101
|
Amit M, Berisio R, Baram D, Harms J, Bashan A, Yonath A. A crevice adjoining the ribosome tunnel: hints for cotranslational folding. FEBS Lett 2005; 579:3207-13. [PMID: 15943964 DOI: 10.1016/j.febslet.2005.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
RNA protection experiments and the crystal structure of a complex of the large ribosomal subunit from the eubacterium Deinococcus radiodurans with rapamycin, a polyketide compound resembling macrolides and ketolides, showed that rapamycin binds to a crevice located at the boundaries of the nascent protein exit tunnel, near its entrance. At this location rapamycin cannot occlude the ribosome exit tunnel, consistent with its failure to act as a ribosomal antibiotic drug. In accord with recent biochemical data, this crevice may play a role in facilitating local cotranslational folding of nascent chains, in particular for transmembrane proteins.
Collapse
Affiliation(s)
- Maya Amit
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
102
|
Baram D, Yonath A. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett 2005; 579:948-54. [PMID: 15680980 DOI: 10.1016/j.febslet.2004.11.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
Ribosomes are ribozymes exerting substrate positioning and promoting substrate-mediated catalysis. Peptide-bonds are formed within a symmetrical region, thus suggesting that ribosomes evolved by gene-fusion. Remote interactions dominate substrate positioning at stereochemistry suitable for peptide-bond formation and elaborate architectural-design guides the processivity of the reaction by rotatory motion. Nascent proteins are directed into the exit tunnel at extended conformation, complying with the tunnel's narrow entrance. Tunnel dynamics facilitate its interactive participation in elongation, discrimination, cellular signaling and nascent-protein trafficking into the chaperon-aided folding site. Conformational alterations, induced by ribosomal-recycling factor, facilitate subunit dissociation. Remarkably, although antibiotics discrimination is determined by the identity of a single nucleotide, involved also in resistance, additional nucleotides dictate antibiotics effectiveness.
Collapse
Affiliation(s)
- David Baram
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | |
Collapse
|
103
|
Prunier AL, Trong HN, Tande D, Segond C, Leclercq R. Mutation of L4 Ribosomal Protein Conferring Unusual Macrolide Resistance in Two Independent Clinical Isolates ofStaphylococcus aureus. Microb Drug Resist 2005; 11:18-20. [PMID: 15770089 DOI: 10.1089/mdr.2005.11.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to characterize the resistance mechanisms of two strains of Staphylococcus aureus UCN42 and UCN43 isolated from cystic fibrosis patients that displayed an unusual phenotype of resistance to macrolides. The strains were resistant to erythromycin and the 16-membered macrolide spiramycin but susceptible to clindamycin. None of the strains contained erm or msr(A) genes by PCR. Sequencing of genes encoding ribosomal targets of macrolides revealed mutations in conserved regions of the L4 ribosomal protein, a R168S mutation for S. aureus UCN43 and mutations at positions G69A and T70P for both strains. This observation extends previous reports of similar mutations in streptococci and mycoplasma to S. aureus.
Collapse
|
104
|
Yonath A, Bashan A. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu Rev Microbiol 2004; 58:233-51. [PMID: 15487937 DOI: 10.1146/annurev.micro.58.030603.123822] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-resolution structures of ribosomal complexes revealed that minute amounts of clinically relevant antibiotics hamper protein biosynthesis by limiting ribosomal mobility or perturbing its elaborate architecture, designed for navigating and controlling peptide bond formation and continuous amino acid polymerization. To accomplish this, the ribosome contributes positional rather than chemical catalysis, provides remote interactions governing accurate substrate alignment within the flexible peptidyl-transferase center (PTC) pocket, and ensures nascent-protein chirality through spatial limitations. Peptide bond formation is concurrent with aminoacylated-tRNA 3' end translocation and is performed by a rotatory motion around the axis of a sizable ribosomal symmetry-related region, which is located around the PTC in all known crystal structures. Guided by ribosomal-RNA scaffold along an exact pattern, the rotatory motion results in stereochemistry that is optimal for peptide bond formation and for nascent protein entrance into the exit tunnel, the main target of antibiotics targeting ribosomes. By connecting the PTC, the decoding center, and the tRNA entrance and exit regions, the symmetry-related region can transfer intraribosomal signals, guaranteeing smooth processivity of amino acid polymerization.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel.
| | | |
Collapse
|
105
|
Rakwalska M, Rospert S. The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:9186-97. [PMID: 15456889 PMCID: PMC517888 DOI: 10.1128/mcb.24.20.9186-9197.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chaperone homologs RAC (ribosome-associated complex) and Ssb1/2p are anchored to ribosomes; Ssb1/2p directly interacts with nascent polypeptides. The absence of RAC or Ssb1/2p results in a similar set of phenotypes, including hypersensitivity against the aminoglycoside paromomycin, which binds to the small ribosomal subunit and compromises the fidelity of translation. In order to understand this phenomenon we measured the frequency of translation termination and misincorporation in vivo and in vitro with a novel reporter system. Translational fidelity was impaired in the absence of functional RAC or Ssb1/2p, and the effect was further enhanced by paromomycin. The mutant strains suffered primarily from a defect in translation termination, while misincorporation was compromised to a lesser extent. Consistently, a low level of soluble translation termination factor Sup35p enhanced growth defects in the mutant strains. Based on the combined data we conclude that RAC and Ssb1/2p are crucial in maintaining translational fidelity beyond their postulated role as chaperones for nascent polypeptides.
Collapse
Affiliation(s)
- Magdalena Rakwalska
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | |
Collapse
|
106
|
Kosolapov A, Tu L, Wang J, Deutsch C. Structure acquisition of the T1 domain of Kv1.3 during biogenesis. Neuron 2004; 44:295-307. [PMID: 15473968 DOI: 10.1016/j.neuron.2004.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/26/2004] [Accepted: 09/06/2004] [Indexed: 12/11/2022]
Abstract
The T1 recognition domains of voltage-gated K(+) (Kv) channel subunits form tetramers and acquire tertiary structure while still attached to their individual ribosomes. Here we ask when and in which compartment secondary and tertiary structures are acquired. We answer this question using biogenic intermediates and recently developed folding and accessibility assays to evaluate the status of the nascent Kv peptide both inside and outside of the ribosome. A compact structure (likely helical) that corresponds to a region of helicity in the mature structure is already manifest in the nascent protein within the ribosomal tunnel. The T1 domain acquires tertiary structure only after emerging from the ribosomal exit tunnel and complete synthesis of the T1-S1 linker. These measurements of ion channel folding within the ribosomal tunnel and its exit port bear on basic principles of protein folding and pave the way for understanding the molecular basis of protein misfolding, a fundamental cause of channelopathies.
