101
|
Şanal T, Koçak İ, Hazer B. Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1757-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
102
|
Wang Y, Luo C, Yang G, Wei X, Liu D, Zhou S. A Luteolin-Loaded Electrospun Fibrous Implantable Device for Potential Therapy of Gout Attacks. Macromol Biosci 2016; 16:1598-1609. [DOI: 10.1002/mabi.201600123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yi Wang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Chao Luo
- School of Medicine; Tibet University; Lhasa 850012 P. R. China
| | - Guang Yang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| |
Collapse
|
103
|
Soares JMD, Silva JC, Almeida JRGS, Quintans J uacute nior LJ, de OHP. Electrospun fibers for wound healing and treatment of hyperglycemia: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
104
|
Ianiro A, Jiménez-Pardo I, Esteves ACC, Tuinier R. One-pot, solvent-free, metal-free synthesis and UCST-based purification of poly(ethylene oxide)/poly-ε-caprolactone block copolymers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alessandro Ianiro
- Department of Chemical Engineering and Chemistry; Laboratory of Physical Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; Eindhoven The Netherlands
| | - Isabel Jiménez-Pardo
- Department of Chemical Engineering and Chemistry; Laboratory of Physical Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; Eindhoven The Netherlands
| | - A. Catarina C. Esteves
- Department of Chemical Engineering and Chemistry; Laboratory of Physical Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; Eindhoven The Netherlands
| | - Remco Tuinier
- Department of Chemical Engineering and Chemistry; Laboratory of Physical Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; Eindhoven The Netherlands
| |
Collapse
|
105
|
Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F. Interface and Confinement Induced Order and Orientation in Thin Films of Poly(ϵ-caprolactone). Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wilhelm Kossack
- Fakultät
für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Anne Seidlitz
- Institut
für Physik, FG Experimentelle Polymerphysik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Thomas Thurn-Albrecht
- Institut
für Physik, FG Experimentelle Polymerphysik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Friedrich Kremer
- Fakultät
für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
106
|
Bajsić EG, Mijović B, Penava NV, Grgurić TH, Slouf M, Zdraveva E. The effect of UV irradiation on the electrospun PCL/TiO2composites fibers. J Appl Polym Sci 2016. [DOI: 10.1002/app.43539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emi Govorčin Bajsić
- Faculty of Chemical Engineering and Technology; Department of Polymer Engineering and Organic Chemical Technology, University of Zagreb; Marulicev trg 19 Zagreb HR-10000 Croatia
| | - Budimir Mijović
- Faculty of Textile Technology; Department of Basic, Natural and Technical Sciences, University of Zagreb; Prilaz baruna Filipovica 28 a Zagreb HR-10000 Croatia
| | - Nina Vranješ Penava
- Faculty of Chemical Engineering and Technology; Department of Polymer Engineering and Organic Chemical Technology, University of Zagreb; Marulicev trg 19 Zagreb HR-10000 Croatia
| | - Tamara Holjevac Grgurić
- Faculty of Metallurgy; Department of Physical Metallurgy, University of Zagreb; Aleja narodnih heroja 3 Sisak HR-44103 Croatia
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry of the as CR; v.v.i, Heyrovskeho nam. 2 16206 Czech Republic
| | - Emilija Zdraveva
- Faculty of Textile Technology; Department of Basic, Natural and Technical Sciences, University of Zagreb; Prilaz baruna Filipovica 28 a Zagreb HR-10000 Croatia
| |
Collapse
|
107
|
Qu Q, Wang Y, Zhang L, Zhang X, Zhou S. A Nanoplatform with Precise Control over Release of Cargo for Enhanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1378-1390. [PMID: 26763197 DOI: 10.1002/smll.201503292] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/02/2015] [Indexed: 06/05/2023]
Abstract
The development of a nanocarrier delivery system having both sufficient stability in blood circulation and a rapid drug release profile at target sites remains a major challenge in cancer therapy. Here, a multifunctional star-shaped micellar system with a precisely spatiotemporal control of releasing encapsulated agents is developed by mixing a photoinitiated crosslinking amphiphilic copolymer with a phenylboronic acid (PBA)-functionalized redox-sensitive amphiphilic copolymer for the first time. The combination of the functional polymers effectively resolves the contradiction that the micellar system cannot release the rapid drug release in cells when it possesses an extreme stability that is often required in blood circulation. In this system, the inner core polymers are photo-crosslinked, endowing a stable micelle matrix structure; the end groups of the hydrophilic segments are decorated with PBA ligands, providing an active targeting ability; disulfide bonds in the micellar matrix impart a redox-responsive trigger for the prompt intracellular release of drugs. As a result, with a relatively low DOX dosage (2 mg kg(-1) per injection) the in vivo antitumor effect on H22-bearing BALB/c mice shows that the micelles have a high therapeutic efficacy against solid tumors while minimal side effects against normal tissues.
