101
|
Radioembolization-Induced Changes in Hepatic [ 18F]FDG Metabolism in Non-Tumorous Liver Parenchyma. Diagnostics (Basel) 2022; 12:diagnostics12102518. [PMID: 36292207 PMCID: PMC9600277 DOI: 10.3390/diagnostics12102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: [18F]FDG-PET/CT is increasingly used for response assessments after oncologic treatment. The known response criteria for [18F]FDG-PET/CT use healthy liver parenchyma as the reference standard. However, the [18F]FDG liver metabolism results may change as a result of the given therapy. The aim of this study was to assess changes in [18F]FDG liver metabolism after hepatic 90Y resin radioembolization. Methods: [18F]FDG-PET/CT scans prior to radioembolization and one and three months after radioembolization (consistent with the PERCIST comparability criteria), as well as 90Y-PET/CT scans, were analyzed using 3 cm VOIs. The FDG activity concentration and absorbed dose were measured. A linear mixed-effects logistic regression model and logistic mixed-effects model were used to assess the correlation between the FDG-activity concentration, absorbed dose, and biochemical changes. Results: The median SULVOI,liver at baseline was 1.8 (range = 1.2−2.8). The mean change in SULVOI,liver per month with an increase in time was 0.05 (95%CI 0.02−0.09) at p < 0.001. The median absorbed dose per VOI was 31.3 Gy (range = 0.1−82.3 Gy). The mean percent change in ΔSULVOI,liver for every Gy increase in the absorbed dose was −0.04 (95%CI −0.22−0.14) at p = 0.67. The SULblood and SULspleen results showed no increase. Conclusions: The [18F]FDG metabolism in the normal liver parenchyma is significantly but mildly increased after radioembolization, which can interfere with its use as a threshold for therapy response.
Collapse
|
102
|
Differences and Similarities in the Pattern of Early Metabolic and Morphologic Response after Induction Chemo-Immunotherapy versus Induction Chemotherapy Alone in Locally Advanced Squamous Cell Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14194811. [PMID: 36230733 PMCID: PMC9563870 DOI: 10.3390/cancers14194811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background: In head and neck cancer patients, parameters of metabolic and morphologic response of the tumor to single-cycle induction chemotherapy (IC) with docetaxel, cis- or carboplatin are used to decide the further course of treatment. This study investigated the effect of adding a double immune checkpoint blockade (DICB) of tremelimumab and durvalumab to IC on imaging parameters and their significance with regard to tumor cell remission. Methods: Response variables of 53 patients treated with IC+DICB (ICIT) were compared with those of 104 who received IC alone. Three weeks after one cycle, pathologic and, in some cases, clinical and endoscopic primary tumor responses were evaluated and correlated with a change in 18F-FDG PET and CT/MRI-based maximum-standardized uptake values (SUVmax) before (SUVmaxpre), after treatment (SUVmaxpost) and residually (resSUVmax in % of SUVmaxpre), and in maximum tumor diameter (Dmax) before (Dmaxpre) and after treatment (Dmaxpost) and residually (resD). Results: Reduction of SUVmax and Dmax occurred in both groups; values were SUVmaxpre: 14.4, SUVmaxpost: 6.6, Dmaxpre: 30 mm and Dmaxpost: 23 mm for ICIT versus SUVmaxpre: 16.5, SUVmaxpost: 6.4, Dmaxpre: 21 mm, and Dmaxpost: 16 mm for IC alone (all p < 0.05). ResSUVmax was the best predictor of complete response (IC: AUC: 0.77; ICIT: AUC: 0.76). Metabolic responders with resSUVmax ≤ 40% tended to have a higher rate of CR to ICIT (88%; n = 15/17) than to IC (65%; n = 30/46; p = 0.11). Of the metabolic nonresponders (resSUVmax > 80%), 33% (n = 5/15) achieved a clinical CR to ICIT versus 6% (n = 1/15) to IC (p = 0.01). Conclusions: ICIT and IC quickly induce a response and 18F-FDG PET is the more accurate modality for identifying complete remission. The rate of discrepant response, i.e., pCR with metabolic nonresponse after ICIT was >30%.
Collapse
|
103
|
[ 68Ga]FAPI-PET/CT for radiation therapy planning in biliary tract, pancreatic ductal adeno-, and adenoidcystic carcinomas. Sci Rep 2022; 12:16261. [PMID: 36171444 PMCID: PMC9519639 DOI: 10.1038/s41598-022-20447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Biliary-tract-carcinomas (BTC), pancreatic-ductal-adenocarcinomas (PDAC) and adenoidcystic-carcinomas (AC) have in common that they are traditionally treated with large clinical-target-volumes (CTV). The aim of this study is to examine the impact of pretreatment-[68Ga]FAPI-PET/CT on target-volume-definition and posttreatment-[68Ga]FAPI-PET/CT-response-assessment for BTC-, PDAC- and AC-patients referred to radiation-therapy. All consecutive BTC-, PDAC-, and AC-patients who received pretreatment-[68Ga]FAPI-PET/CT±[18F]FDG-PET/CT were included from 01.01.2020 to 01.03.2022. MTV and SUVmax were separately generated based on [68Ga]FAPI- and [18F]FDG-PET/CT-images. A [68Ga]FAPI- and [18F]FDG-based-CTV was defined. Treatment-plans were compared. Treatment-response was reassessed by a second [68Ga]FAPI-PET/CT and [18F]FDG-PET/CT after treatment-completion. Intermodality comparison of lesion-to-background-ratios [SUVmax_lesion/SUVmean_background] for individual timepoints t1 and t2 revealed significant higher values for [68Ga]FAPI compared to [18F]FDG (t1, p = 0.008; t2, p = 0.005). Intermodality comparison of radiation-therapy-plans showed that [68Ga]FAPI-based planning resulted in D100% = 97.2% and V95% = 98.8% for the [18F]FDG-MTV. [18F]FDG-based-planning resulted in D100% = 35.9% and V95% = 78.1% for [68Ga]FAPI-MTV. [18F]FDG-based-planning resulted only in 2 patients in V95% > 95% for [68Ga]FAPI-MTV, and in 1 patient in D100% > 97% for [68Ga]FAPI-MTV. GTV-coverage in terms of V95% was 76.4% by [18F]FDG-based-planning and 99.5% by [68Ga]FAPI-based-planning. Pretreatment [68Ga]FAPI-PET/CT enhances radiation-treatment-planning in this particular group of patients. While perilesional and tumoral follow-up [18F]FDG-uptake behaved uniformly, perilesional and tumoral reaction may differ in follow-up [68Ga]FAPI-imaging. Complementary [68Ga]FAPI- and [18F]FDG-imaging enhance treatment-response-assessment.
Collapse
|
104
|
Cook GJR. Imaging of Bone Metastases in Breast Cancer. Semin Nucl Med 2022; 52:531-541. [PMID: 35236615 PMCID: PMC7616189 DOI: 10.1053/j.semnuclmed.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Bone metastases are a common site of spread in advanced breast cancer and responsible for morbidity and high health care costs. Imaging contributes to staging and response assessment of the skeleton and has been instrumental in guiding patient management for several decades. Historically this has been with radiographs, computed tomography and bone scans. More recently, molecular and hybrid imaging methods have undergone significant development, including the addition of single photon emission computed tomography/computed tomography to the bone scan, positron emission tomography, with bone-specific and tumor-specific tracers, and magnetic resonance imaging with complementary functional diffusion-weighted imaging. These have allowed different aspects of the abnormal biology associated with bone metastases to be explored. There is ability to interrogate the bone microenvironment with bone-specific tracers and cancer cell characteristics with tumor-specific methods that complement morphological appearances on computed tomography or magnetic resonance imaging. Alongside the advent of novel, more effective and nuanced therapies for bone metastases in breast cancer, there is accumulating evidence that the developments in imaging allow more sensitive and specific detection of bone metastases as well as more accurate and earlier assessment of treatment response leading to improvements in patient management.
Collapse
Affiliation(s)
- Gary J R Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK.
| |
Collapse
|
105
|
Provinciali N, Paleari L, Briata IM, Piccardo A, Bacigalupo L, Rutigliani M, DeCensi A. Durable complete remission after Pembrolizumab in pretreated advanced endometrial cancer: A case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2022. [DOI: 10.1016/j.cpccr.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
106
|
Szyszko TA, Dunn JT, Phillips MM, Bomalaski J, Sheaff MT, Ellis S, Pike L, Goh V, Cook GJ, Szlosarek PW. Role of 3'-Deoxy-3'-[ 18F] Fluorothymidine Positron Emission Tomography-Computed Tomography as a Predictive Biomarker in Argininosuccinate Synthetase 1-Deficient Thoracic Cancers Treated With Pegargiminase. JTO Clin Res Rep 2022; 3:100382. [PMID: 36082278 PMCID: PMC9445378 DOI: 10.1016/j.jtocrr.2022.100382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 10/26/2022] Open
Abstract
Introduction Pegargiminase (ADI-PEG 20I) degrades arginine in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma (MPM) and NSCLC. Imaging with proliferation biomarker 3'-deoxy-3'-[18F] fluorothymidine (18F-FLT) positron emission tomography (PET)-computed tomography (CT) was performed in a phase 1 study of pegargiminase with pemetrexed and cisplatin (ADIPemCis). The aim was to determine whether FLT PET-CT predicts treatment response earlier than CT. Methods A total of 18 patients with thoracic malignancies (10 MPM; eight NSCLC) underwent imaging. FLT PET-CT was performed at baseline (PET1), 24 hours post-pegargiminase monotherapy (PET2), post one cycle of ADIPemCis (PET3), and at end of treatment (EOT, PET4). CT was performed at baseline (CT1) and EOT (CT4). CT4 (modified) Response Evaluation Criteria in Solid Tumors (RECIST) response was compared with treatment response on PET (changes in maximum standardized uptake value [SUVmax] on European Organisation for Research and Treatment of Cancer-based criteria). Categorical responses (progression, partial response, and stable disease) for PET2, PET3, and PET4 were compared against CT using Cohen's kappa. Results ADIPemCis treatment response resulted in 22% mean decrease in size between CT1 and CT4 and 37% mean decrease in SUVmax between PET1 and PET4. PET2 agreed with CT4 response in 62% (8 of 13) of patients (p = 0.043), although decrease in proliferation (SUVmax) did not precede decrease in size (RECIST). Partial responses on FLT PET-CT were detected in 20% (3 of 15) of participants at PET2 and 69% (9 of 13) at PET4 with good agreement between modalities in MPM at EOT. Conclusions Early FLT imaging (PET2) agrees with EOT CT results in nearly two-thirds of patients. Both early and late FLT PET-CT provide evidence of response to ADIPemCis therapy in MPM and NSCLC. We provide first-in-human FLT PET-CT data in MPM, indicating it is comparable with modified RECIST.