Collapse
Affiliation(s)
- Andrey Kosolapov
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
107
|
Semrad K, Green R, Schroeder R. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. RNA (NEW YORK, N.Y.) 2004; 10:1855-60. [PMID: 15525706 PMCID: PMC1370674 DOI: 10.1261/rna.7121704] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/13/2004] [Indexed: 05/18/2023]
Abstract
The ribosome is a highly dynamic ribonucleoprotein machine. During assembly and during translation the ribosomal RNAs must routinely be prevented from falling into kinetic folding traps. Stable occupation of these trapped states may be prevented by proteins with RNA chaperone activity. Here, ribosomal proteins from the large (50S) ribosome subunit of Escherichia coli were tested for RNA chaperone activity in an in vitro trans splicing assay. Nearly a third of the 34 large ribosomal subunit proteins displayed RNA chaperone activity. We discuss a possible role of this function during ribosome assembly and during translation.
Collapse
Affiliation(s)
- Katharina Semrad
- Max F Perutz Laboratories, Institute of Microbiology and Genetics, Dr. Bohrgasse 9/4, 1030 Vienna, Austria.
| | | | | |
Collapse
|
108
|
Novotny GW, Jakobsen L, Andersen NM, Poehlsgaard J, Douthwaite S. Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Antimicrob Agents Chemother 2004; 48:3677-83. [PMID: 15388419 PMCID: PMC521900 DOI: 10.1128/aac.48.10.3677-3683.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ketolides are the latest derivatives developed from the macrolide erythromycin to improve antimicrobial activity. All macrolides and ketolides bind to the 50S ribosomal subunit, where they come into contact with adenosine 2058 (A2058) within domain V of the 23S rRNA and block protein synthesis. An additional interaction at nucleotide A752 in the rRNA domain II is made via the synthetic carbamate-alkyl-aryl substituent in the ketolides HMR3647 (telithromycin) and HMR3004, and this interaction contributes to their improved activities. Only a few macrolides, including tylosin, come into contact with domain II of the rRNA and do so via interactions with nucleotides G748 and A752. We have disrupted these macrolide-ketolide interaction sites in the rRNA to assess their relative importance for binding. Base substitutions at A752 were shown to confer low levels of resistance to telithromycin but not to HMR3004, while deletion of A752 confers low levels of resistance to both ketolides. Mutations at position 748 confer no resistance. Substitution of guanine at A2058 gives rise to the MLS(B) (macrolide, lincosamide, and streptogramin B) phenotype, which confers resistance to all the drugs. However, resistance to ketolides was abolished when the mutation at position 2058 was combined with a mutation in domain II of the same rRNA. In contrast, the same dual mutations in rRNAs conferred enhanced resistance to tylosin. Our results show that the domain II interactions of telithromycin and HMR3004 differ from each other and from those of tylosin. The data provide no indication that mutations within domain II, either alone or in combination with an A2058 mutation, can confer significant levels of telithromycin resistance.
Collapse
Affiliation(s)
- Guy W Novotny
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
109
|
Kirmizialtin S, Ganesan V, Makarov DE. Translocation of a β-hairpin-forming peptide through a cylindrical tunnel. J Chem Phys 2004; 121:10268-77. [PMID: 15549903 DOI: 10.1063/1.1807832] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We use Langevin dynamics simulations of a minimalist off-lattice model to study the translocation of a beta hairpin forming peptide through a tunnel that mimics the exit tunnel in a ribosome. We have computed the free energy of the peptide as a function of its position relative to the tunnel exit and also studied the properties of the conformational ensemble, when the peptide's position is restricted at different points along the tunnel. Confining the peptide within a sufficiently wide tunnel stabilizes the folded state. The protein then remains folded as it moves towards the tunnel exit. However, when the diameter D of the tunnel is below a certain critical value D(c), confinement destabilizes the folded state and forces the peptide to assume an extended configuration. In this case, as the peptide progresses towards the tunnel exit and eventually leaves the tunnel, it goes through a series of compact, misfolded conformations and eventually folds when it gets close to the exit. The critical tunnel diameter D(c) is comparable to the width of ribosomal tunnels. Our results suggest that co-translational folding is probably not universal, but rather a protein-specific phenomenon.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
110
|
Liu M, Novotny GW, Douthwaite S. Methylation of 23S rRNA nucleotide G745 is a secondary function of the RlmAI methyltransferase. RNA (NEW YORK, N.Y.) 2004; 10:1713-20. [PMID: 15388872 PMCID: PMC1370659 DOI: 10.1261/rna.7820104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/23/2004] [Indexed: 05/18/2023]
Abstract
Several groups of Gram-negative bacteria possess an RlmA(I) methyltransferase that methylates 23S rRNA nucleotide G745 at the N1 position. Inactivation of rlmA(I) in Acinetobacter calcoaceticus and Escherichia coli reduces growth rates by at least 30%, supposedly due to ribosome malfunction. Wild-type phenotypes are restored by introduction of plasmid-encoded rlmA(I), but not by the orthologous Gram-positive gene rlmA(II) that methylates the neighboring nucleotide G748. Nucleotide G745 interacts with A752 in a manner that does not involve the guanine N1 position. When a cytosine is substituted at A752, a Watson-Crick G745-C752 pair is formed occluding the guanine N1 and greatly reducing RlmA(I) methylation. Methylation is completely abolished by substitution of the G745 base. Intriguingly, the absence of methylation in E. coli rRNA mutant strains causes no reduction in growth rate. Furthermore, the slow-growing rlmA(I) knockout strains of Acinetobacter and E. coli revert to the wild-type growth phenotype after serial passages on agar plates. All the cells tested were pseudorevertants, and none of them had recovered G745 methylation. Analyses of the pseudorevertants failed to reveal second-site mutations in the ribosomal components close to nucleotide G745. The results indicate that cell growth is not dependent on G745 methylation, and that the RlmA(I) methyltransferase therefore has another (as yet unidentified) primary function.
Collapse
Affiliation(s)
- Mingfu Liu
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
111
|
Auerbach T, Bashan A, Yonath A. Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. Trends Biotechnol 2004; 22:570-6. [PMID: 15491801 DOI: 10.1016/j.tibtech.2004.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Various antibiotics bind to ribosomes at functionally relevant locations such as the peptidyl-transferase center (PTC) and the exit tunnel for nascent proteins. High-resolution structures of antibiotics bound to ribosomal particles from a eubacterium that is similar to pathogens and an archaeon that shares properties with eukaryotes are deciphering subtle differences in these highly conserved locations that lead to drug selectivity and thereby facilitate clinical usage. These structures also show that members of antibiotic families with structural differences might bind to specific ribosomal pockets in different modes dominated by their chemical properties. Similarly, the chemical properties of drugs might govern variations in the nature of seemingly identical mechanisms of drug resistance. The observed variability in binding modes justifies expectations for structural design of improved antibiotic properties.
