101
|
|
102
|
Reese SP, Ellis BJ, Weiss JA. Micromechanical model of a surrogate for collagenous soft tissues: development, validation and analysis of mesoscale size effects. Biomech Model Mechanobiol 2013; 12:1195-204. [PMID: 23400805 DOI: 10.1007/s10237-013-0475-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/25/2013] [Indexed: 01/10/2023]
Abstract
Aligned, collagenous tissues such as tendons and ligaments are composed primarily of water and type I collagen, organized hierarchically into nanoscale fibrils, microscale fibers and mesoscale fascicles. Force transfer across scales is complex and poorly understood. Since innervation, the vasculature, damage mechanisms and mechanotransduction occur at the microscale and mesoscale, understanding multiscale interactions is of high importance. This study used a physical model in combination with a computational model to isolate and examine the mechanisms of force transfer between scales. A collagen-based surrogate served as the physical model. The surrogate consisted of extruded collagen fibers embedded within a collagen gel matrix. A micromechanical finite element model of the surrogate was validated using tensile test data that were recorded using a custom tensile testing device mounted on a confocal microscope. Results demonstrated that the experimentally measured macroscale strain was not representative of the microscale strain, which was highly inhomogeneous. The micromechanical model, in combination with a macroscopic continuum model, revealed that the microscale inhomogeneity resulted from size effects in the presence of a constrained boundary. A sensitivity study indicated that significant scale effects would be present over a range of physiologically relevant inter-fiber spacing values and matrix material properties. The results indicate that the traditional continuum assumption is not valid for describing the macroscale behavior of the surrogate and that boundary-induced size effects are present.
Collapse
Affiliation(s)
- Shawn P Reese
- Department of Bioengineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
103
|
Thermal transitions of fibrillar collagen unveiled by second-harmonic generation microscopy of corneal stroma. Biophys J 2013; 103:1179-87. [PMID: 22995490 DOI: 10.1016/j.bpj.2012.07.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022] Open
Abstract
The thermal transitions of fibrillar collagen are investigated with second-harmonic generation polarization anisotropy microscopy. Second-harmonic generation images and polarization anisotropy profiles of corneal stroma heated in the 35-80°C range are analyzed by means of a theoretical model that is suitable to probe principal intramolecular and interfibrillar parameters of immediate physiological interest. Our results depict the tissue modification with temperature as the interplay of three destructuration stages at different hierarchical levels of collagen assembly including its tertiary structure and interfibrillar alignment, thus supporting and extending previous findings. This method holds the promise of a quantitative inspection of fundamental biophysical and biochemical processes and may find future applications in real-time and postsurgical functional imaging of collagen-rich tissues subjected to thermal treatments.
Collapse
|
104
|
Rigozzi S, Müller R, Stemmer A, Snedeker J. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding—AFM observations at the nanoscale. J Biomech 2013; 46:813-8. [DOI: 10.1016/j.jbiomech.2012.11.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
105
|
Nürnberger S, Meyer C, Ponomarev I, Barnewitz D, Resinger C, Klepal W, Albrecht C, Marlovits S. Equine articular chondrocytes on MACT scaffolds for cartilage defect treatment. Anat Histol Embryol 2013; 42:332-43. [PMID: 23323689 DOI: 10.1111/ahe.12018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/12/2012] [Indexed: 11/29/2022]
Abstract
Treatment of cartilage defects poses challenging problems in human and veterinary medicine, especially in horses. This study examines the suitability of applying scaffold materials similar to those used for human cartilage regeneration on equine chondrocytes. Chondrocytes gained from biopsies of the talocrural joint of three horses were propagated in 2D culture and grown on two different scaffold materials, hyaluronan (HYAFF®) and collagen (BioGide®), and evaluated by light and electron microscopy. The equine chondrocytes developed well in both types of materials. They were vital and physiologically highly active. On the surface of the scaffolds, they formed cell multilayers. Inside the hyaluronan web, the chondrocytes were regularly distributed and spanned the large scaffold fibre distances by producing their own matrix sheath. Half-circle-like depressions occasionally found in the cell membrane were probably related to movement on the flexible matrix sheath. Inside the dense collagen scaffold, only single cells were found. They passed through the scaffold strands by cell shape adaptation. This study showed that the examined scaffold materials can be used for equine chondrocyte cultivation. Chondrocytes tend to form multilayers on the surface of both, very dense and very porous scaffolds, and have strategies to span between and move in large gaps.
Collapse
Affiliation(s)
- S Nürnberger
- Department of Traumatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Panwar P, Du X, Sharma V, Lamour G, Castro M, Li H, Brömme D. Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J Biol Chem 2013; 288:5940-50. [PMID: 23297404 DOI: 10.1074/jbc.m112.419689] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive cathepsin K (catK)-mediated turnover of fibrillar type I and II collagens in bone and cartilage leads to osteoporosis and osteoarthritis. However, little is known about how catK degrades compact collagen macromolecules. The present study is aimed to explore the structural and mechanical consequences of collagen fiber degradation by catK. Mouse tail type I collagen fibers were incubated with either catK or non-collagenase cathepsins. Methods used include scanning electron microscopy, protein electrophoresis, atomic force microscopy, and tensile strength testing. Our study revealed evidence of proteoglycan network degradation, followed by the progressive disassembly of macroscopic collagen fibers into primary structural elements by catK. Proteolytically released GAGs are involved in the generation of collagenolytically active catK-GAG complexes as shown by AFM. In addition to their structural disintegration, a decrease in the tensile properties of fibers was observed due to the action of catK. The Young's moduli of untreated collagen fibers versus catK-treated fibers in dehydrated conditions were 3.2 ± 0.68 GPa and 1.9 ± 0.65 GPa, respectively. In contrast, cathepsin L, V, B, and S revealed no collagenase activity, except the disruption of proteoglycan-GAG interfibrillar bridges, which slightly decreased the tensile strength of fibers.
Collapse
Affiliation(s)
- Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
107
|
Jiang Y, Tong Y, Xiao T, Lu S. Phase-contrast microtomography with synchrotron radiation technology: a new noninvasive technique to analyze the three-dimensional structure of dermal tissues. Dermatology 2012; 225:75-80. [PMID: 22907159 DOI: 10.1159/000341530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/17/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Since the three-dimensional (3-D) structure of dermal tissue has an important role in regulating cell behavior and directing the wound healing process, the characteristic of the 3-D structure of dermal tissue needs to be clarified. OBJECTIVE To explore the different 3-D structures between normal and scar dermal tissues. MATERIAL AND METHODS Phase-contrast microtomography with synchrotron radiation technology was applied to detect the 3-D structure of dermal tissues. RESULTS The normal dermal tissue consists of elliptical structures formed by fiber bundles interwoven in a helical manner. A regular louver-like structure was observed on the fibers. In scar tissue, the fiber bundles were arrayed in parallel, the louver-like structures were disordered. CONCLUSION The study demonstrates the mesoscopic difference between normal dermal tissue and scar tissue, suggests that the high level of interweaving capability of collagen is compromised/lost when dermal tissue is injured, and provides a basis for future studies.
