101
|
Hidalgo A, Betancor L, Moreno R, Zafra O, Cava F, Fernández-Lafuente R, Guisán JM, Berenguer J. Thermus thermophilus as a cell factory for the production of a thermophilic Mn-dependent catalase which fails to be synthesized in an active form in Escherichia coli. Appl Environ Microbiol 2004; 70:3839-44. [PMID: 15240253 PMCID: PMC444780 DOI: 10.1128/aem.70.7.3839-3844.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 03/16/2004] [Indexed: 11/20/2022] Open
Abstract
Thermostable Mn-dependent catalases are promising enzymes in biotechnological applications as H(2)O(2)-detoxifying systems. We cloned the genes encoding Mn-dependent catalases from Thermus thermophilus HB27 and HB8 and a less thermostable mutant carrying two amino acid replacements (M129V and E293G). When the wild-type and mutant genes were overexpressed in Escherichia coli, unmodified or six-His-tagged proteins of the expected size were overproduced as inactive proteins. Several attempts to obtain active forms or to activate the overproduced proteins were unsuccessful, even when soluble and thermostable proteins were used. Therefore, a requirement for a Thermus-specific activation factor was suggested. To overcome this problem, the Mn-dependent catalase genes were overexpressed directly in T. thermophilus under the control of the Pnar promoter. This promoter belongs to a respiratory nitrate reductase from of T. thermophilus HB8, whose transcription is activated by the combined action of nitrate and anoxia. Upon induction in T. thermophilus HB8, a 20- to 30-fold increase in catalase specific activity was observed, whereas a 90- to 110-fold increase was detected when the laboratory strain T. thermophilus HB27::nar was used as the host. The thermostability of the overproduced wild-type catalase was identical to that previously reported for the native enzyme, whereas decreased stability was detected for the mutant derivative. Therefore, our results validate the use of T. thermophilus as an alternative cell factory for the overproduction of thermophilic proteins that fail to be expressed in well-known mesophilic hosts.
Collapse
Affiliation(s)
- Aurelio Hidalgo
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Park HS, Kayser KJ, Kwak JH, Kilbane JJ. Heterologous gene expression in Thermus thermophilus: beta-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase. J Ind Microbiol Biotechnol 2004; 31:189-97. [PMID: 15138843 DOI: 10.1007/s10295-004-0130-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 03/15/2004] [Indexed: 10/26/2022]
Abstract
Enzymes from thermophiles are preferred for industrial applications because they generally show improved tolerance to temperature, pressure, solvents, and pH as compared with enzymes from mesophiles. However, nearly all thermostable enzymes used in industrial applications or available commercially are produced as recombinant enzymes in mesophiles, typically Escherichia coli. The development of high-temperature bioprocesses, particularly those involving cofactor-requiring enzymes and/or multi-step enzymatic pathways, requires a thermophilic host. The extreme thermophile most amenable to genetic manipulation is Thermus thermophilus, but the study of expression of heterologous genes in T. thermophilus is in its infancy. While several heterologous genes have previously been expressed in T. thermophilus, the data reported here include the first examples of the functional expression of a gene from an archaeal hyperthermophile ( bglA from Pyrococcus woesei), a cofactor-requiring enzyme ( dszC from Rhodococcus erythropolis IGTS8), and a two-component enzyme ( carBa and carBb from Sphingomonas sp. GTIN11). A thermostable derivative of pnbA from Bacillus subtilis was also expressed, further expanding the list of genes from heterologous hosts that have been expressed in T. thermophilus.
Collapse
Affiliation(s)
- Ho-Shin Park
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., IL 61801, Urbana, USA
| | | | | | | |
Collapse
|
103
|
Nicolaus B, Schiano Moriello V, Lama L, Poli A, Gambacorta A. Polysaccharides from extremophilic microorganisms. ORIGINS LIFE EVOL B 2004; 34:159-69. [PMID: 14979653 DOI: 10.1023/b:orig.0000009837.37412.d3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter(-1) was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different alpha-D-mannoses and three different beta-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different alpha-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.
Collapse
Affiliation(s)
- B Nicolaus
- Istituto di Chimica Biomolecolare CNR, via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | | | | | | | | |
Collapse
|
104
|
Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00129-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
105
|
|
106
|
Wright PC, Westacott RE, Burja AM. Piezotolerance as a metabolic engineering tool for the biosynthesis of natural products. BIOMOLECULAR ENGINEERING 2003; 20:325-31. [PMID: 12919816 DOI: 10.1016/s1389-0344(03)00042-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thermodynamically, high-pressure (>10's of MPa) has a potentially vastly superior effect on reactions and their rates within metabolic processes than temperature. Thus, it might be expected that changes in the pressure experienced by living organisms would have effects on the products of their metabolism. To examine the potential for modification of metabolic pathways based on thermodynamic principles we have performed simple molecular dynamics simulations, in vacuo and in aquo on the metabolites synthesized by recombinant polyketide synthases (PKS). We were able to determine, in this in silico study, the volume changes associated with each reaction step along the parallel PKS pathways. Results indicate the importance of explicitly including the solvent in the simulations. Furthermore, the addition of solvent and high pressure reveals that high pressure may have a beneficial effect on certain pathways over others. Thus, the future looks bright for pressure driven novel secondary metabolite discoveries, and their sustained and efficient production via metabolic engineering.