Collapse
Affiliation(s)
- Qianqian Qu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lei Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaobin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
108
|
Hu J, Zong Y, Li J, Zhou X, Zhang J, Zhu T, Jiao M, Su H, Bo B. In Vitro and In Vivo Evaluation of Targeted Sunitinib-Loaded Polymer Microbubbles Against Proliferation of Renal Cell Carcinoma. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:589-597. [PMID: 26921089 DOI: 10.7863/ultra.14.10038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVES The poor safety profile of sunitinib capsules has encouraged the identification of targeted drug delivery systems against renal cell carcinoma. This study aimed to explore the effect of sunitinib-loaded microbubbles along with ultrasound (US) treatment on proliferation and apoptosis of human GRC-1 granulocyte renal carcinoma cells in vitro and in vivo (xenograft tumor growth in nude mice). METHODS Liposomes containing sunitinib were prepared by using the transmembrane ammonium sulfate gradient method and then absorbed into polymer microbubbles to generate sunitinib-loaded microbubbles. Entrapment of sunitinib was verified by 25-25-[N-[(7-nitro-2-1,3-benzoxadiazol-4-yl)methyl]amino]-27-norcholesterol staining. GRC-1 cells were treated with microbubbles alone, liposomes alone, sunitinib alone, sunitinib-loaded microbubbles without and with US, and no treatment (control). Cell survival and apoptosis were assessed at 12, 24, and 48 hours after treatment. Xenograft tumors were induced by implantation of GRC-1 cells in nude mice. The animals with tumors were then randomly assigned to sunitinib alone, sunitinib-loaded microbubbles - US, sunitinib-loaded microbubbles + US, and no treatment (control; n = 10 per group). The tumor volumes were analyzed on the 7th, 15th, and 21st days. RESULTS The sunitinib entrapment efficiency in the liposomes was approximately 78%. The effective sunitinib concentration in each group was 0.1 μg/mL. The sunitinib-loaded microbubble + US group showed a lower in vitro cell survival rate (P < .001) compared with the other groups. Greater in vivo inhibition of xenograft tumor growth was also observed in the sunitinib-loaded microbubble + US group compared with the other groups. CONCLUSIONS Combined sunitinib-loaded microbubbles and US treatment significantly inhibits growth of renal carcinoma cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Hu
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Yujin Zong
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Jun Li
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Xiaodong Zhou
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Jun Zhang
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Ting Zhu
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Mingke Jiao
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Haili Su
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Bin Bo
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| |
Collapse
|
109
|
Elvers D, Song CH, Steinbüchel A, Leker J. Technology Trends in Biodegradable Polymers: Evidence from Patent Analysis. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1125918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
110
|
Manjili HK, Sharafi A, Danafar H, Hosseini M, Ramazani A, Ghasemi MH. Poly(caprolactone)–poly(ethylene glycol)–poly(caprolactone) (PCL–PEG–PCL) nanoparticles: a valuable and efficient system for in vitro and in vivo delivery of curcumin. RSC Adv 2016. [DOI: 10.1039/c5ra24942b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Curcumin was encapsulated within PCL–PEG–PCL micelles through a single-step nano-precipitation method, leading to the creation of CUR/PCL–PEG–PCL micelles..
Collapse
Affiliation(s)
- Hamidreza Kheiri Manjili
- Pharmaceutical Nanotechnology Department
- School of Pharmacy
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
- Cancer Gene Therapy Research Center
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
- Department of Medicinal Chemistry
| | - Mirjamal Hosseini
- Department of Pharmacology and Toxicology
- School of Pharmacy
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Mohammad Hossein Ghasemi
- Department of Medicinal Chemistry
- School of Pharmacy
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| |
Collapse
|
111
|
Zhou J, Chau Y. Different oligoarginine modifications alter endocytic pathways and subcellular trafficking of polymeric nanoparticles. Biomater Sci 2016; 4:1462-72. [DOI: 10.1039/c6bm00371k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Different length of oligoarginine ligands alter both endocytic pathways and subcellular trafficking of PEG-b-PCL nanoparticles.
Collapse
Affiliation(s)
- Junli Zhou
- Department of Chemical and Biomolecular Engineering
- The Hong Kong University of Science and Technology
- China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering
- The Hong Kong University of Science and Technology
- China
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
| |
Collapse
|
112
|
Chen Y, Zhang YX, Wu ZF, Peng XY, Su T, Cao J, He B, Li S. Biodegradable poly(ethylene glycol)–poly(ε-carprolactone) polymeric micelles with different tailored topological amphiphilies for doxorubicin (DOX) drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra06040d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly and drug release of the three PEG–PCL copolymers with different topologies but identical molar ratio between PEG to PCL.