Collapse
Affiliation(s)
- Teresa A. Szyszko
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
- Department of Nuclear Medicine, Royal Free Hospital NHS Trust, London, United Kingdom
- Department of Oncology, University College London, London, United Kingdom
| | - Joel T. Dunn
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Melissa M. Phillips
- Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Michael T. Sheaff
- Department of Histopathology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Steve Ellis
- Department of Diagnostic Imaging, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Lucy Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Gary J.R. Cook
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
- Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Peter W. Szlosarek
- Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
107
|
Porosnicu M, O’Brien Cox A, Waltonen JD, Bunch PM, D’Agostino R, Lycan TW, Taylor R, Williams DW, Chen X, Shukla K, Kouri BE, Walker T, Kucera G, Patwa HS, Sullivan CA, Browne JD, Furdui CM. Early [18]FDG PET/CT scan predicts tumor response in head and neck squamous cell cancer patients treated with erlotinib adjusted per smoking status. Front Oncol 2022; 12:939118. [PMID: 36110959 PMCID: PMC9468744 DOI: 10.3389/fonc.2022.939118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Translational Relevance Evaluation of targeted therapies is urgently needed for the majority of patients with metastatic/recurrent head and neck squamous cell carcinoma (HNSCC) who progress after immunochemotherapy. Erlotinib, a targeted inhibitor of epidermal growth factor receptor pathway, lacks FDA approval in HNSCC due to inadequate tumor response. This study identifies two potential avenues to improve tumor response to erlotinib among patients with HNSCC. For the first time, this study shows that an increased erlotinib dose of 300 mg in smokers is well-tolerated and produces similar plasma drug concentration as the regular dose of 150 mg in non-smokers, with increased study-specific defined tumor response. The study also highlights the opportunity for improved patient selection for erlotinib treatment by demonstrating that early in-treatment [18]FDG PET/CT is a potential predictor of tumor response, with robust statistical correlations between metabolic changes on early in-treatment PET (4-7 days through treatment) and anatomic response measured by end-of-treatment CT. Purpose Patients with advanced HNSCC failing immunochemotherapy have no standard treatment options. Accelerating the investigation of targeted drug therapies is imperative. Treatment with erlotinib produced low response rates in HNSCC. This study investigates the possibility of improved treatment response through patient smoking status-based erlotinib dose optimization, and through early in-treatment [18]FDG PET evaluation to differentiate responders from non-responders. Experimental design In this window-of-opportunity study, patients with operable HNSCC received neoadjuvant erlotinib with dose determined by smoking status: 150 mg (E150) for non-smokers and 300 mg (E300) for active smokers. Plasma erlotinib levels were measured using mass spectrometry. Patients underwent PET/CT before treatment, between days 4-7 of treatment, and before surgery (post-treatment). Response was measured by diagnostic CT and was defined as decrease in maximum tumor diameter by ≥ 20% (responders), 10-19% (minimum-responders), and < 10% (non-responders). Results Nineteen patients completed treatment, ten of whom were smokers. There were eleven responders, five minimum-responders, and three non-responders. Tumor response and plasma erlotinib levels were similar between the E150 and E300 patient groups. The percentage change on early PET/CT and post-treatment PET/CT compared to pre-treatment PET/CT were significantly correlated with the radiologic response on post-treatment CTs: R=0.63, p=0.0041 and R=0.71, p=0.00094, respectively. Conclusion This pilot study suggests that early in-treatment PET/CT can predict response to erlotinib, and treatment with erlotinib dose adjusted according to smoking status is well-tolerated and may improve treatment response in HNSCC. These findings could help optimize erlotinib treatment in HNSCC and should be further investigated. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT00601913, identifier NCT00601913.
Collapse
Affiliation(s)
- Mercedes Porosnicu
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- *Correspondence: Mercedes Porosnicu, ; Cristina M. Furdui,
| | - Anderson O’Brien Cox
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Joshua D. Waltonen
- Department of Otolaryngology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Paul M. Bunch
- Department of Radiology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Ralph D’Agostino
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Thomas W. Lycan
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Richard Taylor
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Dan W. Williams
- Department of Radiology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Brian E. Kouri
- Department of Radiology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Tiffany Walker
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- Department of Cancer Biology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Gregory Kucera
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- Department of Cancer Biology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Hafiz S. Patwa
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- Department of Otolaryngology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Christopher A. Sullivan
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- Department of Otolaryngology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - J. Dale Browne
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- Department of Otolaryngology, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Cristina M. Furdui
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- *Correspondence: Mercedes Porosnicu, ; Cristina M. Furdui,
| |
Collapse
|
108
|
Saadani H, Aalbersberg EA, Schats W, Hoekstra OS, Stokkel MPM, de Vet HCW. Comparing [18F]FDG PET/CT response criteria in melanoma and lung cancer patients treated with immunotherapy: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
109
|
Monitoring of Current Cancer Therapy by Positron Emission Tomography and Possible Role of Radiomics Assessment. Int J Mol Sci 2022; 23:ijms23169394. [PMID: 36012657 PMCID: PMC9409366 DOI: 10.3390/ijms23169394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Evaluation of cancer therapy with imaging is crucial as a surrogate marker of effectiveness and survival. The unique response patterns to therapy with immune-checkpoint inhibitors have facilitated the revision of response evaluation criteria using FDG-PET, because the immune response recalls reactive cells such as activated T-cells and macrophages, which show increased glucose metabolism and apparent progression on morphological imaging. Cellular metabolism and function are critical determinants of the viability of active cells in the tumor microenvironment, which would be novel targets of therapies, such as tumor immunity, metabolism, and genetic mutation. Considering tumor heterogeneity and variation in therapy response specific to the mechanisms of therapy, appropriate response evaluation is required. Radiomics approaches, which combine objective image features with a machine learning algorithm as well as pathologic and genetic data, have remarkably progressed over the past decade, and PET radiomics has increased quality and reliability based on the prosperous publications and standardization initiatives. PET and multimodal imaging will play a definitive role in personalized therapeutic strategies by the precise monitoring in future cancer therapy.
Collapse
|
110
|
Lopci E, Castello A, Mansi L. FDG PET/CT for Staging and Restaging Malignant Mesothelioma. Semin Nucl Med 2022; 52:806-815. [PMID: 35965111 DOI: 10.1053/j.semnuclmed.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Malignant mesothelioma is an aggressive tumor originating from the mesothelial cells and presenting in general with a very poor prognosis. The pleural localization represents the prevailing disease site, while peritoneal involvement is commonly rare. The WHO classifies mesotheliomas into epithelioid, biphasic, and sarcomatoid histotypes, having diverse outcome with the sarcomatoid or biphasic forms showing the poorest prognosis. Given the peculiar rind-like pattern of growth, mesothelioma assessment is rather challenging for medical imagers. Conventional imaging is principally based on contrast-enhanced CT, while the role of functional and metabolic imaging is regarded as complementary. By focusing essentially on the staging and restaging role of [18F]FDG PET/CT in malignant mesotheliomas, the present review will summarize the available data present in literature and provide some hints on alternative imaging and future perspectives. Given the prevailing incidence of pleural disease, the majority of the information will be addressed on malignant pleural mesothelioma, although a summary of principal characteristics and imaging findings in patients with peritoneal mesothelioma will be also provided.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS - Humanitas Research Hospital, Milan, Italy.
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Luigi Mansi
- Interuniversity Research Center for the Sustainable Development (CIRPS), Rome, Italy
| |
Collapse
|
111
|
Neuropilin-1 is a valuable biomarker for predicting response of advanced non-small cell lung cancer patients to hypofractionated radiotherapy and PD-1 blockade. Int Immunopharmacol 2022; 109:108732. [DOI: 10.1016/j.intimp.2022.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022]
|
112
|
Smith D, Joon DL, Knight K, Sim J, Schneider M, Lau E, Foroudi F, Khoo V. A pilot study investigating the role of 18 F-FDG-PET in the early identification of chemoradiotherapy response in anal cancer. J Med Radiat Sci 2022; 69:439-447. [PMID: 35906833 DOI: 10.1002/jmrs.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Anal cancer (AC) is 18 F-FDG-PET avid and has been used to evaluate treatment response several months after chemoradiotherapy. This pilot study aimed to assess the utility of semi-automated contouring methods and quantitative measures of treatment response using 18 F-FDG-PET imaging at the early time point of 1-month post-chemoradiotherapy. METHODS Eleven patients with AC referred for chemoradiotherapy were prospectively enrolled into this study, with 10 meeting eligibility requirements. 18 F-FDG-PET imaging was obtained pre-chemoradiotherapy (TP1), and then 1-month (TP2), 3-6 months (TP3) and 9-12 months (TP4) post-chemoradiotherapy. Manual and semi-automated (Threshold) contouring methods were used to define the primary tumour on all 18 F-FDG-PET images. Resultant contours from each method were interrogated using quantitative measures, including volume, response index (RI), total lesion glycolysis (TLG), SUVmax , SUVmedian and SUVmean . Response was assessed quantitatively as reductions in these measures and also qualitatively against established criteria. RESULTS Nine patients were qualitatively classified as complete metabolic responders at TP2 and all 10 at TP3. All quantitative measures demonstrated significant (P < 0.05) reductions at TP2 for both Manual and Threshold methods. All reduced further at TP3 and again at TP4 for Threshold methods. TLG showed the highest reduction at all post-chemoradiotherapy time points and classified the most responders for each method at each time point. All patients are recurrence-free at minimum 4-year follow-up. CONCLUSION Based on our small sample size, semi-automated methods of disease definition using 18 F-FDG-PET imaging are feasible and appear to facilitate quantitative response classification of AC as early as 1-month post-chemoradiotherapy. Early identification of treatment response may potentially improve disease management.
Collapse
Affiliation(s)
- Drew Smith
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Heidelberg, Victoria, Australia.,Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Daryl Lim Joon
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Kellie Knight
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jenny Sim
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Michal Schneider
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Eddie Lau
- Department of Radiology, Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Farshad Foroudi
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Heidelberg, Victoria, Australia.,Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Vincent Khoo
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Heidelberg, Victoria, Australia.,Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
113
|
Boguszewicz Ł. Predictive Biomarkers for Response and Toxicity of Induction Chemotherapy in Head and Neck Cancers. Front Oncol 2022; 12:900903. [PMID: 35875133 PMCID: PMC9299243 DOI: 10.3389/fonc.2022.900903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
This review focuses on the molecular biology of head and neck squamous cell carcinomas and presents current and emerging biomarkers of the response of patients to induction chemotherapy. The usefulness of genes, proteins, and parameters from diagnostic clinical imaging as well as other clinicopathological parameters is thoroughly discussed. The role of induction chemotherapy before radiotherapy or before chemo-radiotherapy is still debated, as the data on its efficacy are somehow confusing. Despite the constant improvement of treatment protocols and the introduction of new cytostatics, there is still no consensus regarding the use of induction chemotherapy in the treatment of head and neck cancer, with the possible exception of larynx preservation. Such difficulties indicate that potential future treatment strategies should be personalized. Personalized medicine, in which individual tumor genetics drive the selection of targeted therapies and treatment plans for each patient, has recently emerged as the next generation of cancer therapy. Early prediction of treatment outcome or its toxicity may be highly beneficial for those who are at risk of the development of severe toxicities or treatment failure—a different treatment strategy may be applied to these patients, sparing them unnecessary pain. The literature search was carried out in the PubMed and ScienceDirect databases as well as in the selected conference proceedings repositories. Of the 265 articles and abstracts found, only 30 met the following inclusion criteria: human studies, analyzing prediction of induction chemotherapy outcome or toxicity based on the pretreatment (or after the first cycle, if more cycles of induction were administered) data, published after the year 2015. The studies regarding metastatic and recurrent cancers as well as the prognosis of overall survival or the outcome of consecutive treatment were not taken into consideration. As revealed from the systematic inspection of the papers, there are over 100 independent parameters analyzed for their suitability as prognostic markers in HNSCC patients undergoing induction chemotherapy. Some of them are promising, but usually they lack important features such as high specificity and sensitivity, low cost, high positive predictive value, clinical relevance, short turnaround time, etc. Subsequent studies are necessary to confirm the usability of the biomarkers for personal medicine.
Collapse
Affiliation(s)
- Łukasz Boguszewicz
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Warszawa, Poland
| |
Collapse
|
114
|
Vathiotis IA, Johnson JM, Luginbuhl A, Cognetti D, Curry J, Argiris A. Programmed cell death protein 1 axis blockade in locally advanced squamous cell carcinoma of the head and neck: Neoadjuvant and adjuvant approaches. Cancer Treat Rev 2022; 109:102437. [PMID: 35868194 DOI: 10.1016/j.ctrv.2022.102437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
Immunotherapy and in particular programmed cell death protein 1 (PD-1) inhibitors have been applied not only in the management of recurrent or metastatic disease but also as component of potentially curative treatment for many solid tumors. The incorporation of immunotherapy as neoadjuvant and /or adjuvant therapy in the treatment paradigm of locally advanced squamous cell carcinoma of the head and neck (SCCHN) is appealing with the goals of enhancing antitumor efficacy and, at the same time, reduce toxicity. This review analyzes the rationale for employing immunotherapy in the neoadjuvant and adjuvant settings, reviews the results of relevant clinical trials, and examines the potential benefits and caveats of neoadjuvant and/or adjuvant approaches in patients with SCCHN.
