101
|
Nieminen HJ, Salmi A, Karppinen P, Hæggström E, Hacking SA. The potential utility of high-intensity ultrasound to treat osteoarthritis. Osteoarthritis Cartilage 2014; 22:1784-99. [PMID: 25106678 DOI: 10.1016/j.joca.2014.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a widespread musculoskeletal disease that reduces quality of life and for which there is no cure. The treatment of OA is challenging since cartilage impedes the local and systemic delivery of therapeutic compounds (TCs). This review identifies high-intensity ultrasound (HIU) as a non-contact technique to modify articular cartilage and subchondral bone. HIU enables new approaches to overcome challenges associated with drug delivery to cartilage and new non-invasive approaches for the treatment of joint disease. Specifically, HIU has the potential to facilitate targeted drug delivery and release deep within cartilage, to repair soft tissue damage, and to physically alter tissue structures including cartilage and bone. The localized, non-invasive ultrasonic delivery of TCs to articular cartilage and subchondral bone appears to be a promising technique in the immediate future.
Collapse
Affiliation(s)
- H J Nieminen
- Department of Physics, University of Helsinki, Finland.
| | - A Salmi
- Department of Physics, University of Helsinki, Finland.
| | - P Karppinen
- Department of Physics, University of Helsinki, Finland.
| | - E Hæggström
- Department of Physics, University of Helsinki, Finland.
| | - S A Hacking
- Department of Orthopaedics, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
102
|
Agrawal K, Ebel JG, Bischoff K. A rapid screen for four corticosteroids in equine synovial fluid. J Anal Toxicol 2014; 38:272-9. [PMID: 24713534 DOI: 10.1093/jat/bku030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most antidoping method development in the equine industry has been for plasma and urine, though there has been recent interest in the analysis of synovial fluid for evidence of doping by intra-articular corticosteroid injection. Published methods for corticosteroid analysis in synovial fluid are primarily singleplex methods, do not screen for all corticosteroids of interest and are not adequately sensitive. The purpose of this study is to develop a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) screening method for the detection of four of the most common intra-articularly administered corticosteroids--betamethasone, methylprednisolone, methylprednisolone acetate and triamcinolone acetonide. Sample preparation consisted of protein precipitation followed by a basified liquid-liquid extraction. LC-MS-MS experiments consisted of a six-min isocratic separation using a Phenomenex Polar-RP stationary phase and a mobile phase consisting of 35% acetonitrile, 5 mM ammonium acetate and 0.1% formic acid in nanopure water. The detection system used was a triple quadrupole mass analyzer with thermospray ionization, and compounds were identified using selective reaction monitoring. The method was validated to the ISO/IEC 17025 standard, and real synovial fluid samples were analyzed to demonstrate the application of the method in an antidoping context. The method was highly selective for the four corticosteroids with limits of detection of 1-3 ng/mL. The extraction efficiency was 50-101%, and the matrix effects were 14-31%. These results indicate that the method is a rapid and sensitive screen for the four corticosteroids in equine synovial fluid, fit for purpose for equine antidoping assays.
Collapse
Affiliation(s)
- Karan Agrawal
- 1Department of Forensic and Analytical Science, King's College London, London, UK
| | | | | |
Collapse
|
103
|
Labens R, Lascelles BDX, Charlton AN, Ferrero NR, Van Wettere AJ, Xia XR, Blikslager AT. Ex vivo effect of gold nanoparticles on porcine synovial membrane. Tissue Barriers 2014; 1:e24314. [PMID: 24665389 PMCID: PMC3879126 DOI: 10.4161/tisb.24314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) have great potential as carriers for local drug delivery and as a primary therapeutic for treatment of inflammation. Here we report on the AuNP-synovium interaction in an ex vivo model of intra-articular application for treatment of joint inflammation. Sheets of porcine femoropatellar synovium were obtained post mortem and each side of the tissue samples was maintained in a separate fluid environment. Permeability to AuNPs of different sizes (5-52 nm) and biomarker levels of inflammation were determined to characterize the ex vivo particle interaction with the synovium. Lipopolysaccharide or recombinant human interleukin-1β were added to fluid environments to assess the ex vivo effect of pro-inflammatory factors on permeability and biomarker levels. The synovium showed size selective permeability with only 5 nm AuNPs effectively permeating the entire tissues' width. This process was further governed by particle stability in the fluid environment. AuNPs reduced matrix metalloproteinase and lactate dehydrogenase activity and hyaluronic acid concentrations but had no effect on prostaglandin E2 levels. Exposure to pro-inflammatory factors did not significantly affect AuNP permeation or biomarker levels in this model. Results with ex vivo tissue modeling of porcine synovium support an anti-inflammatory effect of AuNPs warranting further investigation.