Collapse
Affiliation(s)
- Yuzhi Jiang
- Shanghai Burn Institute, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | | | | | | |
Collapse
|
108
|
Jiang Y, Tong Y, Lu S. Visualizing the three-dimensional mesoscopic structure of dermal tissues. J Tissue Eng Regen Med 2012; 8:794-800. [PMID: 22865629 DOI: 10.1002/term.1579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 12/09/2011] [Accepted: 06/18/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Yuzhi Jiang
- Shanghai Burns Institute, Ruijin Hospital, School of Medicine; Shanghai Jiaotong University; People's Republic of China
| | - Yajun Tong
- Shanghai Synchrotron Radiation Facility (SSRF); Shanghai Institute of Applied Physics, CAS; People's Republic of China
| | - Shuliang Lu
- Shanghai Burns Institute, Ruijin Hospital, School of Medicine; Shanghai Jiaotong University; People's Republic of China
| |
Collapse
|
109
|
Bertassoni LE, Orgel JPR, Antipova O, Swain MV. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater 2012; 8:2419-33. [PMID: 22414619 PMCID: PMC3473357 DOI: 10.1016/j.actbio.2012.02.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/16/2012] [Accepted: 02/28/2012] [Indexed: 11/28/2022]
Abstract
The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, United Dental Hospital, NSW, Australia.
| | | | | | | |
Collapse
|
110
|
Solution to the Bavarois challenge. Anal Bioanal Chem 2012; 403:2463. [PMID: 22549817 DOI: 10.1007/s00216-012-6034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
111
|
Bertassoni LE, Swain MV. Influence of hydration on nanoindentation induced energy expenditure of dentin. J Biomech 2012; 45:1679-83. [PMID: 22537569 DOI: 10.1016/j.jbiomech.2012.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 02/24/2012] [Accepted: 03/17/2012] [Indexed: 11/17/2022]
Abstract
Improved understanding of the effects of hydration and drying in mineralized tissues is highly desirable, particularly for physiologically hydrated biological materials such as dentin. We investigated the influence of hydration on the nanomechanical properties of healthy dentin and hypothesized that drying leads to an increase in indentation induced energy expenditure and hardness. Hydrated and dry dentin were tested with a UMIS set up with a Berkovich indenter at a maximum load of 50 mN. Values representative of the energy expenditure behavior were presented as dissipated energy, U(d), recovered energy, U(e), normalized energy expenditure index, ψ, and hardness, H. Energy expenditure index results, which normalize the energy expenditure for each test and describe the relative energy dissipation-recovery behavior of a material, suggested that, for the relatively severe contact strains about a sharp Berkovich indenter, dissipation dominates the mechanical response of both the hydrated and dry dentin. In support of our initial hypothesis, dry dentin presented a significantly higher energy expenditure index than hydrated dentin (p<0.0001). These results were primarily associated with a lower U(e) that was found upon drying. Hydration also decreased H significantly (p<0.0001). In summary, this study presents the first direct measurements of the energy expenditure behavior of hydrated and dry dentin using instrumented nanoindentation.
Collapse
Affiliation(s)
- Luiz Eduardo Bertassoni
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW, 2010 Sydney, Australia.
| | | |
Collapse
|
112
|
Yang L, van der Werf KO, Dijkstra PJ, Feijen J, Bennink ML. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J Mech Behav Biomed Mater 2011; 6:148-58. [PMID: 22301184 DOI: 10.1016/j.jmbbm.2011.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 01/28/2023]
Abstract
The mechanical properties of individual collagen fibrils of approximately 200 nm in diameter were determined using a slightly adapted AFM system. Single collagen fibrils immersed in PBS buffer were attached between an AFM cantilever and a glass surface to perform tensile tests at different strain rates and stress relaxation measurements. The stress-strain behavior of collagen fibrils immersed in PBS buffer comprises a toe region up to a stress of 5 MPa, followed by the heel and linear region at higher stresses. Hysteresis and strain-rate dependent stress-strain behavior of collagen fibrils were observed, which suggest that single collagen fibrils have viscoelastic properties. The stress relaxation process of individual collagen fibrils could be best fitted using a two-term Prony series. Furthermore, the influence of different cross-linking agents on the mechanical properties of single collagen fibrils was investigated. Based on these results, we propose that sliding of microfibrils with respect to each other plays a role in the viscoelastic behavior of collagen fibrils in addition to the sliding of collagen molecules with respect to each other. Our finding provides a better insight into the relationship between the structure and mechanical properties of collagen and the micro-mechanical behavior of tissues.
Collapse
Affiliation(s)
- L Yang
- Polymer Chemistry and Biomaterials, Faculty of Science & Technology and Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
113
|
Raspanti M, Reguzzoni M, Protasoni M, Martini D. Evidence of a discrete axial structure in unimodal collagen fibrils. Biomacromolecules 2011; 12:4344-7. [PMID: 22066528 DOI: 10.1021/bm201314e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The collagen fibrils of cornea, blood vessel walls, skin, gut, interstitial tissues, the sheath of tendons and nerves, and other connective tissues are known to be made of helically wound subfibrils winding at a constant angle to the fibril axis. A critical aspect of this model is that it requires the axial microfibrils to warp in an implausible way. This architecture lends itself quite naturally to an epitaxial layout where collagen microfibrils envelop a central core of a different nature. Here we demonstrate an axial domain in collagen fibrils from rabbit nerve sheath and tendon sheath by means of transmission electron microscopy after a histochemical reaction designed to evidence all polysaccharides and by tapping-mode atomic force microscopy. This axial domain was consistently found in fibrils with helical microfibrils but was not observed in tendon, whose microfibrils run longitudinal and parallel.
Collapse
Affiliation(s)
- Mario Raspanti
- Department of Human Morphology, Insubria University, Varese, Italy.
| | | | | | | |
Collapse
|
114
|
Rigozzi S, Stemmer A, Müller R, Snedeker J. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy. J Struct Biol 2011; 176:9-15. [DOI: 10.1016/j.jsb.2011.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 11/26/2022]
|
115
|
Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis. Nat Struct Mol Biol 2011; 18:1109-14. [PMID: 21947205 PMCID: PMC3191118 DOI: 10.1038/nsmb.2127] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/21/2011] [Indexed: 11/10/2022]
Abstract
Collagen constitutes one third of the body protein in humans, reflecting its extraordinary role in health and disease. Of similar importance, therefore, are the idiosyncratic proteases that nature evolved for collagen remodeling. Intriguingly, the most efficient collagenases are those that enable clostridial bacteria to colonize their host tissues, but despite intense studies, the structural and mechanistic basis of these enzymes has remained elusive. Here we present the crystal structure of collagenase G from Clostridium histolyticum at 2.55 Å resolution. By combining the structural data with enzymatic and mutagenesis studies, we derive a conformational two-state model of bacterial collagenolysis, in which the recognition and unraveling of collagen microfibrils into triple helices as well as the unwinding of the latter go hand in hand with collagenase opening and closing.