Collapse
Affiliation(s)
- Ioannis A Vathiotis
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Section of Medical Oncology, Third Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Jennifer M Johnson
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - Adam Luginbuhl
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - David Cognetti
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - Joseph Curry
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - Athanassios Argiris
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
115
|
Dejanovic D, Specht L, Czyzewska D, Kiil Berthelsen A, Loft A. Response Evaluation Following Radiation Therapy With 18F-FDG PET/CT: Common Variants of Radiation-Induced Changes and Potential Pitfalls. Semin Nucl Med 2022; 52:681-706. [PMID: 35835618 DOI: 10.1053/j.semnuclmed.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
Radiation therapy (RT) is one of the cornerstones in cancer treatment and approximately half of all patients will receive some form of RT during the course of their cancer management. Response evaluation after RT and follow-up imaging with 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) can be complicated by RT-induced acute, chronic or consequential effects. There is a general consensus that 18F-FDG PET/CT for response evaluation should be delayed for 12 weeks after completing RT to minimize the risk of false-positive findings. Radiation-induced late side effects in normal tissue can take years to develop and eventually cause symptoms that on imaging can potentially mimic recurrent disease. Imaging findings in radiation induced injuries depend on the normal tissue included in the irradiated volume and the radiation therapy regime including the total dose delivered, dose per fraction and treatment schedule. The intent for radiation therapy should be taken in consideration when evaluating the response on imaging, that is palliative vs curative or neoadjuvant vs adjuvant RT. Imaging findings can further be distorted by altered anatomy and sequelae following surgery within the radiation field. An awareness of common PET/CT-induced changes/injuries is essential when interpreting 18F-FDG PET/CT as well as obtaining a complete medical history, as patients are occasionally scanned for an unrelated cause to previously RT treated malignancy. In addition, secondary malignancies due to carcinogenic effects of radiation exposure in long-term cancer survivors should not be overlooked. 18F-FDG PET/CT can be very useful in response evaluation and follow-up in patients treated with RT, however, variants and pitfalls are common and it is important to remember that radiation-induced injury is often a diagnosis of exclusion.
Collapse
Affiliation(s)
- Danijela Dejanovic
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Lena Specht
- Department of Oncology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Dorota Czyzewska
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Kiil Berthelsen
- Department of Oncology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
116
|
Inoue A, Ota S, Yamasaki M, Batsaikhan B, Furukawa A, Watanabe Y. Gastrointestinal stromal tumors: a comprehensive radiological review. Jpn J Radiol 2022; 40:1105-1120. [PMID: 35809209 DOI: 10.1007/s11604-022-01305-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) originating from the interstitial cells of Cajal in the muscularis propria are the most common mesenchymal tumor of the gastrointestinal tract. Multiple modalities, including computed tomography (CT), magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography, ultrasonography, digital subtraction angiography, and endoscopy, have been performed to evaluate GISTs. CT is most frequently used for diagnosis, staging, surveillance, and response monitoring during molecularly targeted therapy in clinical practice. The diagnosis of GISTs is sometimes challenging because of the diverse imaging findings, such as anatomical location (esophagus, stomach, duodenum, small bowel, colorectum, appendix, and peritoneum), growth pattern, and enhancement pattern as well as the presence of necrosis, calcification, ulceration, early venous return, and metastasis. Imaging findings of GISTs treated with antineoplastic agents are quite different from those of other neoplasms (e.g. adenocarcinomas) because only subtle changes in size are seen even in responsive lesions. Furthermore, the recurrence pattern of GISTs is different from that of other neoplasms. This review discusses the advantages and disadvantages of each imaging modality, describes imaging findings obtained before and after treatment, presents a few cases of complicated GISTs, and discusses recent investigations performed using CT and MRI to predict histological risk grade, gene mutations, and patient outcomes.
Collapse
Affiliation(s)
- Akitoshi Inoue
- Department of Radiology, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Shinichi Ota
- Department of Radiology, Nagahama Red Cross Hospital, Shiga, Japan
| | - Michio Yamasaki
- Department of Radiology, Kohka Public Hospital, Shiga, Japan
| | - Bolorkhand Batsaikhan
- Graduate School of Human Health Sciences, Department of Radiological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akira Furukawa
- Graduate School of Human Health Sciences, Department of Radiological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
117
|
Riauka TA, Baracos VE, Reif R, Juengling FD, Robinson DM, Wieler M, McEwan AJB. Rapid Standardized CT-Based Method to Determine Lean Body Mass SUV for PET-A Significant Improvement Over Prediction Equations. Front Oncol 2022; 12:812777. [PMID: 35875083 PMCID: PMC9302197 DOI: 10.3389/fonc.2022.812777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/26/2022] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED In 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) studies, maximum standardized uptake value (SUVmax) is the parameter commonly used to provide a measurement of the metabolic activity of a tumor. SUV normalized by body mass is affected by the proportions of body fat and lean tissue, which present high variability in patients with cancer. SUV corrected by lean body mass (LBM), denoted as SUL, is recommended to provide more accurate, consistent, and reproducible SUV results; however, LBM is frequently estimated rather than measured. Given the increasing importance of a quantitative PET parameter, especially when comparing PET studies over time to evaluate disease response clinically, and its use in oncological clinical trials, we set out to evaluate the commonly used equations originally derived by James (1976) and Janmahasatian et al. (2005) against computerized tomography (CT)-derived measures of LBM. METHODS Whole-body 18F-FDG PET images of 195 adult patients with cancer were analyzed retrospectively. Representative liver SUVmean was normalized by total body mass. SUL was calculated using a quantitative determination of LBM based on the CT component of the PET/CT study (LBMCT) and compared against the equation-estimated SUL. Bland and Altman plots were generated for SUV-SUL differences. RESULTS This consecutive sample of patients undergoing usual care (men, n = 96; women, n = 99) varied in body mass (38-127 kg) and in Body Mass Index (BMI) (14.7-47.2 kg/m2). LBMCT weakly correlated with body mass (men, r2 = 0.32; women, r2 = 0.22), and thus SUV and SULCT were also weakly correlated (men, r2 = 0.24; women, r2 = 0.11). Equations proved inadequate for the assessment of LBM. LBM estimated by James' equation showed a mean bias (overestimation of LBM compared with LBMCT) in men (+6.13 kg; 95% CI 4.61-7.65) and in women (+6.32 kg; 95% CI 5.26-7.39). Janmahasatian's equation provided similarly poor performance. CONCLUSIONS CT-based LBM determinations incorporate the patient's current body composition at the time of a PET/CT study, and the information garnered can provide care teams with information with which to more accurately determine FDG uptake values, allowing comparability over multiple scans and treatment courses and will provide a robust basis for the use of PET Response Criteria in Solid Tumors (PERCIST) in clinical trials.
Collapse
Affiliation(s)
- Terence A. Riauka
- Division of Medical Physics, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Vickie E. Baracos
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Switzerland
| | - Rebecca Reif
- Division of Oncologic Imaging, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Freimut D. Juengling
- Division of Oncologic Imaging, Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Medical Faculty, University Bern, Bern, Switzerland
| | - Don M. Robinson
- Division of Medical Physics, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Marguerite Wieler
- Department of Physical Therapy, University of Alberta, Edmonton, AB, Canada
| | - Alexander J. B. McEwan
- Division of Oncologic Imaging, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
118
|
Zhou H, Wang Y, Xu H, Shen X, Zhang T, Zhou X, Zeng Y, Li K, Zhang L, Zhu H, Yang X, Li N, Yang Z, Liu Z. Noninvasive interrogation of CD8+ T cell effector function for monitoring tumor early responses to immunotherapy. J Clin Invest 2022; 132:161065. [PMID: 35788116 PMCID: PMC9374377 DOI: 10.1172/jci161065] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Accurately identifying patients who respond to immunotherapy remains clinically challenging. A noninvasive method that can longitudinally capture information about immune cell function and assist in the early assessment of tumor responses is highly desirable for precision immunotherapy. Here, we show that PET imaging using a granzyme B–targeted radiotracer named 68Ga-grazytracer, could noninvasively and effectively predict tumor responses to immune checkpoint inhibitors and adoptive T cell transfer therapy in multiple tumor models. 68Ga-grazytracer was designed and selected from several radiotracers based on non-aldehyde peptidomimetics, and exhibited excellent in vivo metabolic stability and favorable targeting efficiency to granzyme B secreted by effector CD8+ T cells during immune responses. 68Ga-grazytracer permitted more sensitive discrimination of responders and nonresponders than did 18F-fluorodeoxyglucose, distinguishing between tumor pseudoprogression and true progression upon immune checkpoint blockade therapy in mouse models with varying immunogenicity. In a preliminary clinical trial with 5 patients, no adverse events were observed after 68Ga-grazytracer injection, and clinical responses in cancer patients undergoing immunotherapy were favorably correlated with 68Ga-grazytracer PET results. These results highlight the potential of 68Ga-grazytracer PET to enhance the clinical effectiveness of granzyme B secretion–related immunotherapies by supporting early response assessment and precise patient stratification in a noninvasive and longitudinal manner.
Collapse
Affiliation(s)
- Haoyi Zhou
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Yanpu Wang
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiuling Shen
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Ting Zhang
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Xin Zhou
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Yuwen Zeng
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Kui Li
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Li Zhang
- Department of Pathology, Peking University Cancer Hospital, Beijing, China
| | - Hua Zhu
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Nan Li
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Zhi Yang
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Zhaofei Liu
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
119
|
Chen M, Smith DA, Yoon JG, Vos D, Kikano EG, Tirumani SH, Ramaiya NH. A Decade of Success in Melanoma Immunotherapy and Targeted Therapy: What Every Radiologist Should Know. J Comput Assist Tomogr 2022; 46:621-632. [PMID: 35675685 DOI: 10.1097/rct.0000000000001315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Treatment strategies for malignant melanoma have rapidly evolved over the past decade. Because of its propensity to develop advanced stage and metastatic disease, melanoma has contributed to the majority of mortalities among patients with skin cancer. The development of novel therapeutics such as immunotherapy and targeted molecular therapies has revolutionized the treatment of patients with advanced stage and metastatic malignant melanoma. Immune checkpoint inhibitors, BRAF/MEK inhibitors, and other revolutionary therapies have demonstrated remarkable success in the treatment of this common malignancy. Along with these advancements in systemic therapies, imaging has continued to play a critical role in the diagnosis and follow-up of patients with malignant melanoma. As the use of these novel therapies continues to expand, knowledge of the evolving therapeutic landscape of melanoma is becoming critical for radiologists. In this review, we provide a primer for radiologists outlining the evolution of immunotherapy and targeted therapy in the treatment of melanoma. We discuss the critical role of imaging in evaluation of treatment response, including a summary of current imaging response guidelines. Last, we summarize the essential role of imaging in the evaluation of potential adverse events seen in patients with malignant melanoma undergoing treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mark Chen
- From the Case Western Reserve University School of Medicine
| | - Daniel A Smith
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Justin G Yoon
- From the Case Western Reserve University School of Medicine
| | - Derek Vos
- From the Case Western Reserve University School of Medicine
| | - Elias G Kikano
- Department of Radiology, Brigham & Women's Hospital, Boston, MA
| | - Sree Harsha Tirumani
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Nikhil H Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
120
|
Langen Stokmo H, Aly M, Bowitz Lothe IM, Borja AJ, Mehdizadeh Seraj S, Ghorpade R, Miao X, Hjortland GO, Malinen E, Sorbye H, Werner TJ, Alavi A, Revheim M. Volumetric parameters from [ 18 F]FDG PET/CT predicts survival in patients with high-grade gastroenteropancreatic neuroendocrine neoplasms. J Neuroendocrinol 2022; 34:e13170. [PMID: 35729738 PMCID: PMC9539477 DOI: 10.1111/jne.13170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
A positive fluorine-18 labelled 2-deoxy-2-fluoroglucose ([18 F]FDG) positron emission tomography/computed tomography (PET/CT) has been associated with more aggressive disease and less differentiated neuroendocrine neoplasms (NEN). Although a high maximum standardized uptake value (SUVmax ) predicts poor outcome in NEN, volumetric parameters from [18 F]FDG PET have not been evaluated for prognostication in a pure high-grade gastroenteropancreatic (GEP) NEN cohort. In this retrospective observational study, we evaluated the volumetric PET parameters total metabolic tumour volume (tMTV) and total total lesion glycolysis (tTLG) for independent prognostication of overall survival (OS). High-grade GEP NEN patients with [18 F]FDG PET/CT examination and biopsy within 90 days were included. Total MTV and tTLG were calculated using an adaptive thresholding software. Patients were dichotomised into low and high metabolic groups based on median tMTV and tTLG. OS was compared using Kaplan-Meier estimator and log-rank test. Uni and multivariable Cox regression was used to estimate effect sizes and adjust for tumour differentiation and SUVmax . Sixty-six patients (median age 64 years) were included with 14 NET G3 and 52 NEC cases after histological re-evaluation. Median tMTV was 208 cm3 and median tTLG 1899 g. Median OS in the low versus high tMTV-group was 21.2 versus 5.7 months (HR 2.53, p = 0.0007) and 22.8 versus 5.7 months (HR 2.42, p = 0.0012) in the tTLG-group. Adjusted for tumour differentiation and SUVmax , tMTV and tTLG still predicted for poor OS, and both tMTV and tTLG were stronger prognostic parameters than SUVmax . Both regression models showed a strong association between volumetric parameters and OS for both neuroendocrine tumours (NET) G3 and neuroendocrine carcinomas (NEC). OS for the tTLG low metabolic NEC was much higher than for the tTLG high metabolic NET G3 (18.3 vs. 5.7 months). High-grade GEP NEN patients with high tMTV or tTLG had a worse OS regardless of tumour differentiation (NET G3 or NEC). Volumetric PET parameters were stronger prognostic parameters than SUVmax .
