4 but the LCST does not occur when the group is charged at pH 6.8 due to the ionization hydrophilicity. At 37 °C the polymer binds strongly to mammalian cells at pH 6.8 but does not bind at pH 7.4, potentially targeting tumor cells existing in an acidic microenvironment. We show the binding is strong, reversible if the pH is raised and is followed rapidly by cellular uptake of the fluorescently labeled material. Drug delivery utilizing this dually responsive family of polymers should provide a basis for targeting tumor cells with minimal side reactions against untransformed counterparts.
Collapse
Affiliation(s)
- Xifei Yu
- Centre for Blood Research, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, UBC, Canada
| | | | | | | | | |
Collapse
|
142
|
Rub MA, Asiri AM, Khan JM, Khan RH, Kabir-ud Din. Interaction of gelatin with promethazine hydrochloride: Conductimetry, tensiometry and circular dichroism studies. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
143
|
Synthesis, Characterization and Kinetic Release Profile of Iron Containing Polymeric Co-conjugates with Antiproliferative Activity. J Inorg Organomet Polym Mater 2013. [DOI: 10.1007/s10904-013-9968-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
144
|
Liu F, Li M, Liu C, Liu Y, Liang Y, Wang F, Zhang N. Tumor-Specific Delivery and Therapy by Double-Targeted DTX-CMCS-PEG-NGR Conjugates. Pharm Res 2013; 31:475-88. [DOI: 10.1007/s11095-013-1176-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 08/08/2013] [Indexed: 12/15/2022]
|
145
|
Bondar O, Sagitova A, Badeev Y, Shtyrlin Y, Abdullin T. Conjugation of succinic acid to non-ionogenic amphiphilic polymers modulates their interaction with cell plasma membrane and reduces cytotoxic activity. Colloids Surf B Biointerfaces 2013; 109:204-11. [DOI: 10.1016/j.colsurfb.2013.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/10/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
|
146
|
Nukolova NV, Oberoi HS, Zhao Y, Chekhonin VP, Kabanov AV, Bronich TK. LHRH-targeted nanogels as a delivery system for cisplatin to ovarian cancer. Mol Pharm 2013; 10:3913-21. [PMID: 23957812 DOI: 10.1021/mp4003688] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeted drug delivery using multifunctional polymeric nanocarriers is a modern approach for cancer therapy. Our purpose was to prepare targeted nanogels for selective delivery of chemotherapeutic agent cisplatin to luteinizing hormone-releasing hormone (LHRH) receptor overexpressing tumor in vivo. Building blocks of such delivery systems consisted of innovative soft block copolymer nanogels with ionic cores serving as a reservoir for cisplatin (loading 35%) and a synthetic analogue of LHRH conjugated to the nanogels via poly(ethylene glycol) spacer. Covalent attachment of (D-Lys6)-LHRH to nanogels was shown to be possible without loss in either the ligand binding affinity or the nanogel drug incorporation ability. LHRH-nanogel accumulation was specific to the LHRH-receptor positive A2780 ovarian cancer cells and not toward LHRH-receptor negative SKOV-3 cells. The LHRH-nanogel cisplatin formulation was more effective and less toxic than equimolar doses of free cisplatin or untargeted nanogels in the treatment of receptor-positive ovarian cancer xenografts in mice. Collectively, the study indicates that LHRH mediated nanogel-cisplatin delivery is a promising formulation strategy for therapy of tumors that express the LHRH receptor.