Collapse
|
116
|
Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 2011; 3:821-8. [PMID: 21941256 DOI: 10.1038/nchem.1123] [Citation(s) in RCA: 478] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/25/2011] [Indexed: 12/23/2022]
Abstract
Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic systems through the same steps as those of natural collagen (peptide chain to triple helix to nanofibres and, finally, to a hydrogel) are partially successful, but none simultaneously demonstrate all the levels of structural assembly. Here we describe a peptide that replicates the self-assembly of collagen through each of these steps. The peptide features collagen's characteristic proline-hydroxyproline-glycine repeating unit, complemented by designed salt-bridged hydrogen bonds between lysine and aspartate to stabilize the triple helix in a sticky-ended assembly. This assembly is propagated into nanofibres with characteristic triple helical packing and lengths with a lower bound of several hundred nanometres. These nanofibres form a hydrogel that is degraded by collagenase at a similar rate to that of natural collagen.
Collapse
|
117
|
Heussinger C, Grason GM. Theory of crosslinked bundles of helical filaments: Intrinsic torques in self-limiting biopolymer assemblies. J Chem Phys 2011; 135:035104. [DOI: 10.1063/1.3610431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
118
|
Madsen DH, Ingvarsen S, Jürgensen HJ, Melander MC, Kjøller L, Moyer A, Honoré C, Madsen CA, Garred P, Burgdorf S, Bugge TH, Behrendt N, Engelholm LH. The non-phagocytic route of collagen uptake: a distinct degradation pathway. J Biol Chem 2011; 286:26996-7010. [PMID: 21652704 DOI: 10.1074/jbc.m110.208033] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.
Collapse
Affiliation(s)
- Daniel H Madsen
- Finsen Laboratory/BRIC, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Uquillas JA, Kishore V, Akkus O. Effects of phosphate-buffered saline concentration and incubation time on the mechanical and structural properties of electrochemically aligned collagen threads. Biomed Mater 2011; 6:035008. [PMID: 21540522 PMCID: PMC3146300 DOI: 10.1088/1748-6041/6/3/035008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A key step during the synthesis of collagen constructs is the incubation of monomeric collagen in phosphate buffer saline (PBS) to promote fibrillogenesis in the collagen network. Optimal PBS-treatment conditions for monomeric collagen solutions to induce gelation are well established in the literature. Recently, a report in the literature (Cheng et al 2008 Biomaterials 29 3278-88) showed a novel method to fabricate highly oriented electrochemically aligned collagen (ELAC) threads which have orders of magnitude greater packing density than collagen gels. The optimal PBS-treatment conditions for induction of D-banding pattern in such a dense and anisotropic collagen network are unknown. This study aimed to optimize PBS treatment of ELAC threads by investigating the effect of phosphate ion concentration (0.5×, 1×, 5× and 10×) and incubation time (3, 12 and 96 h) on the mechanical strength and ultrastructural organization by monotonic mechanical testing, small angle x-ray scattering and transmission electron microscopy (TEM). ELAC threads incubated in water (no PBS) served as the control. ELAC threads incubated in 1× PBS showed significantly higher extensibility compared to those in 0.5× or 10× PBS along with the presence of D-banded patterns with a periodicity of 63.83 nm. Incubation of ELAC threads in 1× PBS for 96 h resulted in significantly higher ultimate stress compared to 3 or 12 h. However, these threads lacked the D-banding pattern. TEM observations showed no significant differences in the microfibril diameter distribution of ELAC threads treated with or without PBS. This indicates that microfibrils lacked D-banding following electrochemical alignment and the subsequent PBS-treatment-induced D-banding by reorganization within microfibrils. It was concluded that incubation of aligned collagen in 1× PBS for 12 h results in mechanically competent, D-banded ELAC threads which can be used for the regeneration of load bearing tissues such as tendons and ligaments.
Collapse
Affiliation(s)
- Jorge Alfredo Uquillas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032
| | - Vipuil Kishore
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032
| | - Ozan Akkus
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032
| |
Collapse
|
120
|
Streeter I, de Leeuw NH. A molecular dynamics study of the interprotein interactions in collagen fibrils. SOFT MATTER 2011; 7:3373-3382. [PMID: 23526918 PMCID: PMC3605786 DOI: 10.1039/c0sm01192d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Molecular dynamics simulations of collagen are used to investigate at the atomistic level the nature of the interprotein interactions that are present within a collagen fibril, and which are responsible for the fibril's thermodynamic stability. Simulations both of a collagen fibril and of a fully solvated tropcollagen are compared in order to study the interactions that arise between the proteins upon the process of fibrillogenesis. The interactions studied include direct interprotein hydrogen bonds, water-mediated interprotein hydrogen bonds, and hydrophobic interactions. The simulations are used to quantify the number of interprotein interactions that form; to study which functional groups contribute most towards the interactions; and to study the spatial distribution of interprotein interactions throughout the fibril's D period. The processes of collagen fibrillogenesis and protein folding are then compared with each other, because these two physical processes share many similarities in concept, and the latter has been more widely studied. Molecular dynamics simulations of a bacteriophage T4 lysozyme protein, both in its native state and in and unfolded state, are used as an illustrative example of a typical protein folding process, for direct comparison with the collagen simulations.