Collapse
Affiliation(s)
- Tamar Auerbach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | | | |
Collapse
|
112
|
Pfister P, Jenni S, Poehlsgaard J, Thomas A, Douthwaite S, Ban N, Böttger EC. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J Mol Biol 2004; 342:1569-81. [PMID: 15364582 DOI: 10.1016/j.jmb.2004.07.095] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/08/2004] [Accepted: 07/22/2004] [Indexed: 11/26/2022]
Abstract
Macrolides are a diverse group of antibiotics that inhibit bacterial growth by binding within the peptide tunnel of the 50S ribosomal subunit. There is good agreement about the architecture of the macrolide site from different crystallography studies of bacterial and archaeal 50S subunits. These structures show plainly that 23S rRNA nucleotides A2058 and A2059 are located accessibly on the surface of the tunnel wall where they act as key contact sites for macrolide binding. However, the molecular details of how macrolides fit into this site remain a matter of contention. Here, we have generated an isogenic set of single and dual substitutions at A2058 and A2059 in Mycobacterium smegmatis to investigate the effects of the rRNA mutations on macrolide binding. Resistances conferred to a comprehensive array of 11 macrolide compounds are used to assess models of macrolide binding predicted from the crystal structures. The data indicate that all macrolides and their derivatives bind at the same site in the tunnel with their C5 amino sugar in a similar orientation. Our data are compatible with the lactone rings of 14-membered and 16-membered macrolides adopting different conformations, enabling the latter compounds to avoid a steric clash with 2058G. This difference, together with interactions conveyed via substituents that are specific to certain ketolide and macrolide sub-classes, influences the binding to the large ribosomal subunit. Our genetic data show no support for a derivatized-macrolide binding site that has been proposed to be located further down the tunnel.
Collapse
Affiliation(s)
- Peter Pfister
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30-32, CH-8028 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
113
|
O'Connor M, Gregory ST, Dahlberg AE. Multiple defects in translation associated with altered ribosomal protein L4. Nucleic Acids Res 2004; 32:5750-6. [PMID: 15509870 PMCID: PMC528798 DOI: 10.1093/nar/gkh913] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ribosomal proteins L4 and L22 form part of the peptide exit tunnel in the large ribosomal subunit. In Escherichia coli, alterations in either of these proteins can confer resistance to the macrolide antibiotic, erythromycin. The structures of the 30S as well as the 50S subunits from each antibiotic resistant mutant differ from wild type in distinct ways and L4 mutant ribosomes have decreased peptide bond-forming activity. Our analyses of the decoding properties of both mutants show that ribosomes carrying the altered L4 protein support increased levels of frameshifting, missense decoding and readthrough of stop codons during the elongation phase of protein synthesis and stimulate utilization of non-AUG codons and mutant initiator tRNAs at initiation. L4 mutant ribosomes are also altered in their interactions with a range of 30S-targeted antibiotics. In contrast, the L22 mutant is relatively unaffected in both decoding activities and antibiotic interactions. These results suggest that mutations in the large subunit protein L4 not only alter the structure of the 50S subunit, but upon subunit association, also affect the structure and function of the 30S subunit.
Collapse
Affiliation(s)
- Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
114
|
Collier J, Bohn C, Bouloc P. SsrA tagging of Escherichia coli SecM at its translation arrest sequence. J Biol Chem 2004; 279:54193-201. [PMID: 15494397 DOI: 10.1074/jbc.m314012200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecM is expressed from the secM-secA operon and activates the expression of secA in response to secretion defects. The 3'-end of secM encodes an "arrest sequence," which can interact with the ribosomal exit tunnel, preventing complete secM translation under secretion-defective conditions. In a cis-acting manner, ribosome stalling enhances secA translation. Pro(166) is the last residue incorporated when SecM elongation is arrested. We report that secretion deficiencies lead to SsrA tagging of SecM after Pro(166), Gly(165), and likely Arg(163). Northern blot analysis revealed the presence of a truncated secM transcript, likely issued from a secM-secA cleavage. The level of secM transcripts was decreased either when secM translation was totally prevented or when Pro(166) was mutated. However, the accumulation of a truncated secM transcript required secM translation and was prevented when the SecM arrest sequence was inactivated by a point mutation changing Pro(166) to Ala. We suggest that ribosome pausing at the site encoding the arrest sequence is required for formation of the truncated secM mRNA. SsrA tagging affected neither the presence of the secM mRNA nor secA expression, even under translocation-defective conditions. It is therefore likely that SsrA tagging of SecM occurs only after cleavage of secM-secA mRNA within the secM open reading frame encoding the SecM arrest sequence. Accumulation of transcripts expressing arrested SecM generated growth inhibition that was alleviated by the SsrA tagging system. Therefore, SsrA tagging of SecM would rescue ribosomes to avoid excessive jamming of the translation apparatus on stop-less secM mRNA.
Collapse
Affiliation(s)
- Justine Collier
- Laboratoire des Réseaux de Régulations et Biogenèse de l'Enveloppe Bactérienne, Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS, UMR8621, Bātiment 400, F-91405 Orsay Cedex, France
| | | | | |
Collapse
|
115
|
Zarivach R, Bashan A, Berisio R, Harms J, Auerbach T, Schluenzen F, Bartels H, Baram D, Pyetan E, Sittner A, Amit M, Hansen HAS, Kessler M, Liebe C, Wolff A, Agmon I, Yonath A. Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J PHYS ORG CHEM 2004. [DOI: 10.1002/poc.831] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raz Zarivach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Rita Berisio
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Joerg Harms
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Tamar Auerbach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Frank Schluenzen
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Heike Bartels
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - David Baram
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Erez Pyetan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Assa Sittner
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Maya Amit
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Harly A. S. Hansen
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Maggie Kessler
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Christa Liebe
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Anja Wolff
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Ilana Agmon
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| |
Collapse
|
116
|
Abstract
Antimicrobial resistance is a growing problem among pathogens from respiratory tract infections. b-Lactam resistance rates are escalating among Streptococcus pneumoniae and Haemophilus influenzae. Macrolides are increasingly used for the treatment of respiratory tract infections, but their utility is compromised by intrinsic and acquired resistance. This article analyses macrolide-resistance mechanisms and their worldwide distributions in S pneumoniae, S pyogenes, and H influenzae.
Collapse
Affiliation(s)
- Bülent Bozdogan
- Department of Pathology, Hershey Medical Center, 500 University Drive, Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
117
|
Jakovljevic J, de Mayolo PA, Miles TD, Nguyen TML, Léger-Silvestre I, Gas N, Woolford JL. The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol Cell 2004; 14:331-42. [PMID: 15125836 DOI: 10.1016/s1097-2765(04)00215-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/17/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.