Collapse
Affiliation(s)
- Henning Langen Stokmo
- Division of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
| | - Mahmoud Aly
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyAsyut University HospitalAsyutEgypt
| | | | - Austin J. Borja
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Rina Ghorpade
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xuan Miao
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Eirik Malinen
- Department of Medical PhysicsOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Halfdan Sorbye
- Department of OncologyHaukeland University HospitalBergenNorway
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Thomas J. Werner
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Abass Alavi
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mona‐Elisabeth Revheim
- Division of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
121
|
van der Hiel B, Blankenstein SA, Aalbersberg EA, Wondergem M, Stokkel MPM, van de Wiel BA, Klop WMC, van Akkooi ACJ, Haanen JB. 18F-FDG PET/CT During Neoadjuvant Targeted Therapy in Prior Unresectable Stage III Melanoma Patients: Can (Early) Metabolic Imaging Predict Histopathologic Response or Recurrence? Clin Nucl Med 2022; 47:583-589. [PMID: 35452004 DOI: 10.1097/rlu.0000000000004217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to investigate whether 18F-FDG PET/CT can predict histopathological response or recurrence in BRAF-mutated unresectable locally advanced stage III melanoma treated with neoadjuvant BRAF/MEK inhibition followed by resection and the value of PET in detecting early recurrence after resection. PATIENTS AND METHODS Twenty BRAF-mutated, unresectable stage III melanoma patients received BRAF/MEK inhibitors before surgery. 18F-FDG PET/CT was performed at baseline and 2 and 8 weeks after initiation of therapy. After resection, PET/CT was performed at specific time points during 5 years of follow-up. Pathological response was assessed on the dissection specimen. Response monitoring was measured with SUVmax, SUVpeak, MATV, and TLG and according to EORTC and PERCIST criteria. RESULTS Pathological response was assessed in 18 patients. Nine patients (50%) had a pathologic complete or near-complete response, and 9 (50%) had a pathologic partial or no response. EORTC or PERCIST response measurements did not correspond with pathologic outcome. SUVmax, SUVpeak, MATV, and TLG at all time points and absolute or percentage change among the 3 initial time points did not differ between the groups.During follow-up, 8 of 17 patients with R0 resection developed a recurrence, 6 recurrences were detected with imaging only, 4 of which with PET/CT in less than 6 months after surgery. PET parameters before surgery did not predict recurrence. CONCLUSIONS Baseline 18F-FDG PET or PET response in previous unresectable stage III melanoma patients seems not useful to predict pathologic response after neoadjuvant BRAF/MEK inhibitors treatment. However, PET/CT seems valuable in detecting recurrence early after R0 resection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John B Haanen
- Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| |
Collapse
|
122
|
Savas P, Lo LL, Luen SJ, Blackley EF, Callahan J, Moodie K, van Geelen CT, Ko YA, Weng CF, Wein L, Silva MJ, Zivanovic Bujak A, Yeung MM, Ftouni S, Hicks RJ, Francis PA, Lee CK, Dawson SJ, Loi S. Alpelisib monotherapy for PI3K-altered, pre-treated advanced breast cancer: a phase 2 study. Cancer Discov 2022; 12:2058-2073. [PMID: 35771551 DOI: 10.1158/2159-8290.cd-21-1696] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/12/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
There is limited knowledge on the benefit of the α-subunit specific PI3K inhibitor alpelisib in later lines of therapy for advanced ER+HER2- and triple negative breast cancer (TNBC). We conducted a phase 2 multi-cohort study of alpelisib monotherapy in patients with advanced PI3K pathway mutant ER+HER2- and TNBC. In the intention to treat ER+ cohort, the overall response rate was 30% and the clinical benefit rate was 36%. Decline in PI3K pathway mutant ctDNA levels from baseline to week 8 while on therapy was significantly associated with a partial response, clinical benefit and improved progression free-survival (HR 0.24 95% CI 0.083 - 0.67, P = 0.0065). Detection of ESR1 mutations at baseline in plasma was also associated with clinical benefit and improved progression free survival (HR 0.22 95% CI 0.078 - 0.60, P = 0.003).
Collapse
Affiliation(s)
- Peter Savas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Louisa L Lo
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen J Luen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Kate Moodie
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Yi-An Ko
- Peter MacCallum Cancer Centre, Australia
| | | | - Lironne Wein
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | - Sarah Ftouni
- Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | | | | | - Chee Khoon Lee
- University of Sydney, Sydney, New South Wales, Australia
| | | | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
123
|
Wang Q, Zhang X, Wei W, Cao M. PET Imaging of Lung Cancers in Precision Medicine: Current Landscape and Future Perspective. Mol Pharm 2022; 19:3471-3483. [PMID: 35771950 DOI: 10.1021/acs.molpharmaceut.2c00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the recent advances in cancer treatment, lung cancer remains the leading cause of cancer mortality worldwide. Immunotherapies using immune checkpoint inhibitors (ICIs) achieved substantial efficacy in nonsmall cell lung cancer (NSCLC). Currently, most ICIs are still a monoclonal antibody (mAb). Using mAbs or antibody derivatives labeled with radionuclide as the tracers, immunopositron emission tomography (immunoPET) possesses multiple advantages over traditional 18F-FDG PET in imaging lung cancers. ImmunoPET presents excellent potential in detecting, diagnosing, staging, risk stratification, treatment guidance, and recurrence monitoring of lung cancers. By using radiolabeled mAbs, immunoPET can visualize the biodistribution and uptake of ICIs, providing a noninvasive modality for patient stratification and response evaluation. Some novel targets and associated tracers for immunoPET have been discovered and investigated. This Review introduces the value of immunoPET in imaging lung cancers by summarizing both preclinical and clinical evidence. We also emphasize the value of immunoPET in optimizing immunotherapy in NSCLC. Lastly, immunoPET probes developed for imaging small cell lung cancer (SCLC) will also be discussed. Although the major focus is to summarize the immunoPET tracers for lung cancers, we also highlighted several small-molecule PET tracers to give readers a balanced view of the development status.
Collapse
Affiliation(s)
- Qing Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Xindi Zhang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| |
Collapse
|
124
|
Zwirtz K, Hardt J, Acker G, Baur ADJ, Pavel M, Huang K, Brenner W, Prasad V. Comparison of Choi, RECIST and Somatostatin Receptor PET/CT Based Criteria for the Evaluation of Response and Response Prediction to PRRT. Pharmaceutics 2022; 14:1278. [PMID: 35745849 PMCID: PMC9227135 DOI: 10.3390/pharmaceutics14061278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aim: The most suitable method for assessment of response to peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NET) is still under debate. In this study we aimed to compare size (RECIST 1.1), density (Choi), Standardized Uptake Value (SUV) and a newly defined ZP combined parameter derived from Somatostatin Receptor (SSR) PET/CT for prediction of both response to PRRT and overall survival (OS). Material and Methods: Thirty-four NET patients with progressive disease (F:M 23:11; mean age 61.2 y; SD ± 12) treated with PRRT using either Lu-177 DOTATOC or Lu-177 DOTATATE and imaged with Ga-68 SSR PET/CT approximately 10-12 weeks prior to and after each treatment cycle were retrospectively analyzed. Median duration of follow-up after the first cycle was 63.9 months (range 6.2-86.2). A total of 77 lesions (2-8 per patient) were analyzed. Response assessment was performed according to RECIST 1.1, Choi and modified EORTC (MORE) criteria. In addition, a new parameter named ZP, the product of Hounsfield unit (HU) and SUVmean (Standard Uptake Value) of a tumor lesion, was tested. Further, SUV values (max and mean) of the tumor were normalized to SUV of normal liver parenchyma. Tumor response was defined as CR, PR, or SD. Gold standard for comparison of baseline parameters for prediction of response of individual target lesions to PRRT was change in size of lesions according to RECIST 1.1. For prediction of overall survival, the response after the first and second PRRT were tested. Results: Based on RECIST 1.1, Choi, MORE, and ZP, 85.3%, 64.7%, 61.8%, and 70.6% achieved a response whereas 14.7%, 35.3%, 38.2%, and 29.4% demonstrated PD (progressive disease), respectively. Baseline ZP and ZPnormalized were found to be the only parameters predictive of lesion progression after three PRRT cycles (AUC ZP 0.753; 95% CI 0.6-0.9, p 0.037; AUC ZPnormalized 0.766; 95% CI 0.6-0.9; p 0.029). Based on a cut-off-value of 1201, ZP achieved a sensitivity of 86% and a specificity of 67%, while ZPnormalized reached a sensitivity of 86% and a specificity of 76% at a cut-off-value of 198. Median OS in the total cohort was not reached. In univariate analysis amongst all parameters, only patients having progressive disease according to MORE after the second cycle of PRRT were found to have significantly shorter overall survival (median OS in objective responders not reached, in PD 29.2 months; p 0.015). Patients progressive after two cycles of PRRT according to ZP had shorter OS compared to those responding (median OS for responders not reached, for PD 47.2 months, p 0.066). Conclusions: In this explorative study, we showed that Choi, RECIST 1.1, and SUVmax-based response evaluation varied significantly from each other. Only patients showing progressive disease after two PRRT cycles according to MORE criteria had a worse prognosis while baseline ZP and ZPnormalized performed best in predicting lesion progression after three cycles of PRRT.
Collapse
Affiliation(s)
- Kevin Zwirtz
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.Z.); (K.H.); (W.B.)
| | - Juliane Hardt
- Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University of Veterinary Medicine (Foundation) Hannover (TiHo), 30559 Hannover, Germany
- Medical Information Management, Faculty of Information and Communication, University of Applied Sciences Hannover, 30459 Hannover, Germany
| | - Güliz Acker
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Alexander D. J. Baur
- Department of Radiology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Marianne Pavel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Department of Endocrinology, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Kai Huang
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.Z.); (K.H.); (W.B.)
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.Z.); (K.H.); (W.B.)
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Vikas Prasad
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.Z.); (K.H.); (W.B.)
- Department of Nuclear Medicine, University Ulm, 89081 Ulm, Germany
- International Centers for Precision Oncology Academy, 65189 Wiesbaden, Germany
| |
Collapse
|
125
|
Lopci E, Hicks RJ, Dimitrakopoulou-Strauss A, Dercle L, Iravani A, Seban RD, Sachpekidis C, Humbert O, Gheysens O, Glaudemans AWJM, Weber W, Wahl RL, Scott AM, Pandit-Taskar N, Aide N. Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [ 18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:2323-2341. [PMID: 35376991 PMCID: PMC9165250 DOI: 10.1007/s00259-022-05780-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The goal of this guideline/procedure standard is to assist nuclear medicine physicians, other nuclear medicine professionals, oncologists or other medical specialists for recommended use of [18F]FDG PET/CT in oncological patients undergoing immunotherapy, with special focus on response assessment in solid tumors. METHODS In a cooperative effort between the EANM, the SNMMI and the ANZSNM, clinical indications, recommended imaging procedures and reporting standards have been agreed upon and summarized in this joint guideline/procedure standard. CONCLUSIONS The field of immuno-oncology is rapidly evolving, and this guideline/procedure standard should not be seen as definitive, but rather as a guidance document standardizing the use and interpretation of [18F]FDG PET/CT during immunotherapy. Local variations to this guideline should be taken into consideration. PREAMBLE The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association founded in 1985 to facilitate worldwide communication among individuals pursuing clinical and academic excellence in nuclear medicine. The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote science, technology and practical application of nuclear medicine. The Australian and New Zealand Society of Nuclear Medicine (ANZSNM), founded in 1969, represents the major professional society fostering the technical and professional development of nuclear medicine practice across Australia and New Zealand. It promotes excellence in the nuclear medicine profession through education, research and a commitment to the highest professional standards. EANM, SNMMI and ANZSNM members are physicians, technologists, physicists and scientists specialized in the research and clinical practice of nuclear medicine. All three societies will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the EANM/SNMMI/ANZSNM, has undergone a thorough consensus process, entailing extensive review. These societies recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents based on current knowledge. They are not intended to be inflexible rules or requirements of practice, nor should they be used to establish a legal standard of care. For these reasons and those set forth below, the EANM, SNMMI and ANZSNM caution against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals considering the unique circumstances of each case. Thus, there is no implication that an action differing from what is laid out in the guidelines/procedure standards, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines/procedure standards. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/ guidelines will not ensure a successful outcome. All that should be expected is that practitioners follow a reasonable course of action, based on their level of training, current knowledge, clinical practice guidelines, available resources and the needs/context of the patient being treated. The sole purpose of these guidelines is to assist practitioners in achieving this objective. The present guideline/procedure standard was developed collaboratively by the EANM, the SNMMI and the ANZSNM, with the support of international experts in the field. They summarize also the views of the Oncology and Theranostics and the Inflammation and Infection Committees of the EANM, as well as the procedure standards committee of the SNMMI, and reflect recommendations for which the EANM and SNMMI cannot be held responsible. The recommendations should be taken into the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions.