Collapse
Affiliation(s)
- Y. Chen
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Y. X. Zhang
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Z. F. Wu
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - X. Y. Peng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - T. Su
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - J. Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - B. He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - S. Li
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
113
|
Asem H, El-Fattah AA, Nafee N, Zhao Y, Khalil L, Muhammed M, Hassan M, Kandil S. Development and biodistribution of a theranostic aluminum phthalocyanine nanophotosensitizer. Photodiagnosis Photodyn Ther 2015; 13:48-57. [PMID: 26708297 DOI: 10.1016/j.pdpdt.2015.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/28/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Aluminum phthalocyanine (AlPc) is an efficient second generation photosensitizer (PS) with high fluorescence ability. Its use in photodynamic therapy (PDT) is hampered by hydrophobicity and poor biodistribution. METHODS AlPc was converted to a biocompatible nanostructure by incorporation into amphiphilic polyethylene glycol-polycaprolactone (PECL) copolymer nanoparticles, allowing efficient entrapment of the PS in the hydrophobic core, water dispersibility and biodistribution enhancement by PEG-induced surface characteristics. A series of synthesized PECL copolymers were used to prepare nanophotosensitizers with an average diameter of 66.5-99.1nm and encapsulation efficiency (EE%) of 66.4-78.0%. One formulation with favorable colloidal properties and relatively slow release over 7 days was selected for in vitro photophysical assessment and in vivo biodistribution studies in mice. RESULTS The photophysical properties of AlPc were improved by encapsulating AlPc into PECL-NPs, which showed intense fluorescence emission at 687nm and no AlPc aggregation has been induced after entrapment into the nanoparticles. Biodistribution of AlPc loaded NPs (AlPc-NPs) and free AlPc drug in mice was monitored by in vivo whole body fluorescence imaging and ex vivo organ imaging, with in vivo imaging system (IVIS). Compared to a AlPc solution in aqueous TWEEN 80 (2 w/v%), the developed nanophotosensitizer showed targeted drug delivery to lungs, liver and spleen as monitored by the intrinsic fluorescence of AlPc at different time points (1h, 24h and 48h) post iv. administration. CONCLUSIONS The AlPc-based copolymer nanoparticles developed offer potential as a single agent-multifunctional theranostic nanophotosensitizer for PDT coupled with imaging-guided drug delivery and biodistribution, and possibly also fluorescence diagnostics.
Collapse
Affiliation(s)
- Heba Asem
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, NOVUM, Karolinska Institutet (KI), Stockholm, Sweden; Department of Materials Science, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt; Functional Materials Division (FNM), Department of Materials and Nanophysics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Ying Zhao
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, NOVUM, Karolinska Institutet (KI), Stockholm, Sweden; Pancreatic Cancer Research Laboratory, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Labiba Khalil
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Mamoun Muhammed
- Functional Materials Division (FNM), Department of Materials and Nanophysics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, NOVUM, Karolinska Institutet (KI), Stockholm, Sweden; Clinical Research Center (KFC), NOVUM, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
114
|
Chiang YW, Hu YY, Li JN, Huang SH, Kuo SW. Trilayered Single Crystals with Epitaxial Growth in Poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(l-lactide) Thin Films. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yeo-Wan Chiang
- Department
of Materials and
Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - You-Yuan Hu
- Department
of Materials and
Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Jhen-Ning Li
- Department
of Materials and
Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Shih-Hung Huang
- Department
of Materials and
Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Shiao-Wei Kuo
- Department
of Materials and
Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
115
|
Wang Q, Wang D, Li D, Lu J, Wei Q. Folate modified nanoparticles for targeted co-delivery chemotherapeutic drugs and imaging probes for ovarian cancer. Biomed Phys Eng Express 2015. [DOI: 10.1088/2057-1976/1/4/045009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
116
|
Xue Y, Patel A, Sant V, Sant S. PEGylated poly(ester amide) elastomers with tunable physico-chemical, mechanical and degradation properties. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
117
|
Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater 2015; 25:240-52. [PMID: 26188325 DOI: 10.1016/j.actbio.2015.07.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023]
Abstract
The periodontal ligament (PDL) is a group of highly aligned and organized connective tissue fibers that intervenes between the root surface and the alveolar bone. The unique architecture is essential for the specific physiological functionalities of periodontium. The regeneration of periodontium has been extensively studied by researchers, but very few of them pay attention to the alignment of PDL fibers as well as its functionalities. In this study, we fabricated a three-dimensional multilayered scaffold by embedding highly aligned biodegradable poly (ε-caprolactone)-poly(ethylene glycol) (PCE) copolymer electrospun nanofibrous mats into porous chitosan (CHI) to provide topographic cues and guide the oriented regeneration of periodontal tissue. In vitro, compared with random group and porous control, aligned nanofibers embedded scaffold could guide oriented arrangement and elongation of cells with promoted infiltration, viability and increased periodontal ligament-related genes expression. In vivo, aligned nanofibers embedded scaffold showed more organized arrangement of regenerated PDL nearly perpendicular against the root surface with more extensive formation of mature collagen fibers than random group and porous control. Moreover, higher expression level of periostin and more significant formation of tooth-supporting mineralized tissue were presented in the regenerated periodontium of aligned scaffold group. Incorporation of aligned PCE nanofibers into porous CHI proved to be applicable for oriented regeneration of periodontium, which might be further utilized in regeneration of a wide variety of human tissues with a specialized direction. STATEMENT OF SIGNIFICANCE The regeneration of periodontium has been extensively studied by researchers, but very few of them give attention to the alignment of periodontal ligament (PDL) fibers as well as its functionalities. The key issue is to provide guidance to the orientation of cells with aligned arrangement of collagen fibers perpendicular against the root surface. This study aimed to promote oriented regeneration of periodontium by structural mimicking of scaffolds. The in vitro and in vivo performances of the scaffolds were further evaluated to test the topographic-guiding and periodontium healing potentials. We also think our research may provide ideas in regeneration of a wide variety of human tissues with a specialized direction.