Collapse
Affiliation(s)
- Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Edelstein PH. Pneumococcal Resistance to Macrolides, Lincosamides, Ketolides, and Streptogramin B Agents: Molecular Mechanisms and Resistance Phenotypes. Clin Infect Dis 2004; 38 Suppl 4:S322-7. [PMID: 15127365 DOI: 10.1086/382687] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The macrolides, lincosamides, ketolides, and streptogramin B agents (the MLKS(B) antimicrobial agents) have related chemical structures and share similar molecular targets on the 50S ribosomal subunit of Streptococcus pneumoniae. Mutations in rRNA or ribosomal proteins generate a variety of resistance phenotypes. The M phenotype of S. pneumoniae, which predominates in North America, affords low-level resistance to macrolides only (excluding macrolides with 16-member rings) by means of an efflux pump encoded by the mefA gene. The MLS(B) phenotype, which predominates in Europe, affords high-level resistance to macrolides, lincosamides, and streptogramin B agents and arises, in most cases, from dimethylation of adenine 2058 in the 23S rRNA of the 50S ribosomal subunit. Other, less common, phenotypes arise from other 23S rRNA modifications (ML and K phenotypes) or from amino acid substitution (MS(B) phenotype) or insertion (MKS(B) phenotype) into the 50S subunit ribosomal protein L4. In all cases, the decrease in susceptibility to ketolides (for example, telithromycin) is less than the decrease in susceptibility for other MLKS(B) agents.
Collapse
Affiliation(s)
- Paul H Edelstein
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, 19104-4283, USA.
| |
Collapse
|
120
|
Gilbert RJC, Fucini P, Connell S, Fuller SD, Nierhaus KH, Robinson CV, Dobson CM, Stuart DI. Three-Dimensional Structures of Translating Ribosomes by Cryo-EM. Mol Cell 2004; 14:57-66. [PMID: 15068803 DOI: 10.1016/s1097-2765(04)00163-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 02/06/2004] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
Cryo-electron microscopy and image reconstruction techniques have been used to obtain three-dimensional maps for E. coli ribosomes stalled following translation of three representative proteins. Comparisons of these electron density maps, at resolutions of between 13 and 16 A, with that of a nontranslating ribosome pinpoint specific structural differences in stalled ribosomes and identify additional material, including tRNAs and mRNA. In addition, the tunnel through the large subunit, the anticipated exit route of newly synthesized proteins, is partially occluded in all the stalled ribosome structures. This observation suggests that significant segments of the nascent polypeptide chains examined here could be located within an expanded tunnel, perhaps in a rudimentary globular conformation. Such behavior could be an important aspect of the folding of at least some proteins in the cellular environment.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Max Planck Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Pereyre S, Guyot C, Renaudin H, Charron A, Bébéar C, Bébéar CM. In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumoniae. Antimicrob Agents Chemother 2004; 48:460-5. [PMID: 14742195 PMCID: PMC321523 DOI: 10.1128/aac.48.2.460-465.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrolide-resistant mutants of Mycoplasma pneumoniae were selected in vitro from the susceptible reference strain M129, by 23 to 50 serial passages in subinhibitory concentrations of macrolides and related antibiotics, erythromycin A, azithromycin, josamycin, clindamycin, quinupristin, quinupristin-dalfopristin, pristinamycin, and telithromycin. Mutants for which the MICs are increased could be selected with all antibiotics except the streptogramin B quinupristin. Portions of genes encoding 23S rRNA (domains II and V) and ribosomal proteins L4 and L22 of mutants were amplified by PCR, and their nucleotide sequences were compared to those of the susceptible strain M129. No mutation could be detected in domain II of 23S rRNA. Two point mutations in domain V of 23S rRNA, C2611A and A2062G, were selected in the presence of erythromycin A, azithromycin, josamycin, quinupristin-dalfopristin, and telithromycin. Mutants selected in the presence of clindamycin and telithromycin harbored a single amino acid change (H70R or H70L, respectively) in ribosomal protein L4, whereas insertions of one, two, or three adjacent glycines at position 60 (M. pneumoniae numbering) were selected in the presence of both streptogramin combinations. Telithromycin was the sole antibiotic that selected for substitutions (P112R and A114T) and deletions ((111)IPRA(114)) in ribosomal protein L22. Three sequential mutational events in 23S rRNA and in both ribosomal proteins were required to categorize the strain as resistant to the ketolide. Azithromycin and erythromycin A were the only selector antibiotics that remained active (MICs, 0.06 and 1 micro g/ml, respectively) on their mutants selected after 50 passages.
Collapse
Affiliation(s)
- S Pereyre
- Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
122
|
Woolhead CA, McCormick PJ, Johnson AE. Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins. Cell 2004; 116:725-36. [PMID: 15006354 DOI: 10.1016/s0092-8674(04)00169-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 01/13/2004] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
Fluorescence resonance energy transfer measurements reveal that a transmembrane sequence within a nascent membrane protein folds into a compact conformation near the peptidyltransferase center and remains folded as the sequence moves through a membrane bound ribosome into the translocon. This compact conformation is compatible with an alpha helix because nearly the same energy transfer efficiency was observed when the transmembrane sequence was integrated into the lipid bilayer. Since the transmembrane sequence unfolds upon emerging from a free ribosome, this nascent chain folding is ribosome induced and stabilized. In contrast, a nascent secretory protein is in an extended conformation in the exit tunnel. Furthermore, two ribosomal proteins photo-crosslink to nascent membrane but not secretory proteins. These interactions coincide with the previously described sequential closing and opening of the two ends of the aqueous translocon pore, thereby suggesting that ribosomal recognition of nascent chain folding controls the operational mode of the translocon at the ER membrane.
Collapse
Affiliation(s)
- Cheryl A Woolhead
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843, USA
| | | | | |
Collapse
|
123
|
Abstract
Our studies of SecM (secretion monitor) in E. coli have revealed that some amino acid sequences can interact with ribosomal interior components, particularly with gate components of the exit tunnel, thereby interfering with their own translation elongation. Such translation arrest can be regulated by interaction of the N-terminal portion of the nascent polypeptide with other cellular components outside the ribosome. These properties of nascent proteins can in turn provide regulatory mechanisms by which the expression of genetic information at different levels is regulated.
Collapse
|
124
|
Abstract
The ribosome crystal structures published in the past two years have revolutionized our understanding of ribonucleoprotein structure, and more specifically, the structural basis of the peptide bonding forming activity of the ribosome. This review concentrates on the crystallographic developments that made it possible to solve these structures. It also discusses the information obtained from these structures about the three-dimensional architecture of the large ribosomal subunit, the mechanism by which it facilitates peptide bond formation, and the way antibiotics inhibit large subunit function. The work reviewed, taken as a whole, proves beyond doubt that the ribosome is an RNA enzyme, as had long been surmised on the basis of less conclusive evidence.
