101
|
Voelkl J, Alesutan I, Primessnig U, Feger M, Mia S, Jungmann A, Castor T, Viereck R, Stöckigt F, Borst O, Gawaz M, Schrickel JW, Metzler B, Katus HA, Müller OJ, Pieske B, Heinzel FR, Lang F. AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes. J Mol Cell Cardiol 2016; 97:36-43. [PMID: 27106803 DOI: 10.1016/j.yjmcc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Uwe Primessnig
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martina Feger
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Sobuj Mia
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Tatsiana Castor
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Robert Viereck
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Florian Stöckigt
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Oliver Borst
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Jan Wilko Schrickel
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Bernhard Metzler
- Department of Medicine - Cardiology, Medical University Innsbruck, Anichstr.35, 6020 Innsbruck, Austria
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiology, University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Frank R Heinzel
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Lang
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
102
|
Daskalopoulos EP, Dufeys C, Beauloye C, Bertrand L, Horman S. AMPK in Cardiovascular Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:179-201. [PMID: 27812981 DOI: 10.1007/978-3-319-43589-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter summarizes the implication of AMP-activated protein kinase (AMPK) in the regulation of various physiological and pathological cellular events of great importance for the maintenance of cardiac function. These include the control of both metabolic and non-metabolic elements targeting the different cellular components of the cardiac tissue, i.e., cardiomyocytes, fibroblasts, and vascular cells. The description of the multifaceted action of the two AMPK catalytic isoforms, α1 and α2, emphasizes the general protective action of this protein kinase against the development of critical pathologies like myocardial ischemia, cardiac hypertrophy, diabetic cardiomyopathy, and heart failure.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cardiovascular Research (Care) Institute, Athens, Ioannina, Greece
| | - Cécile Dufeys
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| |
Collapse
|