Collapse
Affiliation(s)
- Ian Streeter
- Department of Chemistry, University College London, 20 Gordon Street, London, United Kingdom WC1H 0AJ ; Insitute of Orthopaedics & Musculoskeletal Science, University College London, Brockley Hill, Stanmore, United Kingdom HA7 4LP
| | | |
Collapse
|
121
|
Hwang YJ, Lyubovitsky JG. Collagen hydrogel characterization: multi-scale and multi-modality approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:529-536. [PMID: 32938068 DOI: 10.1039/c0ay00381f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The complex supramolecular architecture of collagen biopolymer plays an important role in tissue development and integrity. Developing methods to report on collagen structures assembled in vitro would accelerate the pace of utilizing it in biomedical applications. Employing imaging techniques and turbidity measurements, we mapped the light scattering properties of 3D collagen hydrogels formed at initial concentrations of 1 mg ml-1 to about 5 mg ml-1 and several incubation temperatures. The transmission electron microscopy (TEM) images show that collagen scattering features consist of both native-like fibrils and filamentous structures that do not have the characteristic fibrillar striation observed in this protein. Spindle-shaped fibrils appear at the concentrations of 1, 2, 2.5 and 4 mg ml-1 and the spiral-shaped fibrils are formed at the concentrations of 2 and 2.5 mg ml-1. The multiphoton microscopy (MPM) images reveal that in the 3D collagen hydrogels a unified relationship between second harmonic generation (SHG) signal directionality and fibril morphology and/or sizes is not likely. The MPM images, however, showed important micro-structural details. These details lead us to conclude that the dependence of SHG signals on the number of interfaces created upon assembly of 3D collagen hydrogels can account for the strength of the detected backscattered signals.
Collapse
Affiliation(s)
- Yu-Jer Hwang
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, California 92521, USA.
| | - Julia G Lyubovitsky
- Department of Bioengineering, University of California Riverside, Riverside, California 92521, USA.
| |
Collapse
|
122
|
Deitch S, Kunkle C, Cui X, Boland T, Dean D. Collagen Matrix Alignment Using Inkjet Printer Technology. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-1094-dd07-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractCollagen fiber orientation plays an important role in many cell properties and actions in vivo. Collagen and other matrix proteins are aligned in many tissues during normal functioning. For example, cardiomyocytes align in the heart to produce a synchronously beating tissue. The extra-cellular matrix environment, including collagen, is aligned along the cells. This matrix helps with cell adhesion and the alignment of the fibers also contributes to the anisotropic mechanical property of the tissue. While it is easy to replicate randomly oriented collagen in vitro, it is much more difficult to create aligned collagen matrices for cell culture. In this work, a novel inkjet printer-based collagen alignment technique was established. A 1 mg/ml rat tail collagen type I solution was printed, using a modified HP DeskJet 500 printer, onto plasma cleaned and UV sterilized glass slides. The collagen was printed in an eight line pattern, designed in Microsoft Word with 87.5 μm by 23.1 mm lines. The pattern was printed three successive times on each slide to complete the alignment. Immunofluorescence imaging of primary antibodies specific to collagen type I indicated that the heat involved in the printing process was not great enough to denature the collagen. The extent of collagen alignment was quantified using atomic force microscopy and compared to random collagen films and collagen films aligned using a mechanical scraping method. Additionally, neonatal rat cardiomyocytes were cultured on the aligned matrices. These cells require extracellular matrix alignment to maintain their in vivo-like phenotype during in vitro culture. The cells grew along the lines of collagen and coordinated beating, indicating the success of the aligned matrix. This collagen alignment technique is cheap, fast, precise, and easy to use in comparison to other current techniques. It can be used to align collagen on any type of substrate, such as a gel, which makes it a useful tool in many applications. This technique may also be used to align other extra-cellular matrix proteins and could even be used to create a three dimensional construct with varying fiber orientations.
Collapse
|
123
|
Orgel JPRO, San Antonio JD, Antipova O. Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res 2011; 52:2-17. [PMID: 21182410 DOI: 10.3109/03008207.2010.511353] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The fibrous collagens form the structural basis of all mammalian connective tissues, including the vasculature, dermis, bones, tendons, cartilage, and those tissues that support organs such as the heart, kidneys, liver, and lungs. The helical structure of collagen has been extensively studied but in addition to its helical character, its molecular packing arrangement (in its aggregated or fibrillar form) and the presence of specific amino acid sequences govern collagen's in vivo functions. Collagen's molecular packing arrangement helps control cellular communication, attachment and movement, and conveys its tissue-specific biomechanical properties. Recent progress in understanding collagen's molecular packing, fibrillar structure, domain organization, and extracellular matrix (ECM) interactions in light of X-ray fiber diffraction data provides significant new insights into how the ECM is organized and functions. In this review, the hierarchy of fibrillar collagen structure is discussed in the context of how this organization affects ECM-"ligand" interactions, with specific attention to collagenolysis, integrins, fibronection, glycoprotein VI receptor (GPVI), and proteoglycans (PG). Understanding the complex structure of collagen and its attached ligands should provide new insights into tissue growth, development, regeneration, and disease.
Collapse
Affiliation(s)
- J P R O Orgel
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | | | | |
Collapse
|
124
|
Iwahashi M, Muragaki Y. Decreased type III collagen expression in human uterine cervix of prolapse uteri. Exp Ther Med 2011; 2:271-274. [PMID: 22977496 DOI: 10.3892/etm.2011.204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/04/2011] [Indexed: 11/05/2022] Open
Abstract
The precise mechanism of prolapse uteri is not fully understood. There is evidence to suggest that abnormalities of collagen, the main component of extracellular matrix, or its repair mechanism, may predispose women to prolapse. To investigate the characteristic structure of human uterine cervix of patients with prolapse uteri, various types of collagen expression in the uterine cervix tissues of the prolapse uteri were compared to those of normal uterine cervix. After informed consent, 36 specimens of uterine cervical tissues were obtained at the time of surgery from 16 postmenopausal women with prolapse uteri (stage III-IV by the Pelvic Organ Prolapse Quantification examination) and 20 postmenopausal women without prolapse uteri (control group). Collagens were extracted from the uterine cervix tissues by salt precipitation methods. The relative levels of various collagens were evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The uterine cervix was longer in the patients with prolapse uteri than those of postmenopausal controls without prolapse uteri. The ratios of type III to type I collagen in the uterine cervical tissues were significantly decreased in the prolapse uteri, as compared to those of the postmenopausal uterine cervix without prolapse. These results suggest that decreased type III collagen expression may play an important role in determing the physiology and structure of the uterine cervix tissues of prolapse uteri.
Collapse
|
125
|
Eyre DR, Weis M, Hudson DM, Wu JJ, Kim L. A novel 3-hydroxyproline (3Hyp)-rich motif marks the triple-helical C terminus of tendon type I collagen. J Biol Chem 2011; 286:7732-7736. [PMID: 21239503 DOI: 10.1074/jbc.c110.195768] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because of its unique physical and chemical properties, rat tail tendon collagen has long been favored for crystallographic and biochemical studies of fibril structure. In studies of the distribution of 3-hydroxyproline in type I collagen of rat bone, skin, and tail tendon by mass spectrometry, the repeating sequences of Gly-Pro-Pro (GPP) triplets at the C terminus of α1(I) and α2(I) chains were shown to be heavily 3-hydroxylated in tendon but not in skin and bone. By isolating the tryptic peptides and subjecting them to Edman sequence analysis, the presence of repeating 3-hydroxyprolines in consecutive GPP triplets adjacent to 4-hydroxyproline was confirmed as a unique feature of the tendon collagen. A 1960s study by Piez et al. (Piez, K. A., Eigner, E. A., and Lewis, M. S. (1963) Biochemistry 2, 58-66) in which they compared the amino acid compositions of rat skin and tail tendon type I collagen chains indeed showed 3-4 residues of 3Hyp in tendon α1(I) and α2(I) chains but only one 3Hyp residue in skin α1(I) and none in α2(I). The present work therefore confirms this difference and localizes the additional 3Hyp to the GPP repeat at the C terminus of the triple-helix. We speculate on the significance in terms of a potential function in contributing to the unique assembly mechanism and molecular packing in tendon collagen fibrils and on mechanisms that could regulate 3-hydroxylation at this novel substrate site in a tissue-specific manner.