Collapse
Affiliation(s)
- Peter B Moore
- Departments of Molecular Biophysics and Biochemistry, Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
125
|
Abstract
An ion channel protein begins life as a nascent peptide inside a ribosome, moves to the endoplasmic reticulum where it becomes integrated into the lipid bilayer, and ultimately forms a functional unit that conducts ions in a well-regulated fashion. Here, I discuss the nascent peptide and its tasks as it wends its way through ribosomal tunnels and exit ports, through translocons, and into the bilayer. We are just beginning to explore the sequence of these events, mechanisms of ion channel structure formation, when biogenic decisions are made, and by which participants. These decisions include when to exit the endoplasmic reticulum and with whom to associate. Such issues govern the expression of ion channels at the cell surface and thus the electrical activity of a cell.
Collapse
Affiliation(s)
- Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
126
|
Abstract
Many integral proteins of the ribosome also carry out extra-ribosomal functions as independent polypeptides, raising questions as to their evolutionary derivation. In this issue of Cell, Mazumder et al. report a surprising new twist in the dual life of these molecules: as part of a cellular response to interferon, a large-subunit protein dramatically exits the ribosome to bind and inhibit the translation of a specific mRNA.
Collapse
Affiliation(s)
- Robert A Zimmermann
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
127
|
Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 2003; 115:97-108. [PMID: 14532006 DOI: 10.1016/s0092-8674(03)00762-1] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mitochondrial ribosome is responsible for the biosynthesis of protein components crucial to the generation of ATP in the eukaryotic cell. Because the protein:RNA ratio in the mitochondrial ribosome (approximately 69:approximately 31) is the inverse of that of its prokaryotic counterpart (approximately 33:approximately 67), it was thought that the additional and/or larger proteins of the mitochondrial ribosome must compensate for the shortened rRNAs. Here, we present a three-dimensional cryo-electron microscopic map of the mammalian mitochondrial 55S ribosome carrying a tRNA at its P site, and we find that instead, many of the proteins occupy new positions in the ribosome. Furthermore, unlike cytoplasmic ribosomes, the mitochondrial ribosome possesses intersubunit bridges composed largely of proteins; it has a gatelike structure at its mRNA entrance, perhaps involved in recruiting unique mitochondrial mRNAs; and it has a polypeptide exit tunnel that allows access to the solvent before the exit site, suggesting a unique nascent-polypeptide exit mechanism.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
128
|
Zengel JM, Jerauld A, Walker A, Wahl MC, Lindahl L. The extended loops of ribosomal proteins L4 and L22 are not required for ribosome assembly or L4-mediated autogenous control. RNA (NEW YORK, N.Y.) 2003; 9:1188-97. [PMID: 13130133 PMCID: PMC1370483 DOI: 10.1261/rna.5400703] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 06/26/2003] [Indexed: 05/21/2023]
Abstract
Ribosomal proteins L4 and L22 both have a globular domain that sits on the surface of the large ribosomal subunit and an extended loop that penetrates its core. The tips of both loops contribute to the lining of the peptide exit tunnel and have been implicated in a gating mechanism that might regulate the exit of nascent peptides. Also, the extensions of L4 and L22 contact multiple domains of 23S rRNA, suggesting they might facilitate rRNA folding during ribosome assembly. To learn more about the roles of these extensions, we constructed derivatives of both proteins that lack most of their extended loops. Our analysis of ribosomes carrying L4 or L22 deletion proteins did not detect any significant difference in their sedimentation property or polysome distribution. Also, the role of L4 in autogenous control was not affected. We conclude that these extensions are not required for ribosome assembly or for L4-mediated autogenous control of the S10 operon.
Collapse
Affiliation(s)
- Janice M Zengel
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | | | | | |
Collapse
|
129
|
Affiliation(s)
- Ada Yonath
- Dept. of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel.
| |
Collapse
|
130
|
Bashan A, Zarivach R, Schluenzen F, Agmon I, Harms J, Auerbach T, Baram D, Berisio R, Bartels H, Hansen HAS, Fucini P, Wilson D, Peretz M, Kessler M, Yonath A. Ribosomal crystallography: peptide bond formation and its inhibition. Biopolymers 2003; 70:19-41. [PMID: 12925991 DOI: 10.1002/bip.10412] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ribosomes, the universal cellular organelles catalyzing the translation of genetic code into proteins, are protein/RNA assemblies, of a molecular weight 2.5 mega Daltons or higher. They are built of two subunits that associate for performing protein biosynthesis. The large subunit creates the peptide bond and provides the path for emerging proteins. The small has key roles in initiating the process and controlling its fidelity. Crystallographic studies on complexes of the small and the large eubacterial ribosomal subunits with substrate analogs, antibiotics, and inhibitors confirmed that the ribosomal RNA governs most of its activities, and indicated that the main catalytic contribution of the ribosome is the precise positioning and alignment of its substrates, the tRNA molecules. A symmetry-related region of a significant size, containing about two hundred nucleotides, was revealed in all known structures of the large ribosomal subunit, despite the asymmetric nature of the ribosome. The symmetry rotation axis, identified in the middle of the peptide-bond formation site, coincides with the bond connecting the tRNA double-helical features with its single-stranded 3' end, which is the moiety carrying the amino acids. This thus implies sovereign movements of tRNA features and suggests that tRNA translocation involves a rotatory motion within the ribosomal active site. This motion is guided and anchored by ribosomal nucleotides belonging to the active site walls, and results in geometry suitable for peptide-bond formation with no significant rearrangements. The sole geometrical requirement for this proposed mechanism is that the initial P-site tRNA adopts the flipped orientation. The rotatory motion is the major component of unified machinery for peptide-bond formation, translocation, and nascent protein progression, since its spiral nature ensures the entrance of the nascent peptide into the ribosomal exit tunnel. This tunnel, assumed to be a passive path for the growing chains, was found to be involved dynamically in gating and discrimination.