Collapse
Affiliation(s)
- E Lopci
- Nuclear Medicine Unit, IRCCS - Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy.
| | - R J Hicks
- The Department of Medicine, St Vincent's Medical School, the University of Melbourne, Melbourne, Australia
| | - A Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - L Dercle
- Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York, NY, USA
| | - A Iravani
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - R D Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210, Saint-Cloud, France
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France
| | - C Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - O Humbert
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur, Nice, France
- TIRO-UMR E 4320, Université Côte d'Azur, Nice, France
| | - O Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - A W J M Glaudemans
- Nuclear Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Weber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - R L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - A M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Studley Rd, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - N Pandit-Taskar
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10021, USA
| | - N Aide
- Nuclear Medicine Department, University Hospital, Caen, France
- INSERM ANTICIPE, Normandie University, Caen, France
| |
Collapse
|
126
|
Hicks RJ. The value of the Standardized Uptake Value (SUV) and Metabolic Tumor Volume (MTV) in lung cancer. Semin Nucl Med 2022; 52:734-744. [PMID: 35624032 DOI: 10.1053/j.semnuclmed.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
The diagnosis, staging and therapeutic monitoring of lung cancer were amongst the first applications for which the utility of FDG PET was documented and FDG PET/CT is now a routine diagnostic tool for clinical decision-making. As well as having high sensitivity for detection of disease sites, which provides critical information about stage, the intensity of uptake provides deeper biological characterization, while the burden of disease also has potential clinical significance. These disease characteristics can easily be quantified on delayed whole-body imaging as the maximum standardized uptake value (SUVmax) and metabolic tumor volume (MTV), respectively. There have been significant efforts to harmonize the measurement of these features, particularly within the context of clinical trials. Nevertheless, however calculated, in general, a high SUVmax and large MTV have been shown to have an adverse prognostic significance. Nevertheless, the use of these parameters in the interpretation and reporting of clinical scans remains inconsistent and somewhat controversial. This review details the current status of semi-quantitative FDG PET/CT in the evaluation of lung cancer.
Collapse
Affiliation(s)
- Rodney J Hicks
- Department of Medicine, St Vincent's Medical School, University of Melbourne, Melbourne Academic Centre for Health, University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Central Clinical School, Alfred Hospital, Monash University, Melbourne VIC, Australia.
| |
Collapse
|
127
|
Sandach P, Seifert R, Fendler WP, Hautzel H, Herrmann K, Maier S, Plönes T, Metzenmacher M, Ferdinandus J. A Role for PET/CT in response assessment of malignant pleural mesothelioma. Semin Nucl Med 2022; 52:816-823. [PMID: 35624033 DOI: 10.1053/j.semnuclmed.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma is a rare type of cancer, whose incidence, however, is increasing and will presumably continue to rise in the coming years. Key features of this disease comprise its mantle-shaped, pleura-associated, often multifocal growth, which cause diagnostic challenges. A growing number of mesotheliomas are being treated with novel immunotherapies for which no image derived general response criteria have been established. However, recent studies indicate that FDG-PET/CT could be superior for response assessment compared to CT-based criteria. This article aims at providing an overview of response assessment criteria dedicated to malignant pleural mesothelioma, such as mRECIST, iRECIST, and PERCIST. In addition, the potential future role of PET/CT in the management of malignant pleural mesothelioma will also be discussed.
Collapse
Affiliation(s)
- Patrick Sandach
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Sandra Maier
- Department of Diagnostical and Interventional Radiology, University Hospital Essen, Essen, Germany
| | - Till Plönes
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Justin Ferdinandus
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| |
Collapse
|
128
|
Marcus C, Tajmir SH, Rowe SP, Sheikhbahaei S, Solnes LB. 18F-FDG PET/CT for Response Assessment in Lung Cancer. Semin Nucl Med 2022; 52:662-672. [PMID: 35641346 DOI: 10.1053/j.semnuclmed.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
|
129
|
Kucuk A, Topkan E, Selek U, Haksoyler V, Mertsoylu H, Besen AA, Pehlivan B. High Measures of Pre-Chemoradiotherapy Platelet-to-Albumin Ratio Indicates Poor Prognosis in Locally Advanced Pancreatic Cancer Patients. Ther Clin Risk Manag 2022; 18:421-428. [PMID: 35444422 PMCID: PMC9015102 DOI: 10.2147/tcrm.s359553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE In a lack of similar research, we meant to retrospectively investigate the prognostic significance of pre-chemoradiotherapy (C-CRT) platelet-to-albumin ratio (PAR) on the survival results of locally advanced unresectable pancreatic adenocarcinoma (LAPC) patients. PATIENTS AND METHODS The present analysis included 139 LAPC patients who received C-CRT in total. The utility of pre-C-CRT cutoff(s) reshaping survival data was explored using receiver operating characteristic (ROC) curve analysis. The primary and secondary objectives were the associations between PAR levels and overall survival (OS) and progression-free survival (PFS) outcomes. RESULTS At a median follow-up of 15.7 months (95% CI: 11.6-19.8), the overall cohort's median and 5-year OS rates were 14.4 months (95% CI: 11.8-17) and 14.7%, respectively, while the corresponding PFS rates were 7.8 months (95% CI: 6.5-9.1) and 11.2%. Because the ROC curve analysis found 4.9 as the optimal PAR cutoff for both OS and PFS [area under the curve (AUC): 75.4%; sensitivity: 72.4%; specificity: 70.3%], we divided the patients into two PAR cohorts: PAR<4.9 (N=60) and PAR≥4.9 (N=79). Comparative analysis per PAR group exhibited significantly worse OS (11.2 vs 18.6 months, and 9.8% vs 20.9% at 5 years, P=0.003) and DFS (7 vs 14.3 months, and 7.6% vs 16.2% at 5 years, P=0.001) with PAR≥4.9 versus PAR<4.9, respectively. In multivariate analysis, the N0 nodal status, CA 19-9≤90 U/mL, and PAR<4.9 were found to be independent predictors of improved OS and PFS. CONCLUSION The pre-C-CRT high PAR (≥4.9) robustly and independently prognosticated significantly worse OS and PFS results in inoperable LAPC patients who underwent definitive C-CRT.
Collapse
Affiliation(s)
- Ahmet Kucuk
- Clinic of Radiation Oncology, Mersin Education and Research Hospital, Mersin, Turkey
| | - Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Huseyin Mertsoylu
- Department of Medical Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ali Ayberk Besen
- Department of Medical Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Berrin Pehlivan
- Department of Radiation Oncology, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
130
|
Filippi L, Bianconi F, Schillaci O, Spanu A, Palumbo B. The Role and Potential of 18F-FDG PET/CT in Malignant Melanoma: Prognostication, Monitoring Response to Targeted and Immunotherapy, and Radiomics. Diagnostics (Basel) 2022; 12:929. [PMID: 35453977 PMCID: PMC9028862 DOI: 10.3390/diagnostics12040929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022] Open
Abstract
Novel therapeutic approaches, consisting of immune check-point inhibitors (ICIs) and molecularly targeted therapy, have thoroughly changed the clinical management of malignant melanoma (MM), the most frequent and deadly skin cancer. Since only 30-40% of MM patients respond to ICIs, imaging biomarkers suitable for the pre-therapeutic stratification and response assessment are warmly welcome. In this scenario, positron emission computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) has been successfully utilized for advanced MM staging and therapy response evaluation. Furthermore, several PET-derived parameters (SUVmax, MTV, TLG) were particularly impactful for the prognostic evaluation of patients submitted to targeted and immunotherapy. In this review, we performed a web-based and desktop research on the clinical applications of 18F-FDG PET/CT in MM, with a particular emphasis on the various metabolic criteria developed for interpreting PET/CT scan in patients undergoing immunotherapy or targeted therapy or a combination of both. Furthermore, the emerging role of radiomics, a quantitative approach to medical imaging applying analysis methodology derived by the field of artificial intelligence, was examined in the peculiar context, putting a particular emphasis on the potential of this discipline to support clinicians in the delicate process of building patient-tailored pathways of care.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Francesco Bianconi
- Department of Engineering, Università Degli Studi di Perugia, Via Goffredo Duranti 93, 06135 Perugia, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy;
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università Degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
131
|
Rendl G, Schweighofer-Zwink G, Sorko S, Gallowitsch HJ, Hitzl W, Reisinger D, Pirich C. Assessment of Treatment Response to Lenvatinib in Thyroid Cancer Monitored by F-18 FDG PET/CT Using PERCIST 1.0, Modified PERCIST and EORTC Criteria-Which One Is Most Suitable? Cancers (Basel) 2022; 14:cancers14081868. [PMID: 35454777 PMCID: PMC9029268 DOI: 10.3390/cancers14081868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Background: We aimed to compare the established metabolic response criteria PERCIST and EORTC for their applicability and predictive value in terms of clinical response assessment early after the initiation of lenvatinib therapy in patients with metastatic radioiodine-refractory (RAI) thyroid cancer (TC). Methods: In 25 patients treated with lenvatinib, baseline and 4-month follow-up F-18 FDG PET/CT images were analyzed using PERCIST 1.0, modified PERCIST (using SUVpeak or SUVmax) and EORTC criteria. Two groups were defined: disease control (DC) and progressive disease (PD), which were correlated with PFS and OS. Results: PERCIST, mPERCIST, PERCISTmax and EORTC could be applied in 80%, 80%, 88% and 100% of the patients based on the requirements of lesion assessment criteria, respectively. With PERCIST, mPERCIST, PERCISTmax and EORTC, the patients classified as DC and PD ranged from 65 to 68% and from 32 to 35%, respectively. Patients with DC exhibited a longer median PFS than patients with PD for EORTC (p < 0.014) and for PERCIST and mPERCIST (p = 0.037), respectively. Conclusion: EORTC and the different PERCIST criteria performed equally regarding the identification of patients with PD requiring treatment changes. However, the applicability of PERCIST 1.0 using SULpeak seems restricted due to the significant proportion of small tumor lesions.