Collapse
|
118
|
Debele TA, Peng S, Tsai HC. Drug Carrier for Photodynamic Cancer Therapy. Int J Mol Sci 2015; 16:22094-136. [PMID: 26389879 PMCID: PMC4613299 DOI: 10.3390/ijms160922094] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S₀) to an excited singlet state (S₁-Sn), followed by intersystem crossing to an excited triplet state (T₁). The energy transferred from T₁ to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (¹O₂, H₂O₂, O₂*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 106 Taipei, Taiwan.
| | - Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 106 Taipei, Taiwan.
| |
Collapse
|
119
|
Azouz L, Dahmoune F, Rezgui F, G'Sell C. Full factorial design optimization of anti-inflammatory drug release by PCL-PEG-PCL microspheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:412-9. [PMID: 26478328 DOI: 10.1016/j.msec.2015.08.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
A biodegradable triblock poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymer was successfully synthesized by ring-opening polymerization of ε-caprolactone, and was characterized by intrinsic viscosimetry, (1)H nuclear magnetic resonance, infrared spectroscopy and X-ray diffraction. Copolymer microparticles loaded with ibuprofen were prepared by an oil-in-water (o/w) emulsion solvent evaporation process. They were carefully weighted and characterized through their zeta potential. In this work, 4 selected process parameters (shaking speed X1, time of contact X2, poly(vinyl alcohol) concentration X3, and ibuprofen concentration X4) were adjusted at 2 different values. For each of the 16 experimental conditions, repeated twice, the drug encapsulation efficiency of the microspheres was determined, according to the following definition: EE (X1, X2, X3, X4)=mass of encapsulated ibuprofen/total weight of ibuprofen. A "full factorial design method" was applied to analyze the results statistically according to a polynomial fit and to determine the optimal conditions for the microencapsulation of the ibuprofen through an accurate statistical protocol. The microparticles obtained exhibit a spherical shape as shown by electron microscopy.
Collapse
Affiliation(s)
- L'Hachemi Azouz
- Laboratoire des Matériaux Organiques (LMO), Faculté des Sciences Exactes, Département de Chimie, Université de Bejaia, 06000 Bejaia Algérie.
| | - Farid Dahmoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie (L3BS-Bejaia), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira 10000 Bouira, Algérie.
| | - Farouk Rezgui
- Laboratoire des Matériaux Organiques (LMO), Faculté de Technologie, Département de Génie des Procédés, Université de Bejaia, 06000 Bejaia, Algérie.
| | - Christian G'Sell
- Université de Lorraine (France), Pôle scientifique M4, Institut Jean Lamour (UMR CNRS-UL 7198), Département SI2M, 54000 Nancy, France.
| |
Collapse
|
120
|
A nano-micro alternating multilayer scaffold loading with rBMSCs and BMP-2 for bone tissue engineering. Colloids Surf B Biointerfaces 2015; 133:286-95. [DOI: 10.1016/j.colsurfb.2015.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
|
121
|
An YM, Liu T, Tian R, Liu SX, Han YN, Wang QQ, Sheng WJ. Synthesis of novel temperature responsive PEG-b-[PCL-g-P(MEO2MA-co-OEGMA)]-b-PEG (tBG) triblock-graft copolymers and preparation of tBG/graphene oxide composite hydrogels via click chemistry. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
122
|
Synthesis and evaluation of MePEG-PCL diblock copolymers: surface properties and controlled release behavior. Prog Biomater 2015; 4:89-100. [PMID: 26566467 PMCID: PMC4636528 DOI: 10.1007/s40204-015-0040-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/31/2015] [Indexed: 10/28/2022] Open
Abstract
The amphiphilic block copolymers are composed of various combinations of hydrophilic and hydrophobic block unimers. The variation in unimer ratio alters the surface as well as micelle-forming properties of the block copolymers. These nanoscopic micelles have the ability to encapsulate hydrophobic compounds and act as potential drug carrier. MePEG-PCL copolymers with various block lengths were synthesized by ring-opening polymerization and characterized by 1HNMR, GPC, WXRD and DSC. The number average molecular weight of the block copolymer was found to vary from 7511 to 21,270 as determined by GPC and 1HNMR studies. The surface topology of the polymer films was determined by AFM analysis, which shows a smoother surface with increased MePEG contents in the block copolymers. The protein-binding assay indicates a better biocompatibility of the block copolymers in comparison to MePEG or PCL alone. The CMC of the block copolymer provides the information about micelle formations for encapsulation of hydrophobic materials and affects the in vitro release.