Collapse
Affiliation(s)
- David R Eyre
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500.
| | - MaryAnn Weis
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - David M Hudson
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - Jiann-Jiu Wu
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - Lammy Kim
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| |
Collapse
|
126
|
Schulze-Tanzil G, Al-Sadi O, Wiegand E, Ertel W, Busch C, Kohl B, Pufe T. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand J Med Sci Sports 2011; 21:337-51. [PMID: 21210861 DOI: 10.1111/j.1600-0838.2010.01265.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Owing to limited self-healing capacity, tendon ruptures and healing remain major orthopedic challenges. Increasing evidence suggests that post-traumatic inflammatory responses, and hence, cytokines are involved in both cases, and also in tendon exercise and homeostasis. This review summarizes interrelations known between the cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)α, IL-6 and vascular endothelial growth factor (VEGF) in tendon to assess their role in tendon damage and healing. Exogenic cytokine sources are blood-derived leukocytes that immigrate in damaged tendon. Endogenous expression of IL-1β, TNFα, IL-6, IL-10 and VEGF was demonstrated in tendon-derived cells. As tendon is a highly mechanosensitive tissue, cytokine homeostasis and cell survival underlie an intimate balance between adequate biomechanical stimuli and disturbance through load deprivation and overload. Multiple interrelations between cytokines and tendon extracellular matrix (ECM) synthesis, catabolic mediators e.g. matrix-degrading enzymes, inflammatory and angiogenic factors (COX-2, PGE2, VEGF, NO) and cytoskeleton assembly are evident. Pro-inflammatory cytokines affect ECM homeostasis, accelerate remodeling, amplify biomechanical adaptiveness and promote tenocyte apoptosis. This multifaceted interplay might both contribute to and interfere with healing. Much work must be undertaken to understand the particular interrelation of these inflammatory and regulatory mediators in ruptured tendon and healing, which has relevance for the development of novel immunoregulatory therapeutic strategies.
Collapse
Affiliation(s)
- G Schulze-Tanzil
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
127
|
Murnen HK, Rosales AM, Jaworski JN, Segalman RA, Zuckermann RN. Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices. J Am Chem Soc 2010; 132:16112-9. [DOI: 10.1021/ja106340f] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hannah K. Murnen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, and Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Adrianne M. Rosales
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, and Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Jonathan N. Jaworski
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, and Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Rachel A. Segalman
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, and Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Ronald N. Zuckermann
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, and Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| |
Collapse
|
128
|
Changed dynamics in myofibrillar protein aggregation as a consequence of heating time and temperature. Meat Sci 2010; 85:625-31. [DOI: 10.1016/j.meatsci.2010.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 11/21/2022]
|
129
|
Fallas JA, O'Leary LER, Hartgerink JD. Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures. Chem Soc Rev 2010; 39:3510-27. [PMID: 20676409 DOI: 10.1039/b919455j] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collagen is a fascinating system of proteins that undergo a multi-step, hierarchical self-assembly which starts from individual peptide chains that assemble into a canonical triple helix. These triple helices then assemble into higher order structures which are often, but not always, fibrous in nature. While collagen is the most abundant protein in the human body, the details of its structure and mechanism of assembly are surprisingly poorly understood. This critical review will focus on small peptide systems, commonly referred to as collagen mimetic peptides (CMPs) which have been used successfully to help unravel some of the mystery of this complex structure. We will discuss homotrimeric CMPs, which are the most commonly researched subject in this field, and the structure of the collagen triple helix in detail and the factors that contribute to its stabilization. We will also cover how CMPs have been used to study breaks in triple helical domains as models for connective tissue diseases and, finally, how they have been used to understand the interactions of collagenous proteins with cell-surface receptors. Additionally, we will focus on heterotrimeric CMPs, a relatively new area of collagen research. Finally, we will deal with CMPs used as models for higher level self-assembly and also as materials that are designed to mimic the function of collagens in the extracellular matrix (178 references).
Collapse
Affiliation(s)
- Jorge A Fallas
- Rice University, Department of Chemistry, 6100 Main Street, Mail Stop 60, Houston, TX 77005, USA
| | | | | |
Collapse
|
130
|
Gioia M, Fasciglione GF, Monaco S, Iundusi R, Sbardella D, Marini S, Tarantino U, Coletta M. pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A), and MMP-14 ectodomain. J Biol Inorg Chem 2010; 15:1219-32. [PMID: 20549272 DOI: 10.1007/s00775-010-0680-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
The proteolytic processing of collagen I by three matrix metalloproteinases (MMPs), a collagenase (MMP-1), a gelatinase (MMP-2), and the ectodomain of a membrane-type metalloproteinase (MMP-14), has been investigated at 37 °C between pH 6.0 and 9.2, a pH range reflecting conditions found in different body compartments under various physiopathological processes. In the proteolytic degradation the native collagen triple helix must be partially unwound to allow the binding of α chains to the protease's active-site cleft. We have found that MMP-1 interacts with the two types of collagen I α chains in a similar fashion, whereas both MMP-2 and MMP-14 bind the two α chains in a different way. The overall enzymatic activity is higher on the α-2 chain for both MMP-1 and MMP-2, whereas the MMP-14 ectodomain preferentially cleaves the α-1 chain. In MMP-2 a marked difference for substrate affinity (higher for the α-1 chain) is overwhelmed by an even more marked propensity to cleave the α-2 chain. As a whole, the three classes of MMPs investigated appear to process collagen I in a significantly different fashion, so various MMPs play different roles in the collagen homeostasis in various compartments (such as bloodstream, synovial fluid, normal and tumoral tissues), where different pH values are observed.
