101
|
Jones KE, Batchler KL, Zalouk C, Valentine AM. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications. Inorg Chem 2017; 56:1264-1272. [DOI: 10.1021/acs.inorgchem.6b02399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kayleigh E. Jones
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| | - Kathleen L. Batchler
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Célia Zalouk
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| | - Ann M. Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| |
Collapse
|
102
|
Kobayashi Y, Kameda T, Hoshino M, Fujii N, Ohno H, Oishi S. Fe(ii)-Complexation of tripodal hexapeptide ligands with three bidentate triazolylpyridines: induction of metal-centred chirality by peptide macrocyclization. Dalton Trans 2017; 46:13673-13676. [DOI: 10.1039/c7dt02739g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic and open-chain hexapeptides with three common triazolyl-pyridine residues afforded two Fe(ii) complexes with distinct metal-centred chirality.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Centre
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tokyo 135-0064
- Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
103
|
|
104
|
Neumann W, Gulati A, Nolan EM. Metal homeostasis in infectious disease: recent advances in bacterial metallophores and the human metal-withholding response. Curr Opin Chem Biol 2016; 37:10-18. [PMID: 27992799 DOI: 10.1016/j.cbpa.2016.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
Abstract
A tug-of-war between the mammalian host and bacterial pathogen for nutrients, including first-row transition metals (e.g. Mn, Fe, Zn), occurs during infection. Here we present recent advances about three metal-chelating metabolites that bacterial pathogens deploy when invading the host: staphylopine, staphyloferrin B, and enterobactin. These highlights provide new insights into the mechanisms of bacterial metal acquisition and regulation, as well as the contributions of host-defense proteins during the human innate immune response. The studies also underscore that the chemical composition of the microenvironment at an infection site can influence bacterial pathogenesis and the innate immune system.
Collapse
Affiliation(s)
- Wilma Neumann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anmol Gulati
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
105
|
Watfa N, Haouas M, Floquet S, Hijazi A, Naoufal D, Taulelle F, Cadot E. Two Compartmentalized Inner Receptors for the Tetramethylammonium Guest within a Keplerate-Type Capsule. Inorg Chem 2016; 55:9368-76. [DOI: 10.1021/acs.inorgchem.6b01516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nancy Watfa
- Institut Lavoisier de Versailles, UMR CNRS 8180, University of Versailles Saint Quentin en Yvelines, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
- Laboratoire de Chimie de Coordination Inorganique et Organométallique, Université Libanaise, Faculté des Sciences I, Hadath, Lebanon
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR CNRS 8180, University of Versailles Saint Quentin en Yvelines, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, UMR CNRS 8180, University of Versailles Saint Quentin en Yvelines, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Akram Hijazi
- Laboratoire de Chimie de Coordination Inorganique et Organométallique, Université Libanaise, Faculté des Sciences I, Hadath, Lebanon
| | - Daoud Naoufal
- Laboratoire de Chimie de Coordination Inorganique et Organométallique, Université Libanaise, Faculté des Sciences I, Hadath, Lebanon
| | - Francis Taulelle
- Institut Lavoisier de Versailles, UMR CNRS 8180, University of Versailles Saint Quentin en Yvelines, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR CNRS 8180, University of Versailles Saint Quentin en Yvelines, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| |
Collapse
|
106
|
Kurth C, Kage H, Nett M. Siderophores as molecular tools in medical and environmental applications. Org Biomol Chem 2016; 14:8212-27. [PMID: 27492756 DOI: 10.1039/c6ob01400c] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Almost all life forms depend on iron as an essential micronutrient that is needed for electron transport and metabolic processes. Siderophores are low-molecular-weight iron chelators that safeguard the supply of this important metal to bacteria, fungi and graminaceous plants. Although animals and the majority of plants do not utilise siderophores and have alternative means of iron acquisition, siderophores have found important clinical and agricultural applications. In this review, we will highlight the different uses of these iron-chelating molecules.
Collapse
Affiliation(s)
- Colette Kurth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, D-07745 Jena, Germany
| | | | | |
Collapse
|
107
|
Bacteria in an intense competition for iron: Key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product. Proc Natl Acad Sci U S A 2016; 113:5850-5. [PMID: 27162326 DOI: 10.1073/pnas.1520829113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To acquire essential Fe(III), bacteria produce and secrete siderophores with high affinity and selectivity for Fe(III) to mediate its uptake into the cell. Here, we show that the periplasmic binding protein CeuE of Campylobacter jejuni, which was previously thought to bind the Fe(III) complex of the hexadentate siderophore enterobactin (Kd ∼ 0.4 ± 0.1 µM), preferentially binds the Fe(III) complex of the tetradentate enterobactin hydrolysis product bis(2,3-dihydroxybenzoyl-l-Ser) (H5-bisDHBS) (Kd = 10.1 ± 3.8 nM). The protein selects Λ-configured [Fe(bisDHBS)](2-) from a pool of diastereomeric Fe(III)-bisDHBS species that includes complexes with metal-to-ligand ratios of 1:1 and 2:3. Cocrystal structures show that, in addition to electrostatic interactions and hydrogen bonding, [Fe(bisDHBS)](2-) binds through coordination of His227 and Tyr288 to the iron center. Similar binding is observed for the Fe(III) complex of the bidentate hydrolysis product 2,3-dihydroxybenzoyl-l-Ser, [Fe(monoDHBS)2](3-) The mutation of His227 and Tyr288 to noncoordinating residues (H227L/Y288F) resulted in a substantial loss of affinity for [Fe(bisDHBS)](2-) (Kd ∼ 0.5 ± 0.2 µM). These results suggest a previously unidentified role for CeuE within the Fe(III) uptake system of C. jejuni, provide a molecular-level understanding of the underlying binding pocket adaptations, and rationalize reports on the use of enterobactin hydrolysis products by C. jejuni, Vibrio cholerae, and other bacteria with homologous periplasmic binding proteins.