Collapse
|
123
|
Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12988-12999. [PMID: 26011859 DOI: 10.1021/acsami.5b02940] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Hongmei Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Wenxi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Ye Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| |
Collapse
|
124
|
Carreras N, Alonso C, Martí M, Lis MJ. Mass transport model through the skin by microencapsulation system. J Microencapsul 2015; 32:358-63. [DOI: 10.3109/02652048.2015.1028495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
125
|
Oledzka E, Sliwerska P, Sobczak M, Kraska B, Kamysz W, Nalecz-Jawecki G, Kolodziejski W. Peptide Dendrimer Functionalized with Amphiphilic Triblock Copolymers: Synthesis and Characterization. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ewa Oledzka
- Department of Inorganic and Analytical Chemistry; Medical University of Warsaw; Faculty of Pharmacy; Banacha 1 Warsaw 02-097 Poland
| | - Patrycja Sliwerska
- Department of Inorganic and Analytical Chemistry; Medical University of Warsaw; Faculty of Pharmacy; Banacha 1 Warsaw 02-097 Poland
| | - Marcin Sobczak
- Department of Inorganic and Analytical Chemistry; Medical University of Warsaw; Faculty of Pharmacy; Banacha 1 Warsaw 02-097 Poland
| | - Bartlomiej Kraska
- Department of Inorganic Chemistry; Medical University of Gdansk; Al. Gen. J. Hallera 107 Gdansk 80-416 Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry; Medical University of Gdansk; Al. Gen. J. Hallera 107 Gdansk 80-416 Poland
| | - Grzegorz Nalecz-Jawecki
- Department of Environmental Health Science; Medical University of Warsaw; Faculty of Pharmacy; Banacha 1 Warsaw 02-097 Poland
| | - Waclaw Kolodziejski
- Department of Environmental Health Science; Medical University of Warsaw; Faculty of Pharmacy; Banacha 1 Warsaw 02-097 Poland
| |
Collapse
|
126
|
Douglas P, Albadarin AB, Al-Muhtaseb AH, Mangwandi C, Walker G. Thermo-mechanical properties of poly ε-caprolactone/poly l -lactic acid blends: Addition of nalidixic acid and polyethylene glycol additives. J Mech Behav Biomed Mater 2015; 45:154-65. [DOI: 10.1016/j.jmbbm.2015.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|
127
|
Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6955-65. [PMID: 25761418 DOI: 10.1021/acsami.5b00900] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, scaffolds with a shish-kebab (SK) structure formed by poly(ε-caprolactone) (PCL) nanofibers and chitosan-PCL (CS-PCL) copolymers were prepared via electrospinning and subsequent crystallization for bone tissue engineering applications. The aim of this study was to introduce nanosized topography and the high biocompatibility of chitosan onto PCL nanofibers to enhance cell affinity to PCL scaffolds. CS-PCL copolymers with various ratios were synthesized, and then spontaneously crystallized as kebabs onto the electrospun PCL fibers, which acted as shishes. Scanning electron microscopy (SEM) results demonstrated that the copolymer with PCL to chitosan ratio of 8.8 could hierarchically decorate the PCL nanofibers and formed well-shaped kebabs on the PCL nanofiber surface. Water contact angle tests and biomimetic activity experiments revealed that the shish-kebab scaffolds with CS-PCL kebabs (PCL-SK(CS-PCL(8.8))) showed enhanced hydrophilicity and mineralization ability compared with smooth PCL and PCL-SK(PCL) shish-kebab scaffolds. Osteoblast-like MG63 cells cultured on the PCL-SK(CS-PCL(8.8)) scaffolds showed optimizing cell attachment, cell viability, and metabolic activity, demonstrating that this kind of scaffold has potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Xin Jing
- †National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- ‡Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Hao-Yang Mi
- †National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- ‡Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Xin-Chao Wang
- §National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, 450002, China
| | - Xiang-Fang Peng
- †National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Lih-Sheng Turng
- ‡Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
128
|
Liu Y, Li Y, Yang G, Zheng X, Zhou S. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4118-4126. [PMID: 25647407 DOI: 10.1021/am5081056] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan 610031, P. R. China
| | | | | | | | | |
Collapse
|
129
|
Draoua Z, Harrane A, Belbachir M. Amphiphilic Biodegradable Poly(ϵ-caprolactone)-Poly(ethylene glycol) – Poly(ϵ-caprolactone) Triblock Copolymer Synthesis by Maghnite-H+as a Green Catalyst. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2015. [DOI: 10.1080/10601325.2015.980763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
130
|