Collapse
Affiliation(s)
- Anat Bashan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Tama F, Valle M, Frank J, Brooks CL. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci U S A 2003; 100:9319-23. [PMID: 12878726 PMCID: PMC170916 DOI: 10.1073/pnas.1632476100] [Citation(s) in RCA: 272] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Indexed: 11/18/2022] Open
Abstract
Combining structural data for the ribosome from x-ray crystallography and cryo-electron microscopy with dynamic models based on elastic network normal mode analysis, an atomically detailed picture of functionally important structural rearrangements that occur during translocation is elucidated. The dynamic model provides a near-atomic description of the ratchet-like rearrangement of the 70S ribosome seen in cryo-electron microscopy, and permits the identification of bridging interactions that either facilitate the conformational switching or maintain structural integrity of the 50S/30S interface. Motions of the tRNAs residing in the A and P sites also suggest the early stages of tRNA translocation as a result of this ratchet-like movement. Displacement of the L1 stalk, alternately closing and opening the intersubunit space near the E site, is observed in the dynamic model, in line with growing experimental evidence for the role of this structural component in facilitating the exiting of tRNA. Finally, a hinge-like transition in the 30S ribosomal subunit, similar to that observed in crystal structures of this complex, is also manifest as a dynamic mode of the ribosome. The coincidence of these dynamic transitions with the individual normal modes of the ribosome and the good correspondence between these motions and those observed in experiment suggest an underlying principle of nature to exploit the shape of molecular assemblies such as the ribosome to provide robustness to functionally important motions.
Collapse
Affiliation(s)
- Florence Tama
- Department of Molecular Biology (TPC6), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
132
|
Bowers AK, Keller JA, Dutcher SK. Molecular markers for rapidly identifying candidate genes in Chlamydomonas reinhardtii. Ery1 and ery2 encode chloroplast ribosomal proteins. Genetics 2003; 164:1345-53. [PMID: 12930744 PMCID: PMC1462650 DOI: 10.1093/genetics/164.4.1345] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To take advantage of available expressed sequence tags and genomic sequence, we have developed 64 PCR-based molecular markers in Chlamydomonas reinhardtii that map to the 17 linkage groups. These markers will allow the rapid association of a candidate gene sequence with previously identified mutations. As proof of principle, we have identified the genes encoded by the ERY1 and ERY2 loci. Mendelian mutations that confer resistance to erythromycin define three unlinked nuclear loci in C. reinhardtii. Candidate genes ribosomal protein L4 (RPL4) and L22 (RPL22) are tightly linked to the ERY1 locus and ERY2 locus, respectively. Genomic DNA for RPL4 from wild type and five mutant ery1 alleles was amplified and sequenced and three different point mutations were found. Two different glycine residues (G(102) and G(112)) are replaced by aspartic acid and both are in the unstructured region of RPL4 that lines the peptide exit tunnel of the chloroplast ribosome. The other two alleles change a splice site acceptor site. Genomic DNA for RPL22 from wild type and three mutant ery2 alleles was amplified and sequenced and revealed three different point mutations. Two alleles have premature stop codons and one allele changes a splice site acceptor site.
Collapse
Affiliation(s)
- Amber K Bowers
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
133
|
Beckmann R, Spahn CM, Frank J, Blobel G. The active 80S ribosome-Sec61 complex. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:543-54. [PMID: 12762056 DOI: 10.1101/sqb.2001.66.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Beckmann
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
134
|
Frank J, Agrawal RK. Ratchet-like movements between the two ribosomal subunits: their implications in elongation factor recognition and tRNA translocation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:67-75. [PMID: 12762009 DOI: 10.1101/sqb.2001.66.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Department of Biomedical Sciences, State University of New York at Albany, New York, USA
| | | |
Collapse
|
135
|
Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J. Study of the structural dynamics of the E coli 70S ribosome using real-space refinement. Cell 2003; 113:789-801. [PMID: 12809609 DOI: 10.1016/s0092-8674(03)00427-6] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cryo-EM density maps showing the 70S ribosome of E. coli in two different functional states related by a ratchet-like motion were analyzed using real-space refinement. Comparison of the two resulting atomic models shows that the ribosome changes from a compact structure to a looser one, coupled with the rearrangement of many of the proteins. Furthermore, in contrast to the unchanged inter-subunit bridges formed wholly by RNA, the bridges involving proteins undergo large conformational changes following the ratchet-like motion, suggesting an important role of ribosomal proteins in facilitating the dynamics of translation.
Collapse
Affiliation(s)
- Haixiao Gao
- Howard Hughes Medical Institute, Health Research, Inc, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Agmon I, Auerbach T, Baram D, Bartels H, Bashan A, Berisio R, Fucini P, Hansen HAS, Harms J, Kessler M, Peretz M, Schluenzen F, Yonath A, Zarivach R. On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Derived on 20 October 2002 at the 28th FEBS Meeting in Istanbul. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2543-56. [PMID: 12787020 DOI: 10.1046/j.1432-1033.2003.03634.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-resolution crystal structures of large ribosomal subunits from Deinococcus radiodurans complexed with tRNA-mimics indicate that precise substrate positioning, mandatory for efficient protein biosynthesis with no further conformational rearrangements, is governed by remote interactions of the tRNA helical features. Based on the peptidyl transferase center (PTC) architecture, on the placement of tRNA mimics, and on the existence of a two-fold related region consisting of about 180 nucleotides of the 23S RNA, we proposed a unified mechanism integrating peptide bond formation, A-to-P site translocation, and the entrance of the nascent protein into its exit tunnel. This mechanism implies sovereign, albeit correlated, motions of the tRNA termini and includes a spiral rotation of the A-site tRNA-3' end around a local two-fold rotation axis, identified within the PTC. PTC features, ensuring the precise orientation required for the A-site nucleophilic attack on the P-site carbonyl-carbon, guide these motions. Solvent mediated hydrogen transfer appears to facilitate peptide bond formation in conjunction with the spiral rotation. The detection of similar two-fold symmetry-related regions in all known structures of the large ribosomal subunit, indicate the universality of this mechanism, and emphasizes the significance of the ribosomal template for the precise alignment of the substrates as well as for accurate and efficient translocation. The symmetry-related region may also be involved in regulatory tasks, such as signal transmission between the ribosomal features facilitating the entrance and the release of the tRNA molecules. The protein exit tunnel is an additional feature that has a role in cellular regulation. We showed by crystallographic methods that this tunnel is capable of undergoing conformational oscillations and correlated the tunnel mobility with sequence discrimination, gating and intracellular regulation.
Collapse
Affiliation(s)
- Ilana Agmon
- Department of Structural Biology, The Weizmann Institute, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T, Baram D, Yonath A. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Mol Biol 2003; 10:366-70. [PMID: 12665853 DOI: 10.1038/nsb915] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 03/06/2003] [Indexed: 11/09/2022]
Abstract
Nascent proteins emerge out of ribosomes through an exit tunnel, which was assumed to be a firmly built passive path. Recent biochemical results, however, indicate that the tunnel plays an active role in sequence-specific gating of nascent chains and in responding to cellular signals. Consistently, modulation of the tunnel shape, caused by the binding of the semi-synthetic macrolide troleandomycin to the large ribosomal subunit from Deinococcus radiodurans, was revealed crystallographically. The results provide insights into the tunnel dynamics at high resolution. Here we show that, in addition to the typical steric blockage of the ribosomal tunnel by macrolides, troleandomycin induces a conformational rearrangement in a wall constituent, protein L22, flipping the tip of its highly conserved beta-hairpin across the tunnel. On the basis of mutations that alleviate elongation arrest, the tunnel motion could be correlated with sequence discrimination and gating, suggesting that specific arrest motifs within nascent chain sequences may induce a similar gating mechanism.