Collapse
Affiliation(s)
- Phillip C Wright
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | | | | |
Collapse
|
107
|
Wright PC, Westacott RE, Burja AM. Piezotolerance as a metabolic engineering tool for the biosynthesis of natural products. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1389-0344(03)00042-x pmid: 129198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
108
|
Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M. Differential regulation of a hyperthermophilic alpha-amylase with a novel (Ca,Zn) two-metal center by zinc. J Biol Chem 2003; 278:9875-84. [PMID: 12482867 DOI: 10.1074/jbc.m211339200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the alpha-amylase from the hyperthermophilic archaeon Pyrococcus woesei was solved in the presence of three inhibitors: acarbose, Tris, and zinc. In the absence of exogenous metals, this alpha-amylase bound 1 and 4 molar eq of zinc and calcium, respectively. The structure reveals a novel, activating, two-metal (Ca,Zn)-binding site and a second inhibitory zinc-binding site that is found in the -1 sugar-binding pocket within the active site. The data resolve the apparent paradox between the zinc requirement for catalytic activity and its strong inhibitory effect when added in molar excess. They provide a rationale as to why this alpha-amylase, in contrast to commercially available alpha-amylases, does not require the addition of metal ions for full catalytic activity, suggesting it as an ideal target to maximize the efficiency of industrial processes like liquefaction of starch.
Collapse
Affiliation(s)
- Anni Linden
- European Molecular Biology Laboratory, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
109
|
|
110
|
Abstract
The conventional notion that enzymes are only active in aqueous media has long been discarded, thanks to the numerous studies documenting enzyme activities in nonaqueous media, including pure organic solvents and supercritical fluids. Enzymatic reactions in nonaqueous solvents offer new possibilities for producing useful chemicals (emulsifiers, surfactants, wax esters, chiral drug molecules, biopolymers, peptides and proteins, modified fats and oils, structured lipids and flavor esters). The use of enzymes in both macro- and microaqueous systems has been investigated especially intensively in the last two decades. Although enzymes exhibit considerable activity in nonaqueous media, the activity is low compared to that in water. This observation has led to numerous studies to modify enzymes for specific purposes by various means including protein engineering. This review covers the historical developments, major technological advances and recent trends of enzyme catalysis in nonconventional media. A brief description of different classes of enzymes and their use in industry is provided with representative examples. Recent trends including use of novel solvent systems, role of water activity, stability issues, medium and biocatalyst engineering aspects have been discussed with examples. Special attention is given to protein engineering and directed evolution.
Collapse
Affiliation(s)
- Sajja Hari Krishna
- AK-Technische Chemie und Biotechnologie, Institut für Chemie und Biochemie, Universität Greifswald, Soldmannstrasse 16, D-17487 Greifswald, Germany.
| |
Collapse
|
111
|
Abstract
The use of halophilic extremozymes in organic media has been limited by the lack of enzymological studies in these media. To explore the behaviour of these extremozymes in organic media, different approaches have been adopted, including the dispersal of the lyophilised enzyme or the use of reverse micelles. The use of reverse micelles in maintaining high activities of halophilic extremozymes under unfavourable conditions could open new fields of application such as the use of these enzymes as biocatalysts in organic media.
Collapse
Affiliation(s)
- Frutos C Marhuenda-Egea
- División de Bioqui;mica, Facultad de Ciencias, Universidad de Alicante, Apartado 99, 03080, Alicante, Spain.
| | | |
Collapse
|
112
|
Abstract
Extremophlic microorganisms have developed a variety of molecular strategies in order to survive in harsh conditions. For the utilization of natural polymeric substrates such as starch, a number of extremophiles, belonging to different taxonomic groups, produce amylolytic enzymes. This class of enzyme is important not only for the study of biocatalysis and protein stability at extreme conditions but also for the many biotechnological opportunities they offer. In this review, we report on the different molecular properties of thermostable archaeal and bacterial enzymes including alpha-amylase, alpha-glucosidase, glucoamylase, pullulanase, and cyclodextrin glycosyltransferase. Comparison of the primary sequence of the pyrococcal pullulanase with other members of the glucosyl hydrolase family revealed that significant differences are responsible for the mode of action of these enzymes.
Collapse
Affiliation(s)
- Costanzo Bertoldo
- Technical University Hamburg-Harburg, Institute of Technical Microbiology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | | |
Collapse
|