Gong T, Lu L, Liu D, Liu X, Zhao K, Chen Y, Zhou S. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J Mater Chem B 2015; 3:9011-9022. [DOI: 10.1039/c5tb01682g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamically tunable geometric microwells have great capacity to regulate the cytoskeletal structure and differentiation of mesenchymal stem cells along adipogenesis and osteogenesis pathways.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Liuxuan Lu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yuping Chen
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
131
|
Fuse M, Hayakawa T, Hashizume-Takizawa T, Takeuchi R, Kurita-Ochiai T, Fujita-Yoshigaki J, Fukumoto M. MC3T3-E1 Cell Assay on Collagen or Fibronectin Immobilized Poly (Lactic Acid-ε-Caprolactone) Film. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Megumi Fuse
- Department of Laboratory Medicine for Dentistry, Nihon University School of Dentistry at Matsudo
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine
| | | | - Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo
| | | | | | - Masahiko Fukumoto
- Department of Laboratory Medicine for Dentistry, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
132
|
Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 2015; 37:218-29. [DOI: 10.1016/j.biomaterials.2014.10.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 12/25/2022]
|
133
|
Zhou H, Jiang W, An N, Zhang Q, Xiang S, Wang L, Tang J. Enzyme mimetic-catalyzed ATRP and its application in block copolymer synthesis combined with enzymatic ring-opening polymerization. RSC Adv 2015. [DOI: 10.1039/c5ra06548h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Use of an enzyme mimetic (DhHP-6) as an ATRP catalyst for the synthesis of a series of functional polymers.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Polymer Science
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Wei Jiang
- Department of Polymer Science
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Ni An
- Department of Polymer Science
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Qiuping Zhang
- Department of Polymer Science
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Shidong Xiang
- Department of Polymer Science
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Liping Wang
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Jun Tang
- Department of Polymer Science
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
134
|
Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:620-34. [DOI: 10.1016/j.msec.2014.06.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/12/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|
135
|
Li W, Liu Y, Leng J. Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior. RSC Adv 2014. [DOI: 10.1039/c4ra10716k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
136
|
Wang S, Chen R, Morott J, Repka MA, Wang Y, Chen M. mPEG-b-PCL/TPGS mixed micelles for delivery of resveratrol in overcoming resistant breast cancer. Expert Opin Drug Deliv 2014; 12:361-73. [DOI: 10.1517/17425247.2014.951634] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
137
|
Colwell JM, Wentrup-Byrne E, George GA, Schué F. A pragmatic calcium-based initiator for the synthesis of polycaprolactone copolymers. POLYM INT 2014. [DOI: 10.1002/pi.4823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- John M Colwell
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology; GPO Box 2434 Brisbane Queensland 4001 Australia
| | - Edeline Wentrup-Byrne
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology; GPO Box 2434 Brisbane Queensland 4001 Australia
| | - Graeme A George
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology; GPO Box 2434 Brisbane Queensland 4001 Australia
| | - François Schué
- Laboratoire de Chimie Macromoleculaire; Université Montpellier II; Place Eugène Bataillon 34095 Montpellier Cedex 5 France (Deceased 31 January 2014)
| |
Collapse
|
138
|
Preparation, characterization, in vitro release, and pharmacokinetic studies of curcumin-loaded mPEG–PVL nanoparticles. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1260-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
139
|
Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials 2014; 35:8711-22. [DOI: 10.1016/j.biomaterials.2014.06.036] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 01/03/2023]
|
140
|
Gong T, Zhao K, Yang G, Li J, Chen H, Chen Y, Zhou S. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv Healthc Mater 2014; 3:1608-19. [PMID: 24648133 DOI: 10.1002/adhm.201300692] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/20/2014] [Indexed: 12/18/2022]
Abstract
