Sarno S, Ghisellini P, Pinna LA. Unique activation mechanism of protein kinase CK2. The N-terminal segment is essential for constitutive activity of the catalytic subunit but not of the holoenzyme.
J Biol Chem 2002;
277:22509-14. [PMID:
11956194 DOI:
10.1074/jbc.m200486200]
[Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CK2 is an essential, ubiquitous, and highly pleiotropic protein kinase whose catalytic subunits (alpha and alpha') and holoenzyme (composed by two catalytic and two regulatory beta-subunits) are both constitutively active, a property that is suspected to contribute to its pathogenic potential. Extensive interactions between the N-terminal segment and the activation loop are suspected to underlie the high constitutive activity of the isolated catalytic subunit. Here we show that a number of point mutations (Tyr(26) --> Phe, Glu(180) --> Ala, Tyr(182) --> Phe) and deletions (Delta 2-6, Delta 2-12, Delta 2-18, Delta 2-24, Delta 2-30) expected to affect these interactions are more or less detrimental to catalytic activity of the alpha-subunit of human CK2, the deleted mutants Delta 2-24 and Delta 2-30 being nearly inactive under normal assay conditions. Kinetic analyses showed that impaired catalytic activity of mutants Delta 2-12, Delta 2-18, Delta 2-24, and Y182F is mainly accounted for by dramatic increases in the K(m) values for ATP, whereas a drop in K(cat) with K(m) values almost unchanged was found with mutants Y26F and E180A. Holoenzyme reconstitution restored the activity of mutants Delta 2-12, Delta 2-18, Y26F, E180A, and Y182F to wild type level and also conferred catalytic activity to the intrinsically inactive mutants, Delta 2-24 and Delta 2-30. These data demonstrate that specific interactions between the N-terminal segment and the activation loop are essential to provide a fully active conformation to the catalytic subunits of CK2; they also show that these interactions become dispensable upon formation of the holoenzyme, whose constitutive activity is conferred by the beta-subunit through a different mechanism.
Collapse