Collapse
Affiliation(s)
- Gundula Rendl
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
- Correspondence: ; Tel.: +43-5-7255-58994
| | - Gregor Schweighofer-Zwink
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| | - Stefan Sorko
- Department of Nuclear Medicine and Endocrinology, PET/CT Centre, Klinikum Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria; (S.S.); (H.-J.G.)
| | - Hans-Jürgen Gallowitsch
- Department of Nuclear Medicine and Endocrinology, PET/CT Centre, Klinikum Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria; (S.S.); (H.-J.G.)
| | - Wolfgang Hitzl
- Research and Innovation Management, Biostatistics and Publication of Clinical Trial Studies, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
- Department of Ophthalmology and Optometry, University Hospital Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, University Hospital Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Diana Reisinger
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| | - Christian Pirich
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| |
Collapse
|
132
|
Yang Y, Jiang X, Liu Y, Huang H, Xiong Y, Xiao H, Gong K, Li X, Kuang X, Yang X. Elevated tumor markers for monitoring tumor response to immunotherapy. EClinicalMedicine 2022; 46:101381. [PMID: 35434583 PMCID: PMC9011015 DOI: 10.1016/j.eclinm.2022.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND As the immune-related response evaluation criteria in solid tumors (irRECIST) by imaging greatly underestimated the objective response to immunotherapy, we established the response evaluation criteria in solid tumors based on tumor markers (RecistTM) to explore whether RecistTM can compensate for the deficiencies of the irRECIST criteria. METHODS This was an observational study, which consisted of two parts. The first part (Group A) was a retrospective study including the patients with malignant solid tumors. The second part (Group B) was a prospective study, which were EGFR-negative and ALK-negative patients with stage IIIB-IV non-small cell lung cancer receiving first-line treatment. From January 2017 to September 2020, one hundred and ten patients with a three-time increase in tumor markers receiving immunotherapy were recruited. The treatment response to immunotherapy was evaluated by irRECIST and RecistTM. Efficacy, overall survival (OS), first evaluation time and earliest response time under the different evaluation criteria were compared by statistics. FINDINGS The treatment response evaluated by the RecistTM criteria was not consistent with that evaluated by the irRECIST criteria (Kappa = 0.386, p < 0.001). RecistTM had a higher completed response (CR) rate compared to irRECIST criteria (20.9% vs 1.8%, p < 0.001). The earliest response time under the RecistTM criteria was 3.42 weeks earlier than that under the irRECIST criteria (u = -5.233, p < 0.001). There were significant differences in median OS between tumor marker-related complete response (tmCR) and tumor marker-related partial response (tmPR), as well as between tmPR and tumor marker-related stable disease (tmSD) (χ2 = 15.572, p < 0.001; χ2 = 7.720, p = 0.005), but not between tmSD and tumor marker-related progressive disease (tmPD) (χ2 = 1.596, p = 0.206). When applying both criteria together, for patients with immune-related CR / immune-related PR (irCR/irPR) (n = 54) under irRECIST criteria, there was a significant difference in median OS between achieving tmCR (n = 22) and tmPR (n = 32) (χ2 = 14.011, p < 0.001). RecistTM criteria can predict 1-year and 2-year OS more accurately than irRECIST criteria (AUCs:0.862 vs 0.552, 0.649 vs 0.521, respectively;both p < 0.001). In RecistTM, 4 patients had been observed with pseudoprogression in tumor markers. INTERPRETATION The RecistTM criteria could effectively distinguish CR, PR, and SD, which may help resolve the shortcomings of the RECIST criteria in evaluating the treatment response to immunotherapy, especially in assessing whether patients can achieve deep or even complete response as soon as possible. FUNDING This work was supported by the Key projects of Chongqing Health and Family Planning Commission (to Xueqin Yang, 2019ZDXM011).
Collapse
Key Words
- CR, Complete response
- Efficacy evaluation
- ICIs, Immune checkpoint inhibitors
- Immunotherapy
- NE, Not estimated
- NSCLC, Non-small cell lung cancer
- ORR, Objective response rate
- OS, Overall survival
- PD, Progressive disease
- PR, Partial response
- RECIST
- RECIST, Response Evaluation Criteria in Solid Tumors
- RecistTM, Response evaluation criteria in solid tumors based on tumor markers
- SD, Stable disease
- Tumor markers
- irCR, Immune-related complete response
- irPD, Immune-related progression disease
- irPR, Immune-related partial response
- irRECIST, Immune-related Response Evaluation Criteria in Solid Tumors
- irSD, Immune-related stable disease
- tmCR, Tumor marker-related complete response
- tmPD, Tumor marker-related progression disease
- tmPR, Tumor marker-related partial response
- tmSD, Tumor marker-related stable disease
Collapse
Affiliation(s)
| | | | | | - Huan Huang
- Cancer Department, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Road, Daping Yuzhong District, Chongqing 400042, China
| | - Yanli Xiong
- Cancer Department, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Road, Daping Yuzhong District, Chongqing 400042, China
| | - He Xiao
- Cancer Department, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Road, Daping Yuzhong District, Chongqing 400042, China
| | - Kan Gong
- Cancer Department, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Road, Daping Yuzhong District, Chongqing 400042, China
| | - Xuemei Li
- Cancer Department, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Road, Daping Yuzhong District, Chongqing 400042, China
| | - Xunjie Kuang
- Cancer Department, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Road, Daping Yuzhong District, Chongqing 400042, China
| | - Xueqin Yang
- Cancer Department, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Road, Daping Yuzhong District, Chongqing 400042, China
| |
Collapse
|
133
|
Chi P, Qin LX, Nguyen B, Kelly CM, D'Angelo SP, Dickson MA, Gounder MM, Keohan ML, Movva S, Nacev BA, Rosenbaum E, Thornton KA, Crago AM, Yoon S, Ulaner G, Yeh R, Martindale M, Phelan HT, Biniakewitz MD, Warda S, Lee CJ, Berger MF, Schultz ND, Singer S, Hwang S, Chen Y, Antonescu CR, Tap WD. Phase II Trial of Imatinib Plus Binimetinib in Patients With Treatment-Naive Advanced Gastrointestinal Stromal Tumor. J Clin Oncol 2022; 40:997-1008. [PMID: 35041493 PMCID: PMC8937014 DOI: 10.1200/jco.21.02029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Dual targeting of the gastrointestinal stromal tumor (GIST) lineage-specific master regulators, ETV1 and KIT, by MEK and KIT inhibitors were synergistic preclinically and may enhance clinical efficacy. This trial was designed to test the efficacy and safety of imatinib plus binimetinib in first-line treatment of GIST. METHODS In this trial (NCT01991379), treatment-naive adult patients with confirmed advanced GISTs received imatinib (400 mg once daily) plus binimetinib (30 mg twice daily), 28-day cycles. The primary end point was RECIST1.1 best objective response rate (ORR; complete response plus partial response [PR]). The study was designed to detect a 20% improvement in the ORR over imatinib alone (unacceptable rate of 45%; acceptable rate of 65%), using an exact binomial test, one-sided type I error of 0.08 and type II error of 0.1, and a planned sample size of 44 patients. Confirmed PR or complete response in > 24 patients are considered positive. Secondary end points included Choi and European Organisation for Research and Treatment of Cancer Response Rate, progression-free survival (PFS), overall survival (OS), pathologic responses, and toxicity. RESULTS Between September 15, 2014, and November 15, 2020, 29 of 42 evaluable patients with advanced GIST had confirmed RECIST1.1 PR. The best ORR was 69.0% (two-sided 95% CI, 52.9 to 82.4). Thirty-nine of 41 (95.1%) had Choi PR approximately 8 weeks. Median PFS was 29.9 months (95% CI, 24.2 to not estimable); median OS was not reached (95% CI, 50.4 to not estimable). Five of eight patients with locally advanced disease underwent surgery after treatment and achieved significant pathologic response (≥ 90% treatment effect). There were no unexpected toxicities. Grade 3 and 4 toxicity included asymptomatic creatinine phosphokinase elevation (79.1%), hypophosphatemia (14.0%), neutrophil decrease (9.3%), maculopapular rash (7.0%), and anemia (7.0%). CONCLUSION The study met the primary end point. The combination of imatinib and binimetinib is effective with manageable toxicity and warrants further evaluation in direct comparison with imatinib in frontline treatment of GIST.
Collapse
Affiliation(s)
- Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Li-Xuan Qin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sandra P. D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary L. Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Benjamin A. Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Katherine A. Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sam Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Gary Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - Randy Yeh
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - Moriah Martindale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Haley T. Phelan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus D. Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
134
|
Brinch CM, Aggerholm-Pedersen N, Hogdall E, Krarup-Hansen A. Medical Oncological Treatment for Patients with Gastrointestinal Stromal Tumour (GIST) - a Systematic Review. Crit Rev Oncol Hematol 2022; 172:103650. [PMID: 35283299 DOI: 10.1016/j.critrevonc.2022.103650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chemotherapy is ineffective in treating patients with Gastrointestinal Stromal Tumour (GIST). However, several types of tyrosine kinase inhibitors have been investigated since the approval of imatinib in 2001. The purpose of this report was to systematically review studies on the efficacy of neoadjuvant, adjuvant, and lifelong medical oncological treatment of GIST. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed throughout the review process. The protocol was submitted to the International prospective register of systematic reviews database (ID 251724). A systematic literature search was performed, including phase II- and III studies of biological treatment, reporting on treatment effect in patients with GIST. RESULTS Of 308 identified publications, 42 studies were included in this review. CONCLUSION This review gives an overview of the existing evidence for approved lines of oncological treatments and potential alternatives for patients with GIST in the neoadjuvant-, adjuvant- and life-long setting.
Collapse
Affiliation(s)
- Charlotte Margareta Brinch
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev.
| | - Ninna Aggerholm-Pedersen
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus, Denmark.
| | - Estrid Hogdall
- Department of Pathology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 73, DK-2730, Herlev, Denmark.
| | - Anders Krarup-Hansen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev.
| |
Collapse
|
135
|
Abd El-Gaid S, AbdelHafez MN, Mohamed G, Elazab MSS, Elahmadawy MA. Prediction of pathological response using 18F FDG PET/CT derived metabolic parameters in locally advanced breast cancer patients. Nucl Med Commun 2022; 43:292-303. [PMID: 34908020 DOI: 10.1097/mnm.0000000000001515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF WORK This study aims to assess the value of flurodeoxyglucose (FDG)-PET derived metabolic parameters for prediction of pathologic response in LABC postneoadjuvant therapy. METHODS Totally 47 patients with LABC underwent initial and postneoadjuvant therapy PET scans. ΔSUVmax%, ΔTLG% and ΔMTV% were calculated. Post-therapy histopathologic therapeutic response was assessed. RESULTS In total 91.5% of patients had invasive duct carcinoma and the remaining (8.5%) had invasive lobular carcinoma. Postneoadjuvant PET/CT was able to detect 91.7% of patients with pathologically proven complete response in primary tumor, 69% of those with Pathologic partial response and 88.3% of those with pathological no response (P value <0.001). However, 40 out of the 47 patients had regional nodal metastases. PET/CT was able to predict 57.1% of the patients with pathologically nonresponding nodal deposits and 93.9% of those revealed pathologic therapeutic effect (P value <0.001). Receiver operating characteristic curve (ROC) curve marked Δ1ry SUVmax of 26.25% (P value 0.003), Δ1ry TLG of 48.5% (P value 0.018). PET and pathological response correlated well with ΔSUVmax%, and Δ1ry TLG% correlated well with PET, pathologic response and expression of HER II receptors (P value <0.001, 0.003 and 0.037 respectively). ROC curve marked ΔLN SUVmax% of 80.15% (P value 0.012), ΔLN TLG% of 86.6% (P value 0.002), whereas for ΔLN MTV% cut off point of 55% (P value 0.003). ΔSUVmax%, ΔTLG % and ΔMTV% for regional nodal metastases, were significantly correlated with PET (P values <0.001, <0.001 and 0.003, respectively) and pathologic (P values 0.018, 0.001 and 0.002, respectively) response. CONCLUSION FDG-PET is a useful tool for monitoring the neoadjuvant therapeutic effect for primary and regional nodes in patients with LABC.
Collapse
Affiliation(s)
- Salwa Abd El-Gaid
- Nuclear Medicine Unit, Radiation Oncology & Nuclear Medicine Department
| | | | | | | | - Mai Amr Elahmadawy
- Nuclear Medicine Unit, Radiation Oncology & Nuclear Medicine Department
- Nuclear Medicine department, Children's Cancer Hospital Egypt, Cairo, Egypt
| |
Collapse
|
136
|
Nightingale J, Gandhi M, Helena J, Bowman J, McGrath M, Coward J, Porceddu S, Ladwa R, Panizza B. Immunotherapy for the treatment of perineural spread in cutaneous head and neck squamous cell carcinoma: Time to rethink treatment paradigms. Head Neck 2022; 44:1099-1105. [PMID: 35156249 DOI: 10.1002/hed.27005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have shown promising antitumour activity. Application in head and neck cutaneous squamous cell carcinoma (cSCC) large nerve perineural spread (PNS) is limited. METHODS Retrospective review of 13 patients with PNS receiving anti-PD-1 therapy from September 2017 to May 2021 is presented. Primary endpoints were objective response (complete or partial response) and median time to progression, determined by Head and Neck Multi-Disciplinary Team (MDT) and independent radiology review of magnetic resonance imaging (MRI) and/or computed tomography/positron emission tomography (CT/PET). RESULTS Objective response was observed in 9/13 patients (69%), with complete response in 6 (46%) and partial response in 3 patients (23%). Median time to response was 2.1 months (IQR 1.8-2.7 months). There were 3 (23%) patients with progressive disease, with median time to progression of 3.5 months. There were no grade 3-4 treatment related adverse events. CONCLUSIONS This case series supports developing evidence for anti-PD-1 checkpoint inhibitor therapy for perineural spread, supporting future prospective clinical trials in this patient population.