Collapse
Affiliation(s)
- Raphael Labens
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - B Duncan X Lascelles
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Anna N Charlton
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Nicole R Ferrero
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Arnaud J Van Wettere
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Xin-Riu Xia
- Department of Biology; College of Agriculture and Life Sciences; North Carolina State University; Raleigh, NC USA
| | - Anthony T Blikslager
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| |
Collapse
|
104
|
Drugs and Polymers for Delivery Systems in OA Joints: Clinical Needs and Opportunities. Polymers (Basel) 2014. [DOI: 10.3390/polym6030799] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
105
|
Torres-Guzman AM, Morado-Urbina CE, Alvarado-Vazquez PA, Acosta-Gonzalez RI, Chávez-Piña AE, Montiel-Ruiz RM, Jimenez-Andrade JM. Chronic oral or intraarticular administration of docosahexaenoic acid reduces nociception and knee edema and improves functional outcomes in a mouse model of Complete Freund's Adjuvant-induced knee arthritis. Arthritis Res Ther 2014; 16:R64. [PMID: 24612981 PMCID: PMC4060174 DOI: 10.1186/ar4502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/20/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Clinical and preclinical studies have shown that supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs) reduce joint destruction and inflammation present in rheumatoid arthritis (RA). However, the effects of individual ω-3 PUFAs on chronic arthritic pain have not been evaluated to date. Thus, our aim in this study was to examine whether purified docosahexaenoic acid (DHA, an ω-3 PUFA) reduces spontaneous pain-related behavior and knee edema and improves functional outcomes in a mouse model of knee arthritis. Methods Unilateral arthritis was induced by multiple injections of Complete Freund’s Adjuvant (CFA) into the right knee joints of male ICR adult mice. Mice that received CFA injections were then chronically treated from day 15 until day 25 post–initial CFA injection with oral DHA (10, 30 and 100 mg/kg daily) or intraarticular DHA (25 and 50 μg/joint twice weekly). Spontaneous flinching of the injected extremity (considered as spontaneous pain-related behavior), vertical rearing and horizontal exploratory activity (considered as functional outcomes) and knee edema were assessed. To determine whether an endogenous opioid mechanism was involved in the therapeutic effect of DHA, naloxone (NLX, an opioid receptor antagonist, 3 mg/kg subcutaneously) was administered in arthritic mice chronically treated with DHA (30 mg/kg by mouth) at day 25 post–CFA injection. Results The intraarticular CFA injections resulted in increasing spontaneous flinching and knee edema of the ipsilateral extremity as well as worsening functional outcomes as time progressed. Chronic administration of DHA, given either orally or intraarticularly, significantly improved horizontal exploratory activity and reduced flinching behavior and knee edema in a dose-dependent manner. Administration of NLX did not reverse the antinociceptive effect of DHA. Conclusions To the best of our knowledge, this report is the first to demonstrate DHA’s antinociceptive and anti-inflammatory effects as individual ω-3 PUFAs following sustained systemic and intraarticular administration in a mouse model of CFA-induced knee arthritis. The results suggest that DHA treatment may offer a new therapeutic approach to alleviate inflammation as well as a beneficial effect on pain-related functional disabilities in RA patients.
Collapse
|
106
|
Willett NJ, Thote T, Lin ASP, Moran S, Raji Y, Sridaran S, Stevens HY, Guldberg RE. Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development. Arthritis Res Ther 2014; 16:R47. [PMID: 24499554 PMCID: PMC3978824 DOI: 10.1186/ar4476] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 01/27/2014] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Micronized dehydrated human amnion/chorion membrane (μ-dHACM) is derived from donated human placentae and has anti-inflammatory, low immunogenic and anti-fibrotic properties. The objective of this study was to quantitatively assess the efficacy of μ-dHACM as a disease modifying intervention in a rat model of osteoarthritis (OA). It was hypothesized that intra-articular injection of μ-dHACM would attenuate OA progression. METHODS Lewis rats underwent medial meniscal transection (MMT) surgery to induce OA. Twenty four hours post-surgery, μ-dHACM or saline was injected intra-articularly into the rat joint. Naïve rats also received μ-dHACM injections. Microstructural changes in the tibial articular cartilage were assessed using equilibrium partitioning of an ionic contrast agent (EPIC-μCT) at 21 days post-surgery. The joint was also evaluated histologically and synovial fluid was analyzed for inflammatory markers at 3 and 21 days post-surgery. RESULTS There was no measured baseline effect of μ-dHACM on cartilage in naïve animals. Histological staining of treated joints showed presence of μ-dHACM in the synovium along with local hypercellularity at 3 and 21 days post-surgery. In MMT animals, development of cartilage lesions at 21 days was prevented and number of partial erosions was significantly reduced by treatment with μ-dHACM. EPIC-μCT analysis quantitatively showed that μ-dHACM reduced proteoglycan loss in MMT animals. CONCLUSIONS μ-dHACM is rapidly sequestered in the synovial membrane following intra-articular injection and attenuates cartilage degradation in a rat OA model. These data suggest that intra-articular delivery of μ-dHACM may have a therapeutic effect on OA development.