Collapse
Affiliation(s)
- Rita Berisio
- Max-Planck-Research Unit for Ribosomal Structure, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
138
|
Schlünzen F, Harms JM, Franceschi F, Hansen HAS, Bartels H, Zarivach R, Yonath A. Structural basis for the antibiotic activity of ketolides and azalides. Structure 2003; 11:329-38. [PMID: 12623020 DOI: 10.1016/s0969-2126(03)00022-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The azalide azithromycin and the ketolide ABT-773, which were derived by chemical modifications of erythromycin, exhibit elevated activity against a number of penicillin- and macrolide-resistant pathogenic bacteria. Analysis of the crystal structures of the large ribosomal subunit from Deinococcus radiodurans complexed with azithromycin or ABT-773 indicates that, despite differences in the number and nature of their contacts with the ribosome, both compounds exert their antimicrobial activity by blocking the protein exit tunnel. In contrast to all macrolides studied so far, two molecules of azithromycin bind simultaneously to the tunnel. The additional molecule also interacts with two proteins, L4 and L22, implicated in macrolide resistance. These studies illuminated and rationalized the enhanced activity of the drugs against specific macrolide-resistant bacteria.
Collapse
Affiliation(s)
- Frank Schlünzen
- Max-Planck-Research Unit for Ribosomal Structure, 22603, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
Trans-translation is a process found in all bacteria, which contributes to the release of ribosomes that are stalled through a variety of causes, for example when the 3' end of a truncated mRNA lacking a stop codon is reached or at internal clusters of rare codons. Trans-translation requires tmRNA. Trans-translation is not essential for cell viability under laboratory conditions, but recently it has been shown that it can contribute to cell viability in the presence of protein synthesis inhibitors. In this minireview, we consider the connection between trans-translation and antibiotics and the potential of using trans-translation as a therapeutic target.
Collapse
Affiliation(s)
- Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Avda Américo Vespucio s/n, E-41092, Seville, Spain.
| | | |
Collapse
|
140
|
Morgan DG, Ménétret JF, Neuhof A, Rapoport TA, Akey CW. Structure of the mammalian ribosome-channel complex at 17A resolution. J Mol Biol 2002; 324:871-86. [PMID: 12460584 DOI: 10.1016/s0022-2836(02)01111-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The co-translational translocation of proteins into the endoplasmic reticulum (ER) lumen and the biogenesis of membrane proteins require ribosome binding to a membrane channel formed by the Sec61p complex. We now report the 17A structure of a mammalian ribosome-channel complex derived from ER membranes. Atomic models of the ribosomal subunits were aligned to the programmed ribosome from Thermus thermophilus, to provide a common reference frame. The T.thermophilus ribosome, and by extension all known high resolution subunit models, were then docked within our map of the ribosome-channel complex. The structure shows that the ribosome contains a putative tRNA in the exit site, and a comparison with a non-programmed, yeast ribosome suggests that the L1 stalk may function as a gate in the tRNA exit path. We have localized six major expansion segments in the large subunit of the vertebrate ribosome including ES27, and suggest a function for ES30. The large ribosomal subunit is linked to the channel by four connections. We identified regions in the large subunit rRNA and four proteins that may help form the connections. These regions of the ribosome probably serve as a template to guide the assembly of the asymmetric translocation channel. Three of the connections form a picket fence that separates the putative translocation pore from the attachment site of an additional membrane component. The ribosome-channel connections also create an open junction that would allow egress of a nascent chain into the cytosol. At a threshold that is appropriate for the entire complex, the channel is rather solid and the lumenal half of the putative translocation pore is closed. These data suggest that the flow of small molecules across the membrane may be impeded by the channel itself, rather than the ribosome-channel junction.
Collapse
Affiliation(s)
- David Gene Morgan
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | |
Collapse
|
141
|
Davydova N, Streltsov V, Wilce M, Liljas A, Garber M. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J Mol Biol 2002; 322:635-44. [PMID: 12225755 DOI: 10.1016/s0022-2836(02)00772-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.
Collapse
Affiliation(s)
- Natalia Davydova
- Institute of Protein Research, Moscow Region 142 290, Pushchino, Russia.
| | | | | | | | | |
Collapse
|
142
|
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Chloramphenicol/pharmacology
- Erythromycin/pharmacology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Peptide Chain Termination, Translational
- Peptidyl Transferases/antagonists & inhibitors
- Peptidyl Transferases/metabolism
- Protein Biosynthesis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/metabolism
- Tryptophan/metabolism
- Tryptophanase/biosynthesis
- Tryptophanase/genetics
Collapse
Affiliation(s)
- Matthew S Sachs
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | |
Collapse
|
143
|
Abstract
Expression of the tryptophanase operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. An induction site activated by l-tryptophan is created in the translating ribosome during synthesis of TnaC, the 24-residue leader peptide. Replacing the tnaC stop codon with a tryptophan codon allows tryptophan-charged tryptophan transfer RNA to substitute for tryptophan as inducer. This suggests that the ribosomal A site occupied by the tryptophanyl moiety of the charged transfer RNA is the site of induction. The location of tryptophan-12 of nascent TnaC in the peptide exit tunnel was crucial for induction. These results show that a nascent peptide sequence can influence translation continuation and termination within a translating ribosome.
Collapse
Affiliation(s)
- Feng Gong
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
144
|
Leclercq R, Courvalin P. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chemother 2002; 46:2727-34. [PMID: 12183222 PMCID: PMC127415 DOI: 10.1128/aac.46.9.2727-2734.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
145
|
Abstract
Ribosomal protein L4 is a crucial folding mediator and an important architectural component of the large ribosomal subunit. Furthermore, Escherichia coli L4 produced in excess of its rRNA binding sites downregulates the transcription and translation of its own S10 operon, encoding 11 ribosomal proteins. Genetic experiments and the crystal structure of Thermotoga maritima L4 had implicated separable regions on L4 in ribosome association and expression control while RNA competition experiments and the regulatory capacity of heterologous L4 had suggested an overlap of the protein sequences involved in the two functions. We report herein that contrary to other foreign bacterial L4 proteins, L4 from T. maritima only weakly controlled expression of the S10 operon in E. coli. Also, wildtype T. maritima L4 was more weakly associated with E. coli ribosomes than with the E. coli analog. Rational mutageneses were performed to try to increase the regulatory competence of T. maritima L4. The ribosome incorporation of the mutant proteins was also investigated. Two different deletions removing T. maritima-specific sequences had little effects on regulation although one did improve ribosome association. Interestingly, a set of multiple mutations, which rendered the region around helices alpha4 and alpha5 in T. maritima L4 more E. coli-like, had no influence on the incorporation of the protein into the large ribosomal subunit but considerably improved its regulatory potential. Therefore, the area around helices alpha4 and alpha5, which is critical for the initial folding steps of the large subunit, is also a central element of autogenous control, presumably by contacting the S10 mRNA leader. Ribosome association is compounded at later stages of assembly by additional rRNA contacts through L4 areas which do not participate in regulation. Similarly, sequences outside the alpha4/alpha5 region aid expression control.