Collapse
|
108
|
Ferreira D, Seca AML, C G A D, Silva AMS. Targeting human pathogenic bacteria by siderophores: A proteomics review. J Proteomics 2016; 145:153-166. [PMID: 27109355 DOI: 10.1016/j.jprot.2016.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/03/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human bacterial infections are still a major public health problem throughout the world. Therefore it is fundamental to understand how pathogenic bacteria interact with their human host and to develop more advanced drugs or vaccines in response to the increasing bacterial resistance. Since iron is essential to bacterial survival and growth inside the host tissues, these microorganisms have developed highly efficient iron-acquisition systems; the most common one involves the secretion of iron chelators into the extracellular environment, known as siderophores, and the corresponding siderophore-membrane receptors or transporters responsible for the iron uptake. In the past few decades, several biochemical methods and genetic screens have been employed to track down and identify these iron-scavenging molecules. However, compared with the previous "static" approaches, proteomic identification is revealing far more molecules through full protein mapping and becoming more rapid and selective, leading the scientific and medical community to consider standardizing proteomic tools for clinical biomarker detection of bacterial infectious diseases. In this review, we focus on human pathogenic Gram-negative bacteria and discuss the importance of siderophores in their virulence and the available proteomic strategies to identify siderophore-related proteins and their expression level under different growth conditions. The promising use of siderophore antibiotics to overcome bacterial resistance and the future of proteomics in the routine clinical care are also mentioned. SIGNIFICANCE Proteomic strategies to identify siderophore-related proteins and their expression level can be helpful to control and/or find a cure of infectious deseases especially if related with multidrug resistance. Siderophores are low-molecular-weight compounds produced by bacteria which can become clinical biomarkers and/or antibiotics used mainly in "Trojan horse" type strategies. Due to the above mention we think that the promising use of siderophore to overcome bacterial resistance and the future of proteomics in the routine clinical care is a hot topic that should be discussed.
Collapse
Affiliation(s)
- Daniela Ferreira
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M L Seca
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Technologic Sciences and Development, University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Azores, Portugal
| | - Diana C G A
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
109
|
Shapiro JA, Wencewicz TA. Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping. ACS Infect Dis 2016; 2:157-68. [PMID: 27624967 DOI: 10.1021/acsinfecdis.5b00145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pathogenic strains of Acinetobacter baumannii excrete multiple siderophores that enhance iron scavenging from host sources. The oxazoline siderophore pre-acinetobactin undergoes an unusual non-enzymatic isomerization, producing the isoxazolidinone acinetobactin. In this study, we explored the kinetics, mechanism, and biological consequence of this siderophore swapping. Pre-acinetobactin is excreted to the extracellular space where the isomerization to acinetobactin occurs with a pH-rate profile consistent with 5-exo-tet cyclization at C5' with clean stereochemical inversion. Pre-acinetobactin persists at pH <6, and acinetobactin is rapidly formed at pH >7, matching each siderophore's pH preference for iron(III) chelation and A. baumannii growth promotion. Acinetobactin isomerization provides two siderophores for the price of one, enabling A. baumannii to sequester iron over a broad pH range likely to be encountered during the course of an infection.
Collapse
Affiliation(s)
- Justin A. Shapiro
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
110
|
Kell DB, Kenny LC. A Dormant Microbial Component in the Development of Preeclampsia. Front Med (Lausanne) 2016; 3:60. [PMID: 27965958 PMCID: PMC5126693 DOI: 10.3389/fmed.2016.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is a complex, multisystem disorder that remains a leading cause of morbidity and mortality in pregnancy. Four main classes of dysregulation accompany PE and are widely considered to contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these themselves are caused. We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE (and of the four classes of dysregulation) is, in fact, microbial infection, that most such microbes are dormant and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional resuscitation and growth it is they that are responsible for all the observable sequelae, including the continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) immune response that exacerbates the inflammation further. The known need of microbes for free iron can explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, and urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in PE. Every known proteomic biomarker of "preeclampsia" that we assessed has, in fact, also been shown to be raised in response to infection. An infectious component to PE fulfills the Bradford Hill criteria for ascribing a disease to an environmental cause and suggests a number of treatments, some of which have, in fact, been shown to be successful. PE was classically referred to as endotoxemia or toxemia of pregnancy, and it is ironic that it seems that LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component in the etiology of PE mirrors that for ulcers and other diseases that were previously considered to lack one.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, UK
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, UK
- *Correspondence: Douglas B. Kell,
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| |
Collapse
|