Many studies have demonstrated the potential to modulate stem cell differentiation by using static material substrate surfaces. However, cells actually grow in a dynamically diverse microenvironment in vivo. The regulated signals to the differentiation provided by these materials should not be passive or static but be active and dynamic. To mimic the endogenous cell culture microenvironment, a novel system is designed to realize the dynamic change of the surface geometries as well as a resultant mechanical force using a thermally activated four-stage shape memory polymer. The parallel microgroove surface patterns are fabricated via thermal embossing lithography on the polymer substrate surface. The dynamic microgroove surfaces accompanying with the mechanical force can effectively and significantly regulate the shape and the cytoskeletal arrangement of rBMSC compared with the static patterned and non-patterned surfaces. Cellular and molecular analyses reveal that the spatiotemporally programmed regulation of cell shape is more viable to coax lineage-specific differentiation of stem cell in contrast to the general reports with the static surfaces. Therefore, this study provides a facile strategy in designing and manufacturing an artificial substrate with a mimic natural cellular environment to precisely direct the cell differentiation.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Guang Yang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Jinrong Li
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Hongmei Chen
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Yuping Chen
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| |
Collapse
|
141
|
Chu Y, Yu H, Zhang Y, Zhang G, Ma Y, Zhuo R, Jiang X. Synthesis and characterization of biodegradable amphiphilic ABC Y-shaped miktoarm terpolymer by click chemistry for drug delivery. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanfeng Chu
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Huan Yu
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Yunti Zhang
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Guangyan Zhang
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan 430068 People's Republic of China
| | - Yingying Ma
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Renxi Zhuo
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Xulin Jiang
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
142
|
Matanović MR, Kristl J, Grabnar PA. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 2014; 472:262-75. [PMID: 24950367 DOI: 10.1016/j.ijpharm.2014.06.029] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022]
Abstract
Thermally induced gelling systems have gained enormous attention over the last decade. They consist of hydrophilic homopolymers or block copolymers in water that present a sol at room temperature and form a gel after administration into the body. This article reviews the main types of thermoresponsive polymers, with special focus on decisive hydrogel characteristics, mechanisms of gelation, and biocompatibility. Promising biomedical applications are described with a focus on injectable formulations, which include solubilization of small hydrophobic drugs, controlled release, delivery of labile biopharmaceutics, such as proteins and genes, cell encapsulation, and tissue regeneration. Furthermore, combinations of thermoresponsive hydrogels and various nanocarriers as promising systems for sustained drug delivery are discussed through selected examples from the literature. Finally, there is a brief overview of current progress in nano-sized systems incorporating thermoresponsive properties.
Collapse
Affiliation(s)
| | - Julijana Kristl
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
143
|
Guo X, Li D, Yang G, Shi C, Tang Z, Wang J, Zhou S. Thermo-triggered drug release from actively targeting polymer micelles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8549-8559. [PMID: 24804870 DOI: 10.1021/am501422r] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
How to deliver the drug to the target area at the right time and at the right concentration is still a challenge in cancer therapy. In this study, we present a facile strategy to control drug release by precisely controlling the thermo-sensitivity of the nanocarriers to the variation of environmental temperature. One type of thermoresponsive Pluronic F127-poly(d,l-lactic acid) (F127-PLA, abbreviated as FP) copolymer micelles was developed and decorated with folate (FA) for active targeting. FP100 micelles assembled from FP with PLA segment having polymerization degree of 100 had a low critical solution temperature of 39.2 °C close to body temperature. At 37 °C, little amount of encapsulated anticancer drug DOX is released from the FP100 micelles, while at a slightly elevated temperature (40 °C), the shrinkage of thermoresponsive segments causes a rapid release of DOX and instantly increases the drug concentration locally. The cytocompatibility analysis and cellular uptake efficiency were characterized with the fibroblast cell line NIH 3T3 and human cervix adenocarcinoma cell line HeLa. The results demonstrate that this copolymer has excellent cytocompatibility, and FA-decorated FP100 micelles present much better efficiency of cellular uptake and higher cytotoxicity to folate receptor (FR)-overexpressed HeLa cells. In particular, under hyperthermia (40 °C) the cytotoxicity of DOX-loaded FA-FP100 micelles against HeLa cells was significantly more obvious than that upon normothermia (37 °C). Therefore, these temperature-responsive micelles have great potential as a drug vehicle for cancer therapy.