Collapse
Affiliation(s)
- Natalia V Nukolova
- Department of Chemistry, Lomonosov Moscow State University , Leninskie Gory, Moscow, 119992, Russia
| | | | | | | | | | | |
Collapse
|
147
|
Sha B, Gao W, Wang S, Gou X, Li W, Liang X, Qu Z, Xu F, Lu TJ. Oxidative stress increased hepatotoxicity induced by nano-titanium dioxide in BRL-3A cells and Sprague-Dawley rats. J Appl Toxicol 2013; 34:345-56. [DOI: 10.1002/jat.2900] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/13/2013] [Accepted: 04/21/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Baoyong Sha
- Lab of Cell Biology & Translational Medicine; Xi'an Medical University; Xi'an 710021 People's Republic of China
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
- Bioinspired Engineering and Biomechanics Center; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Wei Gao
- Department of Anesthesiology, the First Affiliated Hospital of Medical College; Xi'an Jiaotong University; Xi'an 710061 People's Republic of China
| | - Shuqi Wang
- Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Xingchun Gou
- Lab of Cell Biology & Translational Medicine; Xi'an Medical University; Xi'an 710021 People's Republic of China
| | - Wei Li
- Graduate School of the Fourth Military Medical University; Xi'an 710032 People's Republic of China
| | - Xuan Liang
- Department of Stomatology; Second Provincial People's Hospital of Gansu; Lanzhou 730000 People's Republic of China
| | - Zhiguo Qu
- School of Thermal Energy and Power Engineering; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
- Bioinspired Engineering and Biomechanics Center; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| |
Collapse
|
148
|
Liu F, Feng L, Zhang L, Zhang X, Zhang N. Synthesis, characterization and antitumor evaluation of CMCS–DTX conjugates as novel delivery platform for docetaxel. Int J Pharm 2013; 451:41-9. [DOI: 10.1016/j.ijpharm.2013.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/08/2013] [Accepted: 04/08/2013] [Indexed: 01/08/2023]
|
149
|
A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett 2013; 339:247-59. [PMID: 23792224 DOI: 10.1016/j.canlet.2013.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022]
Abstract
Multidrug resistance (MDR) remains a significant challenge to the clinical treatment of gastric cancer (GC). In the present study, using a phage display approach combined with MTT assays, we screened a specific peptide GMBP1 (Gastric cancer MDR cell-specific binding peptide), ETAPLSTMLSPY, which could bind to the surface of GC MDR cells specifically and reverse their MDR phenotypes. Immunocytochemical staining showed that the potential receptor of GMBP1 was located at the membrane and cytoplasm of MDR cells. In vitro and in vivo drug sensitivity assays, FACS analysis and Western blotting confirmed that GMBP1 was able to re-sensitize MDR cells to chemical drugs. Western blotting and proteomic approaches were used to screen the receptor of GMBP1, and GRP78, a MDR-related protein, was identified as a receptor of GMBP1. This result was further supported by immunofluoresence microscopy and Western blot. Additionally, Western blotting demonstrated that pre-incubation of GMBP1 in MDR cells greatly diminished MDR1, Bcl-2 and GRP78 expression but increased the expression of Bax, whereas downregulation of GRP78, function as a receptor and directly target for GMBP1, only inhibited MDR1 expression. Our findings suggest that GMBP1 could re-sensitize GC MDR cells to a variety of chemotherapeutic agents and this role might be mediated partly through down-regulating GRP78 expression and then inhibiting MDR1 expression. These findings indicate that peptide GMBP1 likely recognizes a novel GRP78 receptor and mediates cellular activities associated with the MDR phenotype, which provides new insight into research on the management of MDR in gastric cancer cells.
Collapse
|
150
|
Tanaka M, Kataoka H, Yano S, Ohi H, Kawamoto K, Shibahara T, Mizoshita T, Mori Y, Tanida S, Kamiya T, Joh T. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells. BMC Cancer 2013; 13:237. [PMID: 23672493 PMCID: PMC3659059 DOI: 10.1186/1471-2407-13-237] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 05/08/2013] [Indexed: 12/16/2022] Open
Abstract
Background Cisplatin (CDDP) is the most frequently used chemotherapeutic agent for various types of advanced cancer, including gastric cancer. However, almost all cancer cells acquire resistance against CDDP, and this phenomenon adversely affects prognosis. Thus, new chemotherapeutic agents that can overcome the CDDP-resistant cancer cells will improve the survival of advanced cancer patients. Methods We synthesized new glycoconjugated platinum (II) and palladium (II) complexes, [PtCl2 (L)] and [PdCl2 (L)]. CDDP-resistant gastric cancer cell lines were established by continuous exposure to CDDP, and gene expression in the CDDP-resistant gastric cancer cells was analyzed. The cytotoxicity and apoptosis induced by [PtCl2 (L)] and [PdCl2 (L)] in CDDP-sensitive and CDDP-resistant gastric cancer cells were evaluated. DNA double-strand breaks by drugs were assessed by evaluating phosphorylated histone H2AX. Xenograft tumor mouse models were established and antitumor effects were also examined in vivo. Results CDDP-resistant gastric cancer cells exhibit ABCB1 and CDKN2A gene up-regulation, as compared with CDDP-sensitive gastric cancer cells. In the analyses of CDDP-resistant gastric cancer cells, [PdCl2 (L)] overcame cross-resistance to CDDP in vitro and in vivo. [PdCl2 (L)] induced DNA double-strand breaks. Conclusion These results indicate that [PdCl2 (L)] is a potent chemotherapeutic agent for CDDP-resistant gastric cancer and may have clinical applications.
Collapse
Affiliation(s)
- Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|