Collapse
Affiliation(s)
- Michael Worbs
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, MD, Baltimore, USA
| | | | | | | |
Collapse
|
146
|
Malbruny B, Canu A, Bozdogan B, Fantin B, Zarrouk V, Dutka-Malen S, Feger C, Leclercq R. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46:2200-7. [PMID: 12069975 PMCID: PMC127308 DOI: 10.1128/aac.46.7.2200-2207.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of resistance to the streptogramin antibiotics quinupristin and dalfopristin was studied in a Staphylococcus aureus clinical isolate selected under quinupristin-dalfopristin therapy, in four derivatives of S. aureus RN4220 selected in vitro, and in a mutant selected in a model of rabbit aortic endocarditis. For all strains the MICs of erythromycin, quinupristin, and quinupristin-dalfopristin were higher than those for the parental strains but the MICs of dalfopristin and lincomycin were similar. Portions of genes for domains II and V of 23S rRNA and the genes for ribosomal proteins L4 and L22 were amplified and sequenced. All mutants contained insertions or deletions in a protruding beta hairpin that is part of the conserved C terminus of the L22 protein and that interacts with 23S rRNA. Susceptible S. aureus RN4220 was transformed with plasmid DNA encoding the L22 alteration, resulting in transformants that were erythromycin and quinupristin resistant. Synergistic ribosomal binding of streptogramins A and B, studied by analyzing the fluorescence kinetics of pristinamycin I(A)-ribosome complexes, was abolished in the mutant strain, providing an explanation for quinupristin-dalfopristin resistance.
Collapse
|
147
|
Liu M, Douthwaite S. Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob Agents Chemother 2002; 46:1629-33. [PMID: 12019067 PMCID: PMC127225 DOI: 10.1128/aac.46.6.1629-1633.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylation of specific nucleotides in rRNA is one of the means by which bacteria achieve resistance to macrolides-lincosamides-streptogramin B (MLS(B)) and ketolide antibiotics. The degree of resistance is determined by how effectively the rRNA is methylated. We have implemented a bacterial system in which the rRNA methylations are defined, and in this study we investigate what effect Erm mono- and dimethylation of the rRNA has on the activity of representative MLS(B) and ketolide antibiotics. In the test system, >80% of the rRNA molecules are monomethylated by ErmN (TlrD) or dimethylated by ErmE. ErmE dimethylation confers high resistance to all the MLS(B) and ketolide drugs. ErmN monomethylation predictably confers high resistance to the lincosamides clindamycin and lincomycin, intermediate resistance to the macrolides clarithromycin and erythromycin, and low resistance to the streptogramin B pristinamycin IA. In contrast to the macrolides, monomethylation only mildly affects the antimicrobial activities of the ketolides HMR 3647 (telithromycin) and HMR 3004, and these drugs remain 16 to 250 times as potent as clarithromycin and erythromycin. These differences in the macrolide and ketolide activities could explain the recent reports of variation in the MICs of telithromycin for streptococcal strains that have constitutive erm MLS(B) resistance and are highly resistant to erythromycin.
Collapse
Affiliation(s)
- Mingfu Liu
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
148
|
Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci U S A 2002; 99:4203-8. [PMID: 11929993 PMCID: PMC123626 DOI: 10.1073/pnas.062048399] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two proteins of the Hsp70 class (Ssb and Ssz1) and one of the J-type class (Zuo1) of molecular chaperones reside on the yeast ribosome, with Ssz1 forming a stable heterodimer with Zuo1. We designed experiments to address the roles of these two distantly related ribosome-associated Hsp70s and their functional relationship to Zuo1. Strains lacking all three proteins have the same phenotype as those lacking only one, suggesting that these chaperones all function in the same pathway. The Hsp70 Ssb, whose peptide-binding domain is essential for its in vivo function, can be crosslinked to nascent chains on ribosomes that are as short as 54 amino acids, suggesting that Ssb interacts with nascent chains that extend only a short distance beyond the tunnel of the ribosome. A ssz1 mutant protein lacking its putative peptide-binding domain allows normal growth. Thus, binding of unfolded protein substrates in a manner similar to that of typical Hsp70s is not critical for Ssz1's in vivo function. The three chaperones are present in cells in approximately equimolar amounts compared with ribosomes. The level of Ssb can be reduced only a few-fold before growth is affected. However, a 50- to 100-fold reduction of Ssz1 and Zuo1 levels does not have a substantial effect on cell growth. On the basis of these results, we propose that Ssbs function as the major Hsp70 chaperone for nascent chains on the ribosome, and that Ssz1 has evolved to perform a nonclassical function, perhaps modulating Zuo1's ability to function as a J-type chaperone partner of Ssb.
Collapse
Affiliation(s)
- Heather Hundley
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Translation of SecM stalls unless its N-terminal part is "pulled" by the protein export machinery. Here we show that the sequence motif FXXXXWIXXXXGIRAGP that includes a specific arrest point (Pro) causes elongation arrest within the ribosome. Mutations that bypass the elongation arrest were isolated in 23S rRNA and L22 r protein. Such suppressor mutations occurred at a few specific residues of these components, which all face the narrowest constriction of the ribosomal exit tunnel. Thus, we suggest that this region of the exit tunnel interacts with nascent translation products and functions as a discriminating gate.
Collapse
Affiliation(s)
- Hitoshi Nakatogawa
- Institute for Virus Research and CREST, Japan Science and Technology Corporation, Kyoto University, Japan
| | | |
Collapse
|
150
|
Abstract
Accumulating evidence for nascent-peptide-mediated regulation of translation suggests that all nascent peptides do not necessarily interact with the ribosome in a similar manner. Recent studies have helped to elucidate the exit route of the nascent chain and its interactions with the ribosome.
Collapse
Affiliation(s)
- Tanel Tenson
- Institute of Molecular and Cell Biology, Tartu University, Riia 23, Tartu, Estonia.
| | | |
Collapse
|