Collapse
Affiliation(s)
- Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | | | | | | | | | | | | |
Collapse
|
144
|
Development of implantable hydroxypropyl-β-cyclodextrin coated polycaprolactone nanoparticles for the controlled delivery of docetaxel to solid tumors. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0422-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
145
|
Erdemli Ö, Özen S, Keskin D, Usanmaz A, Batu ED, Atilla B, Tezcaner A. In vitro evaluation of effects of sustained anti-TNF release from MPEG-PCL-MPEG and PCL microspheres on human rheumatoid arthritis synoviocytes. J Biomater Appl 2014; 29:524-42. [DOI: 10.1177/0885328214535958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anti-tumor necrosis factor α (TNFα) drugs such as etanercept (ETN) have been mostly used in systemic treatment of rheumatoid arthritis. To eliminate the side effects in long-term treatments and to achieve a local sustained anti-inflammatory effect, a controlled drug delivery system is needed for anti-TNFα drugs. This study aims to develop novel injectable microcarriers of ETN that can provide long-term controlled release of this protein drug upon intra-articular application. In this study, poly(ε-caprolactone) (PCL) and its copolymer with poly(ethylene glycol), methoxypoly(ethylene glycol)-poly(ε-caprolactone)-methoxypoly(ethylene glycol) microspheres (MPEG-PCL-MPEG) were compared for their prospective success in rheumatoid arthritis treatment. Microspheres with smooth surface of a mean particle diameter of approximately 5 μm were prepared with both polymers. MPEG-PCL-MPEG microspheres had higher encapsulation efficiency than PCL microspheres. The activity of encapsulated ETN within MPEG-PCL-MPEG microspheres also retained while 90% of the activity of ETN within PCL microspheres could retain during 90-day release. MPEG-PCL-MPEG microspheres showed faster ETN release compared to PCL microspheres in various release media. Cumulative amounts of ETN released from both types of microspheres were significantly lower in cell culture medium and in synovial fluids than in phosphate buffered saline. This was mainly due to protein adsorption onto microspheres. Hydrophilic MPEG segment enhanced ETN release while preventing protein adsorption on microspheres compared to PCL. Sustained ETN release from microspheres resulted with a significant decrease in pro-inflammatory cytokines (TNFα, IFNγ, IL-6, IL-17) and MMP levels (MMP-3, MMP-13), while conserving viability of fibroblast-like synoviocytes compared to the free drug. Results suggest that MPEG-PCL-MPEG is a potential copolymer of PCL that can be used in development of biomedical materials for effective local treatment purposes in chronic inflammatory arthritis owing to enhanced hydrophilicity. Yet, PCL microspheres are also promising systems having good compatibility to synoviocytes and would be especially the choice for treatment approach requiring longer term and slower release.
Collapse
Affiliation(s)
- Özge Erdemli
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Seza Özen
- Department of Paediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Ankara, Turkey
| | - Ali Usanmaz
- Department of Chemistry, Middle East Technical University, Turkey
| | - Ezgi Deniz Batu
- Department of Paediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Bülent Atilla
- Department of Orthopedics and Traumatology, Hacettepe University, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
146
|
Huang CL, Zeng JB, Jiao L, Yang KK. Nonisothermal crystallization behaviors of biodegradable double crystalline poly(butylene succinate)-poly(ethylene glycol) multiblock copolymers. J Appl Polym Sci 2014. [DOI: 10.1002/app.40940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cai-Li Huang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE); College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University; Chengdu 610064 China
| | - Jian-Bing Zeng
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE); College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University; Chengdu 610064 China
| | - Ling Jiao
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE); College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University; Chengdu 610064 China
| | - Ke-Ke Yang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE); College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University; Chengdu 610064 China
| |
Collapse
|
147
|
Krishnamoorthy B, Karanam V, Chellan VR, Siram K, Natarajan TS, Gregory M. Polymersomes as an effective drug delivery system for glioma--a review. J Drug Target 2014; 22:469-77. [PMID: 24830300 DOI: 10.3109/1061186x.2014.916712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glioma is one of the most commonly occurring malignant brain tumours which need proper treatment strategy. The current therapies for treating glioma like surgical resection, radiotherapy, and chemotherapy have failed in achieving satisfactory results and this forms a rationale for the development of novel drug delivery systems. Among them, polymersomes are superior novel carriers with diverse functions like enhanced stability, low permeability, tunable membrane properties, surface functionality, and long blood circulation time which make them suitable for cancer therapy. These are bilayered vesicles capable of encapsulating both hydrophilic and hydrophobic drugs used to target glioma effectively. In this review, we have discussed on general preparation, characterization, and targeting aspects of surface modified polymersomes for effective delivery of therapeutic agents to glioma.
Collapse
Affiliation(s)
- Balakumar Krishnamoorthy
- Department of Pharmaceutics, PSG College of Pharmacy , Peelamedu, Coimbatore, Tamil Nadu , India and
| | | | | | | | | | | |
Collapse
|
148
|
Characteristics and release profiles of MPEG-PCL-MPEG microspheres containing immunoglobulin G. Colloids Surf B Biointerfaces 2014; 117:487-96. [DOI: 10.1016/j.colsurfb.2014.01.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 01/09/2023]
|
149
|
Song Z, Zhu W, Song J, Wei P, Yang F, Liu N, Feng R. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (ɛ-caprolactone) copolymer micelles for the delivery of curcumin. Drug Deliv 2014; 22:58-68. [DOI: 10.3109/10717544.2014.901436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
150
|
Martí M, Martínez V, Carreras N, Alonso C, Lis MJ, Parra JL, Coderch L. Textiles with gallic acid microspheres:in vitrorelease characteristics. J Microencapsul 2014; 31:535-41. [DOI: 10.3109/02652048.2014.885605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|