Collapse
Affiliation(s)
- Magda Gioia
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Caves JM, Kumar VA, Wen J, Cui W, Martinez A, Apkarian R, Coats JE, Berland K, Chaikof EL. Fibrillogenesis in continuously spun synthetic collagen fiber. J Biomed Mater Res B Appl Biomater 2010; 93:24-38. [PMID: 20024969 DOI: 10.1002/jbm.b.31555] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-line phosphate buffer incubation step for the manufacture of synthetic collagen fiber. Fiber with a cross-section of 53+ or - 14 by 21 + or - 3 microm and an ultimate tensile strength of 94 + or - 19 MPa was continuously produced at 60 m/hr from an ultrafiltered monomeric collagen solution. The effect of collagen solution concentration, flow rate, and spinneret size on fiber size was investigated. The fiber was further characterized by microdifferential scanning calorimetry, transmission electron microscopy (TEM), second harmonic generation (SHG) analysis, and in a subcutaneous murine implant model. Calorimetry demonstrated stabilization of the collagen triple helical structure, while TEM and SHG revealed a dense, axially aligned D-periodic fibril structure throughout the fiber cross-section. Implantation of glutaraldehyde crosslinked and noncrosslinked fiber in the subcutaneous tissue of mice demonstrated limited inflammatory response and biodegradation after a 6-week implant period.
Collapse
Affiliation(s)
- Jeffrey M Caves
- Department of Surgery, Emory University, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Tang Y, Ballarini R, Buehler MJ, Eppell SJ. Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 2010; 7:839-50. [PMID: 19897533 PMCID: PMC2874230 DOI: 10.1098/rsif.2009.0390] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/13/2009] [Indexed: 11/12/2022] Open
Abstract
Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension. The observed deformation mechanisms, associated with rupture and sliding of tropocollagen molecules, are strongly influenced by fibril length, width and cross-linking density. Fibrils containing more than approximately 10 molecules along their length and across their width behave as representative volume elements and exhibit brittle fracture. Shorter fibrils experience a more graceful ductile-like failure. An analytical model is constructed and the results of the molecular modelling are used to find curve-fitted expressions for yield stress, yield strain and fracture strain as functions of fibril structural parameters. Our results for the first time elucidate the size dependence of mechanical failure properties of collagen fibrils. The associated molecular deformation mechanisms allow the full power of traditional material and structural engineering theory to be applied to our understanding of the normal and pathological mechanical behaviours of collagenous tissues under load.
Collapse
Affiliation(s)
- Yuye Tang
- Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roberto Ballarini
- Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven J. Eppell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
133
|
Abstract
The characteristic cells in tendons and ligaments are called tenocytes, which are responsible for the formation and turnover of the extracellular matrix. They react to external stimuli and facilitate the functional adaptation of the proteoglycan and collagen network to mechanical requirements. Via numerous cellular processes they form a complex communicating network which demonstrates coordinated directional reactions. As is common to all tissues in the human body, tendons are subject to age changes which influence the tenocytes, but additionally the structural organization and hence the function of the extracellular matrix. The function and organization of tendons are also affected by mechanical forces, as well as by various cytokines produced in the tissue and by the application of anti-inflammatory medication.
Collapse
|
134
|
Lanfer B, Hermann A, Kirsch M, Freudenberg U, Reuner U, Werner C, Storch A. Directed Growth of Adult Human White Matter Stem Cell–Derived Neurons on Aligned Fibrillar Collagen. Tissue Eng Part A 2010; 16:1103-13. [DOI: 10.1089/ten.tea.2009.0282] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Babette Lanfer
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Andreas Hermann
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Dresden University of Technology, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Ulrike Reuner
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Alexander Storch
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
135
|
Grant CA, Brockwell DJ, Radford SE, Thomson NH. Tuning the elastic modulus of hydrated collagen fibrils. Biophys J 2010; 97:2985-92. [PMID: 19948128 DOI: 10.1016/j.bpj.2009.09.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/10/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022] Open
Abstract
Systematic variation of solution conditions reveals that the elastic modulus (E) of individual collagen fibrils can be varied over a range of 2-200 MPa. Nanoindentation of reconstituted bovine Achilles tendon fibrils by atomic force microscopy (AFM) under different aqueous and ethanol environments was carried out. Titration of monovalent salts up to a concentration of 1 M at pH 7 causes E to increase from 2 to 5 MPa. This stiffening effect is more pronounced at lower pH where, at pH 5, e.g., there is an approximately 7-fold increase in modulus on addition of 1 M KCl. An even larger increase in modulus, up to approximately 200 MPa, can be achieved by using increasing concentrations of ethanol. Taken together, these results indicate that there are a number of intermolecular forces between tropocollagen monomers that govern the elastic response. These include hydration forces and hydrogen bonding, ion pairs, and possibly the hydrophobic effect. Tuning of the relative strengths of these forces allows rational tuning of the elastic modulus of the fibrils.
Collapse
Affiliation(s)
- Colin A Grant
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | |
Collapse
|
136
|
Fernandes H, Dechering K, Van Someren E, Steeghs I, Apotheker M, Leusink A, Bank R, Janeczek K, Van Blitterswijk C, de Boer J. The role of collagen crosslinking in differentiation of human mesenchymal stem cells and MC3T3-E1 cells. Tissue Eng Part A 2010; 15:3857-67. [PMID: 19694522 DOI: 10.1089/ten.tea.2009.0011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen is the main protein component of the extracellular matrix of bone, and it has structural and instructive properties. Collagen undergoes many post-translational modifications, including extensive crosslinking. Although defective crosslinking has been implicated in human syndromes (e.g., osteogenesis imperfecta or Ehlers-Danlos syndrome), it is not clear to what extent crosslinking is necessary for collagen's instructive properties during bone formation. Here we report that inhibition of collagen crosslinking in the mouse pre-osteoblast cell line MC3T3-E1 impairs the osteogenic program. Genome-wide expression profiling of beta-aminopropionitrile-treated and control cells revealed that matrix deposition by MC3T3-E1 cells provides a feed back signal, driving cells through the differentiation process, that is strongly impaired when crosslinking is inhibited. Inhibition of crosslinking did not affect osteogenic differentiation of human mesenchymal stem cells (hMSCs), shown by the expression of alkaline phosphatase and genome-wide gene expression analysis, although it enhances matrix mineralization. In conclusion, collagen crosslinking harbors instructive properties in MC3T3-E1 differentiation but plays a more-passive role in differentiation of bone marrow-derived hMSCs.