Collapse
Affiliation(s)
- James Nightingale
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Mitesh Gandhi
- Department of Radiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jonathan Helena
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - James Bowman
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Margaret McGrath
- Cancer Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jermaine Coward
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,ICON Cancer Centre, Level 5, Mater Medical Centre, Brisbane, Queensland, Australia
| | - Sandro Porceddu
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Rahul Ladwa
- Cancer Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Benedict Panizza
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
137
|
Anan N, Zainon R, Tamal M. A review on advances in 18F-FDG PET/CT radiomics standardisation and application in lung disease management. Insights Imaging 2022; 13:22. [PMID: 35124733 PMCID: PMC8817778 DOI: 10.1186/s13244-021-01153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Radiomics analysis quantifies the interpolation of multiple and invisible molecular features present in diagnostic and therapeutic images. Implementation of 18-fluorine-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiomics captures various disorders in non-invasive and high-throughput manner. 18F-FDG PET/CT accurately identifies the metabolic and anatomical changes during cancer progression. Therefore, the application of 18F-FDG PET/CT in the field of oncology is well established. Clinical application of 18F-FDG PET/CT radiomics in lung infection and inflammation is also an emerging field. Combination of bioinformatics approaches or textual analysis allows radiomics to extract additional information to predict cell biology at the micro-level. However, radiomics texture analysis is affected by several factors associated with image acquisition and processing. At present, researchers are working on mitigating these interrupters and developing standardised workflow for texture biomarker establishment. This review article focuses on the application of 18F-FDG PET/CT in detecting lung diseases specifically on cancer, infection and inflammation. An overview of different approaches and challenges encountered on standardisation of 18F-FDG PET/CT technique has also been highlighted. The review article provides insights about radiomics standardisation and application of 18F-FDG PET/CT in lung disease management.
Collapse
|
138
|
Morawitz J, Martin O, Boos J, Sawicki LM, Wingendorf K, Sedlmair M, Mamlins E, Antke C, Antoch G, Schaarschmidt BM. Impact of Different Metal Artifact Reduction Techniques on Attenuation Correction of Normal Organs in 18F-FDG-PET/CT. Diagnostics (Basel) 2022; 12:diagnostics12020375. [PMID: 35204466 PMCID: PMC8870731 DOI: 10.3390/diagnostics12020375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose: To evaluate the impact of different metal artifact reduction algorithms on Hounsfield units (HU) and the standardized uptake value (SUV) in normal organs in patients with different metal implants. Methods: This study prospectively included 66 patients (mean age of 66.02 ± 13.1 years) with 87 different metal implants. CT image reconstructions were performed using weighted filtered back projection (WFBP) as the standard method, metal artifact reduction in image space (MARIS), and an iterative metal artifacts reduction (iMAR) algorithm for large implants. These datasets were used for PET attenuation correction. HU and SUV measurements were performed in nine predefined anatomical locations: liver, lower lung lobes, descending aorta, thoracic vertebral body, autochthonous back muscles, pectoral muscles, and internal jugular vein. Differences between HU and SUV measurements were compared using paired t-tests. The significance level was determined as p = 0.017 using Bonferroni correction. Results: No significant differences were observed between reconstructed images using iMAR and WFBP concerning HU and SUV measurements in liver (HU: p = 0.055; SUVmax: p = 0.586), lung (HU: p = 0.276; SUVmax: p = 1.0 for the right side and HU: p = 0.630; SUVmax: p = 0.109 for the left side), descending aorta (HU: p = 0.333; SUVmax: p = 0.083), thoracic vertebral body (HU: p = 0.725; SUVmax: p = 0.392), autochthonous back muscles (HU: p = 0.281; SUVmax: p = 0.839), pectoral muscles (HU: p = 0.481; SUVmax: p = 0.277 for the right side and HU: p = 0.313; SUVmax: p = 0.859 for the left side), or the internal jugular vein (HU: p = 0.343; SUVmax: p = 0.194). Conclusion: Metal artifact reduction algorithms such as iMAR do not alter the data information of normal organs not affected by artifacts.
Collapse
Affiliation(s)
- Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (O.M.); (J.B.); (L.M.S.); (K.W.); (G.A.)
- Correspondence: ; Tel.: +49-2118117552; Fax: +49-2118116145
| | - Ole Martin
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (O.M.); (J.B.); (L.M.S.); (K.W.); (G.A.)
| | - Johannes Boos
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (O.M.); (J.B.); (L.M.S.); (K.W.); (G.A.)
| | - Lino M. Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (O.M.); (J.B.); (L.M.S.); (K.W.); (G.A.)
| | - Katrin Wingendorf
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (O.M.); (J.B.); (L.M.S.); (K.W.); (G.A.)
| | - Martin Sedlmair
- Department of Computed Tomography, Siemens Healthineers GmbH, D-91301 Forchheim, Germany;
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (E.M.); (C.A.)
| | - Christina Antke
- Department of Nuclear Medicine, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (E.M.); (C.A.)
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (O.M.); (J.B.); (L.M.S.); (K.W.); (G.A.)
| | - Benedikt M. Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, D-45147 Essen, Germany;
| |
Collapse
|
139
|
Akamatsu G, Shimada N, Matsumoto K, Daisaki H, Suzuki K, Watabe H, Oda K, Senda M, Terauchi T, Tateishi U. New standards for phantom image quality and SUV harmonization range for multicenter oncology PET studies. Ann Nucl Med 2022; 36:144-161. [PMID: 35029817 DOI: 10.1007/s12149-021-01709-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 11/01/2022]
Abstract
Not only visual interpretation for lesion detection, staging, and characterization, but also quantitative treatment response assessment are key roles for 18F-FDG PET in oncology. In multicenter oncology PET studies, image quality standardization and SUV harmonization are essential to obtain reliable study outcomes. Standards for image quality and SUV harmonization range should be regularly updated according to progress in scanner performance. Accordingly, the first aim of this study was to propose new image quality reference levels to ensure small lesion detectability. The second aim was to propose a new SUV harmonization range and an image noise criterion to minimize the inter-scanner and intra-scanner SUV variabilities. We collected a total of 37 patterns of images from 23 recent PET/CT scanner models using the NEMA NU2 image quality phantom. PET images with various acquisition durations of 30-300 s and 1800 s were analyzed visually and quantitatively to derive visual detectability scores of the 10-mm-diameter hot sphere, noise-equivalent count (NECphantom), 10-mm sphere contrast (QH,10 mm), background variability (N10 mm), contrast-to-noise ratio (QH,10 mm/N10 mm), image noise level (CVBG), and SUVmax and SUVpeak for hot spheres (10-37 mm diameters). We calculated a reference level for each image quality metric, so that the 10-mm sphere can be visually detected. The SUV harmonization range and the image noise criterion were proposed with consideration of overshoot due to point-spread function (PSF) reconstruction. We proposed image quality reference levels as follows: QH,10 mm/N10 mm ≥ 2.5 and CVBG ≤ 14.1%. The 10th-90th percentiles in the SUV distributions were defined as the new SUV harmonization range. CVBG ≤ 10% was proposed as the image noise criterion, because the intra-scanner SUV variability significantly depended on CVBG. We proposed new image quality reference levels to ensure small lesion detectability. A new SUV harmonization range (in which PSF reconstruction is applicable) and the image noise criterion were also proposed for minimizing the SUV variabilities. Our proposed new standards will facilitate image quality standardization and SUV harmonization of multicenter oncology PET studies. The reliability of multicenter oncology PET studies will be improved by satisfying the new standards.
Collapse
Affiliation(s)
- Go Akamatsu
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Naoki Shimada
- Cancer Institute Hospital, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.
| | - Keiichi Matsumoto
- Kyoto College of Medical Science, 1-3 Imakita, Oyamahigashi-cho, Sonobe-cho, Nantan, Kyoto, 622-0041, Japan
| | - Hiromitsu Daisaki
- Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma, 371-0052, Japan
| | - Kazufumi Suzuki
- Dokkyo Medical University Hospital, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan
| | - Hiroshi Watabe
- Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Keiichi Oda
- Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8585, Japan
| | - Michio Senda
- Kobe City Medical Center General Hospital, 2-1-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takashi Terauchi
- Cancer Institute Hospital, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Ukihide Tateishi
- Tokyo Medical and Dental University School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
140
|
Fournier L, de Geus-Oei LF, Regge D, Oprea-Lager DE, D’Anastasi M, Bidaut L, Bäuerle T, Lopci E, Cappello G, Lecouvet F, Mayerhoefer M, Kunz WG, Verhoeff JJC, Caruso D, Smits M, Hoffmann RT, Gourtsoyianni S, Beets-Tan R, Neri E, deSouza NM, Deroose CM, Caramella C. Twenty Years On: RECIST as a Biomarker of Response in Solid Tumours an EORTC Imaging Group - ESOI Joint Paper. Front Oncol 2022; 11:800547. [PMID: 35083155 PMCID: PMC8784734 DOI: 10.3389/fonc.2021.800547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations. While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for response classification within thus partly circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to individual cases. As reproducibility of RECIST measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted. There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be overcome, and human adjudications may be required.
Collapse
Affiliation(s)
- Laure Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Université de Paris, Assistance Publique–Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Department of Radiology, Paris Cardiovascular Research Center (PARCC) Unité Mixte de Recherche (UMRS) 970, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Daniele Regge
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Daniela-Elena Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers [Vrije Universiteit (VU) University], Amsterdam, Netherlands
| | - Melvin D’Anastasi
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Tobias Bäuerle
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine Unit, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) – Humanitas Research Hospital, Milan, Italy
| | - Giovanni Cappello
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Frederic Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marius Mayerhoefer
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang G. Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Joost J. C. Verhoeff
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Damiano Caruso
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Marion Smits
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
- Brain Tumour Centre, Erasmus Medical Centre (MC) Cancer Institute, Rotterdam, Netherlands
| | - Ralf-Thorsten Hoffmann
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl-Gustav-Carus Technical University Dresden, Dresden, Germany
| | - Sofia Gourtsoyianni
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
| | - Regina Beets-Tan
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- School For Oncology and Developmental Biology (GROW) School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Emanuele Neri
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, United States
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph Centre International des Cancers Thoraciques, Université Paris-Saclay, Le Plessis-Robinson, France
| |
Collapse
|
141
|
Hafez AA, Salimi A, Jamali Z, Shabani M, Sheikhghaderi H. Overview of the application of inorganic nanomaterials in breast cancer diagnosis. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asghar Ashrafi Hafez
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Shabani
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hiva Sheikhghaderi
- Student Research Committee, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Bukan Shahid Gholipour Hospital, Urmia University of Medical Sciences, Bukan, Iran
| |
Collapse
|
142
|
Review of imaging techniques for evaluating morphological and functional responses to the treatment of bone metastases in prostate and breast cancer. Clin Transl Oncol 2022; 24:1290-1310. [PMID: 35152355 PMCID: PMC9192443 DOI: 10.1007/s12094-022-02784-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
Abstract
Bone metastases are very common complications associated with certain types of cancers that frequently negatively impact the quality of life and functional status of patients; thus, early detection is necessary for the implementation of immediate therapeutic measures to reduce the risk of skeletal complications and improve survival and quality of life. There is no consensus or universal standard approach for the detection of bone metastases in cancer patients based on imaging. Endorsed by the Spanish Society of Medical Oncology (SEOM), the Spanish Society of Medical Radiology (SERAM), and the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM) a group of experts met to discuss and provide an up-to-date review of our current understanding of the biological mechanisms through which tumors spread to the bone and describe the imaging methods available to diagnose bone metastasis and monitor their response to oncological treatment, focusing on patients with breast and prostate cancer. According to current available data, the use of next-generation imaging techniques, including whole-body diffusion-weighted MRI, PET/CT, and PET/MRI with novel radiopharmaceuticals, is recommended instead of the classical combination of CT and bone scan in detection, staging and response assessment of bone metastases from prostate and breast cancer.Clinical trial registration: Not applicable.