Collapse
|
107
|
Sandker MJ, Petit A, Redout EM, Siebelt M, Müller B, Bruin P, Meyboom R, Vermonden T, Hennink WE, Weinans H. In situ forming acyl-capped PCLA–PEG–PCLA triblock copolymer based hydrogels. Biomaterials 2013; 34:8002-11. [DOI: 10.1016/j.biomaterials.2013.07.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/12/2013] [Indexed: 11/25/2022]
|
108
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
109
|
Huang J, Qu S, Wang J, Yang D, Duan K, Weng J. Reciprocating sliding wear behavior of alendronate sodium-loaded UHMWPE under different tribological conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3001-9. [DOI: 10.1016/j.msec.2013.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 03/03/2013] [Accepted: 03/16/2013] [Indexed: 11/25/2022]
|
110
|
Ryan SM, McMorrow J, Umerska A, Patel HB, Kornerup KN, Tajber L, Murphy EP, Perretti M, Corrigan OI, Brayden DJ. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J Control Release 2013; 167:120-9. [PMID: 23391443 DOI: 10.1016/j.jconrel.2013.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022]
Abstract
Prolonged inappropriate inflammatory responses contribute to the pathogenesis of rheumatoid arthritis (RA) and to aspects of osteoarthritis (OA). The orphan nuclear receptor, NR4A2, is a key regulator and potential biomarker for inflammation and represents a potentially valuable therapeutic target. Both salmon calcitonin (sCT) and hyaluronic acid (HA) attenuated activated mRNA expression of NR4A1, NR4A2, NR4A3, and matrix metalloproteinases (MMPs) 1, 3 and 13 in three human cell lines: SW1353 chondrocytes, U937 and THP-1 monocytes. Ad-mixtures of sCT and HA further down-regulated expression of NR4A2 compared to either agent alone at specific concentrations, hence the rationale for their formulation in nanocomplexes (NPs) using chitosan. The sCT released from NP stimulated cAMP production in human T47D breast cancer cells expressing sCT receptors. When NP were injected by the intra-articular (I.A.) route to the mouse knee during on-going inflammatory arthritis of the K/BxN serum transfer model, joint inflammation was reduced together with NR4A2 expression, and local bone architecture was preserved. These data highlight remarkable anti-inflammatory effects of sCT and HA at the level of reducing NR4A2 mRNA expression in vitro. Combining them in NP elicits anti-arthritic effects in vivo following I.A. delivery.
Collapse
Affiliation(s)
- Sinéad M Ryan
- Environmental Health Research Institute, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Cathal Brugha St., Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Use of in vitro release models in the design of sustained and localized drug delivery systems for subcutaneous and intra-articular administration. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50048-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
112
|
Inflammation and Joint Tissue Interactions in OA: Implications for Potential Therapeutic Approaches. ARTHRITIS 2012; 2012:741582. [PMID: 22745906 PMCID: PMC3382955 DOI: 10.1155/2012/741582] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/04/2012] [Accepted: 04/26/2012] [Indexed: 01/15/2023]
Abstract
It is increasingly recognized that the pathogenesis of cartilage degradation in osteoarthritis (OA) is multifactorial and involves the interactions between cartilage and its surrounding tissues. These interactions regulate proinflammatory cytokine-mediated cartilage destruction, contributing to OA progression as well as cartilage repair. This review explores the pathogenesis of OA in the context of the multiple tissue types in the joint and discusses the implications of such complex tissue interaction in the development of anti-inflammatory therapeutics for the treatment of OA.
Collapse
|
113
|
In vitro release from oil injectables for intra-articular administration: Importance of interfacial area, diffusivity and partitioning. Eur J Pharm Sci 2012; 45:351-7. [DOI: 10.1016/j.ejps.2011.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/23/2022]
|
114
|
New delivery systems for local anaesthetics-part 2. Anesthesiol Res Pract 2011; 2012:289373. [PMID: 22190921 PMCID: PMC3235421 DOI: 10.1155/2012/289373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022] Open
Abstract
Part 2 of this paper deals with the techniques for drug delivery of topical and injectable local anaesthetics. The various routes of local anaesthetic delivery (epidural, peripheral, wound catheters, intra-nasal, intra-vesical, intra-articular, intra-osseous) are explored. To enhance transdermal local anaesthetic permeation, additional methods to the use of an eutectic mixture of local anaesthetics and the use of controlled heat can be used. These methods include iontophoresis, electroporation, sonophoresis, and magnetophoresis. The potential clinical uses of topical local anaesthetics are elucidated. Iontophoresis, the active transportation of a drug into the skin using a constant low-voltage direct current is discussed. It is desirable to prolong local anaesthetic blockade by extending its sensory component only. The optimal release and safety of the encapsulated local anaesthetic agents still need to be determined. The use of different delivery systems should provide the clinician with both an extended range and choice in the degree of prolongation of action of each agent.
Collapse
|