Collapse
Affiliation(s)
- Hugo Fernandes
- Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Bergeron E, Senta H, Mailloux A, Park H, Lord E, Faucheux N. Murine preosteoblast differentiation induced by a peptide derived from bone morphogenetic proteins-9. Tissue Eng Part A 2010; 15:3341-9. [PMID: 19388833 DOI: 10.1089/ten.tea.2009.0189] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) increase the differentiation of osteoblasts implicated in bone formation and repair. In a previous study, we demonstrated that a peptide derived from BMP-9 (pBMP-9) at 400 ng/mL inhibited murine preosteoblasts MC3T3-E1 proliferation. Here, we compared the effects of equimolar concentrations of BMP-2 (50 ng/mL), BMP-9 (42.3 ng/mL), and pBMP-9 (4.52 ng/mL) on the differentiation of MC3T3-E1 in a serum-free medium. Like BMP-2, BMP-9 and pBMP-9 activated the Smad pathway. In contrary to BMP-2, the Smad phosphorylation induced by BMP-9 and pBMP-9 is not prevented by noggin, an extracellular antagonist of BMP-2. Further, BMP-9 and pBMP-9 increased, dose dependently, alkaline phosphatase activity, an early marker of osteoblast differentiation, after 1 day. Quantitative real-time polymerase chain reaction analysis demonstrated that BMP-2, BMP-9, and pBMP-9 (4.52 or 400 ng/mL) all activated the transcription of Runx2, Osterix, type I collagen alpha1 chain, and Osteocalcin genes within day 6. Alizarin red S quantification demonstrated that pBMP-9 (400 ng/mL) and pBMP-9 (4.52 ng/mL) allowed a slight deposition of Ca(2+) in the extracellular matrix of cells within 12 and 18 days, respectively. Therefore, pBMP-9 might be a promising replacement for costly BMP in tissue engineering applications that require a well-defined serum-free medium.
Collapse
Affiliation(s)
- Eric Bergeron
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | | | | | | | | | | |
Collapse
|
138
|
Franchi M, Ottani V, Stagni R, Ruggeri A. Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. J Anat 2010; 216:301-9. [PMID: 20070421 DOI: 10.1111/j.1469-7580.2009.01188.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Collagen fibres in tendons and ligaments run straight but in some regions they show crimps which disappear or appear more flattened during the initial elongation of tissues. Each crimp is formed of collagen fibrils showing knots or fibrillar crimps at the crimp top angle. The present study analyzes by polarized light microscopy, scanning electron microscopy, transmission electron microscopy the 3D morphology of fibrillar crimp in tendons and ligaments of rat demonstrating that each fibril in the fibrillar region always twists leftwards changing the plane of running and sharply bends modifying the course on a new plane. The morphology of fibrillar crimp in stretched tendons fulfills the mechanical role of the fibrillar crimp acting as a particular knot/biological hinge in absorbing tension forces during fibril strengthening and recoiling collagen fibres when stretching is removed. The left-handed path of fibrils in the fibrillar crimp region gives rise to left-handed fibril helices observed both in isolated fibrils and sections of different tendons and ligaments (flexor digitorum profundus muscle tendon, Achilles tendon, tail tendon, patellar ligament and medial collateral ligament of the knee). The left-handed path of fibrils represents a new final suprafibrillar level of the alternating handedness which was previously described only from the molecular to the microfibrillar level. When the width of the twisting angle in the fibrillar crimp is nearly 180 degrees the fibrils appear as left-handed flattened helices forming crimped collagen fibres previously described as planar crimps. When fibrils twist with different subsequent rotational angles (< 180 degrees ) they always assume a left-helical course but, running in many different nonplanar planes, they form wider helical crimped fibres.
Collapse
Affiliation(s)
- Marco Franchi
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato, Locomotore, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
139
|
Lisitza N, Huang X, Hatabu H, Patz S. Exploring collagen self-assembly by NMR. Phys Chem Chem Phys 2010; 12:14169-71. [DOI: 10.1039/c0cp00651c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
140
|
Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, O’Gorman DB. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren's disease and adjacent palmar fascia cells. Exp Cell Res 2009; 315:3574-86. [PMID: 19619531 PMCID: PMC5017872 DOI: 10.1016/j.yexcr.2009.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/08/2009] [Accepted: 07/15/2009] [Indexed: 12/11/2022]
Abstract
Dupuytren's disease, (DD), is a fibroproliferative condition of the palmar fascia in the hand, typically resulting in permanent contracture of one or more fingers. This fibromatosis is similar to scarring and other fibroses in displaying excess collagen secretion and contractile myofibroblast differentiation. In this report we expand on previous data demonstrating that POSTN mRNA, which encodes the extra-cellular matrix protein periostin, is up-regulated in Dupuytren's disease cord tissue relative to phenotypically normal palmar fascia. We demonstrate that the protein product of POSTN, periostin, is abundant in Dupuytren's disease cord tissue while little or no periostin immunoreactivity is evident in patient-matched control tissues. The relevance of periostin up-regulation in DD was assessed in primary cultures of cells derived from diseased and phenotypically unaffected palmar fascia from the same patients. These cells were grown in type-1 collagen-enriched culture conditions with or without periostin addition to more closely replicate the in vivo environment. Periostin was found to differentially regulate the apoptosis, proliferation, alpha smooth muscle actin expression and stressed Fibroblast Populated Collagen Lattice contraction of these cell types. We hypothesize that periostin, secreted by disease cord myofibroblasts into the extra-cellular matrix, promotes the transition of resident fibroblasts in the palmar fascia toward a myofibroblast phenotype, thereby promoting disease progression.
Collapse
Affiliation(s)
- Linda Vi
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Lucy Feng
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Rebecca D. Zhu
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Yan Wu
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Latha Satish
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Bing Siang Gan
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - David B. O’Gorman
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
141
|
Kawasaki K, Buchanan AV, Weiss KM. Biomineralization in Humans: Making the Hard Choices in Life. Annu Rev Genet 2009; 43:119-42. [DOI: 10.1146/annurev-genet-102108-134242] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Anne V. Buchanan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Kenneth M. Weiss
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
142
|
The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials 2009; 30:5950-8. [DOI: 10.1016/j.biomaterials.2009.07.039] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/22/2009] [Indexed: 12/31/2022]
|
143
|
Meek KM. Corneal collagen-its role in maintaining corneal shape and transparency. Biophys Rev 2009; 1:83-93. [PMID: 28509987 PMCID: PMC5425665 DOI: 10.1007/s12551-009-0011-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022] Open
Abstract
Corneal collagen has a number of properties that allow it to fulfil its role as the main structural component within the tissue. Fibrils are narrow, uniform in diameter and precisely organised. These properties are vital to maintain transparency and to provide the biomechanical prerequisites necessary to sustain shape and provide strength. This review describes the structure and arrangement of corneal collagen from the nanoscopic to the macroscopic level, and how this relates to the maintenance of the form and transparency of the cornea.