Collapse
|
143
|
Van den Abbeele AD, Sakellis CG, George S. PET imaging of Gastrointestinal Stromal Tumors (GIST). Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
144
|
Vos JL, Zuur CL, Smit LA, de Boer JP, Al-Mamgani A, van den Brekel MWM, Haanen JBAG, Vogel WV. [18F]FDG-PET accurately identifies pathological response early upon neoadjuvant immune checkpoint blockade in head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2021; 49:2010-2022. [PMID: 34957526 PMCID: PMC9016016 DOI: 10.1007/s00259-021-05610-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023]
Abstract
Purpose To investigate the utility of [18F]FDG-PET as an imaging biomarker for pathological response early upon neoadjuvant immune checkpoint blockade (ICB) in patients with head and neck squamous cell carcinoma (HNSCC) before surgery. Methods In the IMCISION trial (NCT03003637), 32 patients with stage II‒IVb HNSCC were treated with neoadjuvant nivolumab with (n = 26) or without (n = 6) ipilimumab (weeks 1 and 3) before surgery (week 5). [18F]FDG-PET/CT scans were acquired at baseline and shortly before surgery in 21 patients. Images were analysed for SUVmax, SUVmean, metabolic tumour volume (MTV), and total lesion glycolysis (TLG). Major and partial pathological responses (MPR and PPR, respectively) to immunotherapy were identified based on the residual viable tumour in the resected primary tumour specimen (≤ 10% and 11–50%, respectively). Pathological response in lymph node metastases was assessed separately. Response for the 2 [18F]FDG-PET-analysable patients who did not undergo surgery was determined clinically and per MR-RECIST v.1.1. A patient with a primary tumour MPR, PPR, or primary tumour MR-RECIST-based response upon immunotherapy was called a responder. Results Median ΔSUVmax, ΔSUVmean, ΔMTV, and ΔTLG decreased in the 8 responders and were significantly lower compared to the 13 non-responders (P = 0.05, P = 0.002, P < 0.001, and P < 0.001). A ΔMTV or ΔTLG of at least − 12.5% detected a primary tumour response with 95% accuracy, compared to 86% for the EORTC criteria. None of the patients with a ΔTLG of − 12.5% or more at the primary tumour site developed a relapse (median FU 23.0 months since surgery). Lymph node metastases with a PPR or MPR (5 metastases in 3 patients) showed a significant decrease in SUVmax (median − 3.1, P = 0.04). However, a SUVmax increase (median + 2.1) was observed in 27 lymph nodes (in 11 patients), while only 13 lymph nodes (48%) contained metastases in the corresponding neck dissection specimen. Conclusions Primary tumour response assessment using [18F]FDG-PET-based ΔMTV and ΔTLG accurately identifies pathological responses early upon neoadjuvant ICB in HNSCC, outperforming the EORTC criteria, although pseudoprogression is seen in neck lymph nodes. [18F]FDG-PET could, upon validation, select HNSCC patients for response-driven treatment adaptation in future trials. Trial registration https://www.clinicaltrials.gov/, NCT03003637, December 28, 2016. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05610-x.
Collapse
Affiliation(s)
- Joris L Vos
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Charlotte L Zuur
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Maxillofacial Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura A Smit
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Abrahim Al-Mamgani
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Maxillofacial Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
145
|
Choi KH, Song JH, Kwak YK, Lee JH, Jang HS. Analysis of PET parameters predicting response to radiotherapy for myeloid sarcoma. PLoS One 2021; 16:e0261550. [PMID: 34929016 PMCID: PMC8687562 DOI: 10.1371/journal.pone.0261550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose Positron-emission tomography (PET)-CT has recently been used for diagnostic imaging and radiotherapy for myeloid sarcoma, but there is little research on predicting the response of radiotherapy. The aim of this study was to analyze the association between PET-CT variables and the response to radiotherapy in patients with myeloid sarcoma. Materials and methods This study was conducted in myeloid sarcoma patients who received radiotherapy and PET-CT before and after radiotherapy. The response to radiotherapy was evaluated based on the European Organization for Research and Treatment of Cancer PET response criteria, and binary regression analysis was performed to assess the factors predicting reductions in the maximum standardized uptake value (SUVmax). Results Twenty-seven sites in 12 patients were included in the study. Complete metabolic responses were seen in 24 patients after radiotherapy, a partial metabolic response in one, and progressive metabolic disease in two patients. The prescribed dose of more than 3000 cGy10 was significantly greater in the treatment control group (P = 0.024). In binary logistic regression analysis predicting reductions in the SUVmax of more than 70% after radiotherapy, the pretreatment SUVmax (≥ 7.5) and further chemotherapy after radiotherapy showed significant differences in univariate and multivariate analyses. Conclusion Good metabolic responses (complete or partial) to radiotherapy were achieved in 92.6% of the myeloid sarcoma patients. Radiation doses < 3000 cGy10 and increased SUVmax were related to treatment failure and high SUVmax before radiotherapy was a factor influencing SUVmax reduction. Further large-scale studies are needed.
Collapse
Affiliation(s)
- Kyu Hye Choi
- Department of Radiation Oncology, Seoul Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo-Kang Kwak
- Department of Radiation Oncology, Incheon Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Hoon Lee
- Department of Radiation Oncology, Saint Vincent's Hospital, chlrb2 College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Seok Jang
- Department of Radiation Oncology, Seoul Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
146
|
Jouberton E, Schmitt S, Maisonial-Besset A, Chautard E, Penault-Llorca F, Cachin F. Interest and Limits of [18F]ML-10 PET Imaging for Early Detection of Response to Conventional Chemotherapy. Front Oncol 2021; 11:789769. [PMID: 34988022 PMCID: PMC8722713 DOI: 10.3389/fonc.2021.789769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
One of the current challenges in oncology is to develop imaging tools to early detect the response to conventional chemotherapy and adjust treatment strategies when necessary. Several studies evaluating PET imaging with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) as a predictive tool of therapeutic response highlighted its insufficient specificity and sensitivity. The [18F]FDG uptake reflects only tumor metabolic activity and not treatment-induced cell death, which seems to be relevant for therapeutic evaluation. Therefore, to evaluate this parameter in vivo, several cell death radiotracers have been developed in the last years. However, few of them have reached the clinical trials. This systematic review focuses on the use of [18F]ML-10 (2-(5-[18F]fluoropentyl)-2-methylmalonic acid) as radiotracer of apoptosis and especially as a measure of tumor response to treatment. A comprehensive literature review concerning the preclinical and clinical investigations conducted with [18F]ML-10 was performed. The abilities and applications of this radiotracer as well as its clinical relevance and limitations were discussed. Most studies highlighted a good ability of the radiotracer to target apoptotic cells. However, the increase in apoptosis during treatment did not correlate with the radiotracer tumoral uptake, even using more advanced image analysis (voxel-based analysis). [18F]ML-10 PET imaging does not meet current clinical expectations for early detection of the therapeutic response to conventional chemotherapy. This review has pointed out the challenges of applying various apoptosis imaging strategies in clinical trials, the current methodologies available for image analysis and the future of molecular imaging to assess this therapeutic response.
Collapse
Affiliation(s)
- Elodie Jouberton
- Service de Médecine Nucléaire, Centre Jean PERRIN, Clermont-Ferrand, France
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- *Correspondence: Elodie Jouberton,
| | - Sébastien Schmitt
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| | - Aurélie Maisonial-Besset
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Florent Cachin
- Service de Médecine Nucléaire, Centre Jean PERRIN, Clermont-Ferrand, France
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| |
Collapse
|
147
|
18F FDG imaging - response criteria in tumors. Eur J Radiol 2021; 147:110054. [PMID: 34933213 DOI: 10.1016/j.ejrad.2021.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
With the progress of medical oncology, it became apparent that anatomical imaging is oftentimes insufficient for therapy response evaluation. Hybrid imaging, namely 18F-FDG PET/CT has helped to overcome these limitations. The aim of this paper is to emphasize the utility and impact in clinical use of 18F-FDG PET/CT, and to give an overview of the most important 18F-FDG PET/CT tumor response criteria. We also focus on standardization of hybrid imaging techniques as this is of outmost importance to provide reliable imaging evaluation.
Collapse
|
148
|
Kang MJ, Kim SW. Paradigm shift for defining the resectability of pancreatic cancer. Ann Hepatobiliary Pancreat Surg 2021; 25:451-455. [PMID: 34845115 PMCID: PMC8639311 DOI: 10.14701/ahbps.2021.25.4.451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Supported by the expanding indications for neoadjuvant therapy (NAT) for advanced pancreatic cancer (PC), the concept of resectability has evolved from being mostly based on the anatomical tumor extent to considering the biological and conditional factors relevant to prognosis. Therefore, it is more reasonable to define the “criteria for surgical resection” instead of using the “(technical) resectability criteria.” NAT has been used in resectable PCs (RPC) with a high risk of early systemic recurrence, as predicted by various biological or anatomical markers. Moreover, the indications for NAT followed by conversion surgery or adjuvant surgery for borderline resectable or locally advanced PC (LAPC) are gradually expanding. Therefore, it is important to define the RPC group that will benefit from NAT and the LAPC group that will benefit from post-NAT surgery. At diagnosis, population-based approaches, such as prognostic stratification and staging systems and personalized outcome-based approaches using prognostic prediction models can be used to determine the criteria for treatment options. Standardized indications for conversion surgery are needed for patients who are initially treated with NAT. In addition to imaging-based morphological criteria, biological criteria, including CA19-9, and various metabolic criteria can be used to establish predicted outcome-based criteria. Multicenter collaboration is required to develop a large database with standardized data collection for various biomarkers and response data after NAT to establish more accurate outcome prediction models to define the new resectability criteria.
Collapse
Affiliation(s)
- Mee Joo Kang
- Department of Surgery, Center for Liver and Pancreato-Biliary Cancer, National Cancer Center, Goyang, Korea
| | - Sun-Whe Kim
- Department of Surgery, Center for Liver and Pancreato-Biliary Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
149
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Parametric Imaging With Dynamic PET for Oncological Applications: Protocols, Interpretation, Current Applications and Limitations for Clinical Use. Semin Nucl Med 2021; 52:312-329. [PMID: 34809877 DOI: 10.1053/j.semnuclmed.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear medicine imaging modalities, and in particular positron emission tomography (PET), provide functional images that demonstrate the mean radioactivity distribution at a defined point in time. With the help of mathematical model's, it is possible to depict isolated parameters of the radiotracers' pharmacokinetics and to visualize them. These so called parametric images add a new dimension to the existing conventional PET images and provide more detailed information about the tracer distribution over time and space. Prerequisite for the calculation of parametric images, which reflect specific pharmacokinetic parameters, is the dynamic PET (dPET) data acquisition. Hitherto, PET parametric imaging has mainly found use for research purposes. However, it has not been yet implemented into clinical routine, since it is more time-consuming, it requires a complicated analysis and still lacks a clear benefit over conventional PET imaging. However, the recent introduction of new PET-CT scanners with an ultralong field of view, which allow a faster data acquisition and are associated with higher sensitivity, as well as the development of more sophisticated evaluation software packages will probably lead to a renaissance of dPET and parametric maps even of the whole body. The implementation of dPET imaging in daily routine with appropriate acquisition protocols, as well as the calculation, interpretation and potential clinical applications of parametric images will be discussed in this review article.
Collapse
Affiliation(s)
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
150
|
Sadaf A, Szabo S, Ferguson K, Sorger JI, Sumegi J, Bridge JA, Pressey JG. Novel ARHGAP23-FER fusion in a metastatic spindle cell-predominant neoplasm with a myofibroblastic phenotype and a sustained metabolic response to lorlatinib. Cancer 2021; 127:4124-4130. [PMID: 34545945 DOI: 10.1002/cncr.33854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Alina Sadaf
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sara Szabo
- Division of Pathology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katelyn Ferguson
- College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Joel I Sorger
- Division of Orthopedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Janos Sumegi
- Division of Molecular Pathology, Translational Genomics Research Institute, Phoenix, Arizona
| | - Julia A Bridge
- Division of Molecular Pathology, Translational Genomics Research Institute, Phoenix, Arizona.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Molecular Diagnostics, ProPath, Dallas, Texas
| | - Joseph G Pressey
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|