Collapse
Affiliation(s)
- Keith M Meek
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4LU, UK.
| |
Collapse
|
144
|
Vi L, Njarlangattil A, Wu Y, Gan BS, O'Gorman DB. Type-1 Collagen differentially alters beta-catenin accumulation in primary Dupuytren's Disease cord and adjacent palmar fascia cells. BMC Musculoskelet Disord 2009; 10:72. [PMID: 19545383 PMCID: PMC2716298 DOI: 10.1186/1471-2474-10-72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/19/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dupuytren's Disease (DD) is a debilitating contractile fibrosis of the palmar fascia characterised by excess collagen deposition, contractile myofibroblast development, increased transforming growth factor-beta levels and beta-catenin accumulation. The aim of this study was to determine if a collagen-enriched environment, similar to in vivo conditions, altered beta-catenin accumulation by primary DD cells in the presence or absence of transforming growth factor-beta. METHODS Primary DD and patient matched, phenotypically normal palmar fascia (PF) cells were cultured in the presence or absence of type-1 collagen and transforming growth factor-beta1. beta-catenin and alpha-smooth muscle actin levels were assessed by western immunoblotting and immunofluorescence microscopy. RESULTS DD cells display a rapid depletion of cellular beta-catenin not evident in patient-matched PF cells. This effect was not evident in either cell type when cultured in the absence of type-1 collagen. Exogenous addition of transforming growth factor-beta1 to DD cells in collagen culture negates the loss of beta-catenin accumulation. Transforming growth factor-beta1-induced alpha-smooth muscle actin, a marker of myofibroblast differentiation, is attenuated by the inclusion of type-1 collagen in cultures of DD and PF cells. CONCLUSION Our findings implicate type-1 collagen as a previously unrecognized regulator of beta-catenin accumulation and a modifier of TGF-beta1 signaling specifically in primary DD cells. These data have implications for current treatment modalities as well as the design of in vitro models for research into the molecular mechanisms of DD.
Collapse
Affiliation(s)
- Linda Vi
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, Lawson Health Research Institute, London, Canada
| | - Anna Njarlangattil
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, Lawson Health Research Institute, London, Canada
| | - Yan Wu
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, Lawson Health Research Institute, London, Canada
| | - Bing Siang Gan
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, Lawson Health Research Institute, London, Canada
- Department of Surgery, University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - David B O'Gorman
- Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, Lawson Health Research Institute, London, Canada
- Department of Surgery, University of Western Ontario, London, Canada
- Department of Biochemistry, University of Western Ontario, London, Canada
| |
Collapse
|
145
|
Madurantakam PA, Cost CP, Simpson DG, Bowlin GL. Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds. Nanomedicine (Lond) 2009; 4:193-206. [PMID: 19193185 DOI: 10.2217/17435889.4.2.193] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Native extracellular matrix (ECM) provides structural support to the multicellular organism on a macroscopic scale and establishes a unique microenvironment (niche) to tissue- and organ-specific cell types. Both these functions are critical for optimal function of the organism. These natural ECMs comprise predominantly fibrillar proteins, collagen and elastin and are synthesized as monomers but undergo hierarchical organization into well-defined nanoscaled structural units. The interaction between the cells and ECM is dynamic, reciprocal and essential for tissue development, maintenance of function, repair and regeneration processes. Tissue-engineering scaffolds are synthetic, biomimetic ECM analogues that have great promise in regenerative medicine. Ongoing efforts in mimicking the native ECM in terms of composition and dimension have resulted in three strategies that permit the generation of scaffolds in nanometer dimensions. Although excellent reviews regarding the applications of these strategies in tissue engineering are available, a comprehensive review of the science behind these fabrication techniques does not exist. This review intends to fill this critical gap in the existing knowledge in the fast-expanding field of nanofibrous scaffolds. A thorough understanding of the fabrication processes would enable us to better exploit available technologies to produce superior tissue-engineering scaffolds.
Collapse
|
146
|
Morris AM, Watzky MA, Finke RG. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:375-97. [DOI: 10.1016/j.bbapap.2008.10.016] [Citation(s) in RCA: 506] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/17/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
|
147
|
Abstract
Artificial ECMs that not only closely mimic the hybrid nature of the natural ECM but also provide tunable material properties and enhanced biological functions are attractive candidates for tissue engineering applications. This review summarizes recent advances in developing multicomponent hybrid hydrogels by integrating modular and heterogeneous building blocks into well-defined, multifunctional hydrogel composites. The individual building blocks can be chemically, morphologically, and functionally diverse, and the hybridization can occur at molecular level or microscopic scale. The modular nature of the designs, combined with the potential synergistic effects of the hybrid systems, has resulted in novel hydrogel matrices with robust structure and defined functions.
Collapse
Affiliation(s)
- Xinqiao Jia
- Department of Materials Science and Engineering, Delaware, Biotechnology Institute, University of Delaware, Newark, Delaware 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, Delaware, Biotechnology Institute, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
148
|
Yubing Xie, Castracane J. High-voltage, electric field-driven micro/nanofabrication for polymeric drug delivery systems. ACTA ACUST UNITED AC 2009; 28:23-30. [DOI: 10.1109/memb.2008.931013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
149
|
Rodríguez-Llansola F, Miravet JF, Escuder B. Supramolecular gel formation and self-correction induced by aggregation-driven conformational changes. Chem Commun (Camb) 2009:209-11. [DOI: 10.1039/b816234d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
150
|
Ciarletta P, Ben Amar M. A finite dissipative theory of temporary interfibrillar bridges in the extracellular matrix of ligaments and tendons. J R Soc Interface 2008; 6:909-24. [PMID: 19106068 DOI: 10.1098/rsif.2008.0487] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The structural integrity and the biomechanical characteristics of ligaments and tendons result from the interactions between collagenous and non-collagenous proteins (e.g. proteoglycans, PGs) in the extracellular matrix. In this paper, a dissipative theory of temporary interfibrillar bridges in the anisotropic network of collagen type I, embedded in a ground substance, is derived. The glycosaminoglycan chains of decorin are assumed to mediate interactions between fibrils, behaving as viscous structures that transmit deformations outside the collagen molecules. This approach takes into account the dissipative effects of the unfolding preceding fibrillar elongation, together with the slippage of entire fibrils and the strain-rate-dependent damage evolution of the interfibrillar bridges. Thermodynamic consistency is used to derive the constitutive equations, and the transition state theory is applied to model the rearranging properties of the interfibrillar bridges. The constitutive theory is applied to reproduce the hysteretic spectrum of the tissues, demonstrating how PGs determine damage evolution, softening and non-recoverable strains in their cyclic mechanical response. The theoretical predictions are compared with the experimental response of ligaments and tendons from referenced studies. The relevance of the proposed model in mechanobiology research is discussed, together with several applications from medical practice to bioengineering science.
Collapse
Affiliation(s)
- P Ciarletta
- Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, 24 rue Lhomond, Paris Cedex 05, France.
| | | |
Collapse
|