101
|
Cromwell S, Sutio R, Zhang C, Such GK, Lupton DW. Lewis Base Catalyzed Synthesis of Sulfur Heterocycles via the C1‐Pyridinium Enolate.**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Randy Sutio
- Monash University School of Chemistry AUSTRALIA
| | - Changhe Zhang
- University of Melbourne School of Chemistry School of Chemistry AUSTRALIA
| | - Georgina K. Such
- University of Melbourne School of Chemistry School of Chemistry AUSTRALIA
| | - David W Lupton
- Monash University School of Chemistry Science RoadClayton 3800 Melbourne AUSTRALIA
| |
Collapse
|
102
|
Chu Y, Wu M, Hu F, Zhou P, Cao Z, Hui XP. N-Heterocyclic Carbene-Catalyzed Atroposelective Synthesis of Pyrrolo[3,4- b]pyridines with Configurationally Stable C-N Axial Chirality. Org Lett 2022; 24:3884-3889. [PMID: 35609114 DOI: 10.1021/acs.orglett.2c01519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first atroposelective synthesis of pyrrolo[3,4-b]pyridines catalyzed by N-heterocyclic carbene has been achieved. A wide range of chiral atropisomers of pyrrolo[3,4-b]pyridines were obtained in high yields with excellent enantioselectivities (96-99% enantiomeric excess). The experimental results and density functional theory calculations showed that the C-N axial chirality of the product had high thermal stability.
Collapse
Affiliation(s)
- Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhengqiang Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
103
|
Peng Y, Chen L, Bao H, Zhou B, Wu H, Liu Y. Reactivity Umpolung of the C═N Bond in Quinoxaline Scaffold Enabling Direct Nucleophilic Attack of Alkyl Grignard Reagents at the N-Terminus. Org Lett 2022; 24:3982-3986. [PMID: 35648469 DOI: 10.1021/acs.orglett.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactivity umpolung of the C═N bond in the quinoxaline scaffold has been successfully realized for the first time by introduction of a formyl or an acyl group adjacent to the C-position of the C═N moiety. The reversed reactivity of the C═N bond thus enabled direct nucleophilic attack of alkyl Grignard reagents at the N-terminus rather than the C-terminus, thereby providing an unprecedented and efficient method for the synthesis of quinoxalin-2(1H)-one derivatives involving a tandem N-alkylation/C─C bond cleavage process.
Collapse
Affiliation(s)
- Yun Peng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lailin Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
104
|
Ren SC, Yang X, Mondal B, Mou C, Tian W, Jin Z, Chi YR. Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones. Nat Commun 2022; 13:2846. [PMID: 35606378 PMCID: PMC9126905 DOI: 10.1038/s41467-022-30583-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
The carbene and photocatalyst co-catalyzed radical coupling of acyl electrophile and a radical precursor is emerging as attractive method for ketone synthesis. However, previous reports mainly limited to prefunctionalized radical precursors and two-component coupling. Herein, an N-heterocyclic carbene and photocatalyst catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles is disclosed, in which the carboxylic acids are directly used as radical precursors. The acyl imidazoles could also be generated in situ by reaction of a carboxylic acid with CDI thus furnishing a formally decarboxylative coupling of two carboxylic acids. In addition, the reaction is successfully extended to three-component coupling by using alkene as a third coupling partner via a radical relay process. The mild conditions, operational simplicity, and use of carboxylic acids as the reacting partners make our method a powerful strategy for construction of complex ketones from readily available starting materials, and late-stage modification of natural products and medicines. The combination of carbene- and photocatalysis has enabled unorthodox routes to ketone syntheses, but usually requires engineered or activated substrates. Herein the authors present a carbene- and photocatalytic decarboxylative radical coupling of carboxylic acids and acyl imidazoles, in which the carboxylic acids are directly used as radical precursors.
Collapse
Affiliation(s)
- Shi-Chao Ren
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bivas Mondal
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China. .,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
105
|
Mondal S, Ghosh A, Biju AT. N-Heterocyclic Carbene (NHC)-Catalyzed Transformations Involving Azolium Enolates. CHEM REC 2022; 22:e202200054. [PMID: 35562645 DOI: 10.1002/tcr.202200054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Indexed: 11/08/2022]
Abstract
The recent advances in the N-heterocyclic carbene (NHC)-organocatalyzed generation of azolium enolate intermediates and their subsequent interception with electrophiles are highlighted. The NHC-bound azolium intermediates are generated by the addition of NHCs to suitably substituted aldehydes, acid derivatives or ketenes. A broad range of coupling partners can intercept the azolium enolates to form [2+n] cycloadducts (n=2,3,4) and various α-functionalized compounds. The enantioselective synthesis of the target compounds are achieved with the use of chiral NHCs. Herein, we summarized the development that occurred in this subclass of NHC catalysis.
Collapse
Affiliation(s)
- Santigopal Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| |
Collapse
|
106
|
Lin C, Zhang S, Wang J, Chen L, Zhu Y, Du D. N-Heterocyclic Carbene-Catalyzed Enantioselective Synthesis of Carbocycle-Fused Uracils via Formal [4 + 2] Annulation/Lactone Formation/Decarboxylation Cascade. Org Lett 2022; 24:3631-3635. [PMID: 35549292 DOI: 10.1021/acs.orglett.2c01165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An unprecedented organocatalytic asymmetric construction of novel six-membered carbocycle fused uracils has been demonstrated by the reaction of the remotely enolizable 6-methyluracil-5-carbaldehydes with 2-bromoenals. The reaction involves an N-heterocyclic carbene-catalyzed formal [4 + 2] annulation of o-quinodimethane (oQDM) dienolates with α,β-unsaturated acylazoliums, followed by a cascade lactone formation/decarboxylation process. This protocol unlocks a new platform to access enantioenriched carbocycle-fused uracils.
Collapse
Affiliation(s)
- Chen Lin
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Simiao Zhang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jingyi Wang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Lei Chen
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yiwei Zhu
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
107
|
Thalakottukara DD, Gandhi T. NHC‐Organocatalysed Hydroacylation of Unactivated or Weakly Activated C−C Multiple Bonds and Ketones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dolly David Thalakottukara
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Thirumanavelan Gandhi
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamilnadu India
| |
Collapse
|
108
|
Ghosh A, Shee S, Biju AT. A Benzannulation Strategy for Rapid Access to Quinazoline-2,4-diones via Oxidative N-Heterocyclic Carbene Catalysis. Org Lett 2022; 24:2772-2777. [PMID: 35377662 DOI: 10.1021/acs.orglett.2c00954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-Heterocyclic carbene-catalyzed formal [4+2] benzannulation of enals with suitably substituted pyrimidine-2,4-diones allowing the mild and facile synthesis of functionalized quinazoline-2,4-diones is presented. This oxidative transformation proceeds via the simultaneous generation of dienolates and α,β-unsaturated acylazoliums and follows a vinylogous Michael/aldol/β-lactonization/decarboxylation/oxidation sequence to afford quinazoline-2,4-diones, including axially chiral ones with suitable substitutions, in an operationally simple procedure. In addition, substituted coumarins as dienolate precursors afforded benzochromen-6-one derivatives.
Collapse
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
109
|
Qin R, Yu TT, Liu SJ, Wang YC, Luo ML, Chen BH, Zhao Q, Huang W. Asymmetric [4 + 2] Annulation of Cyclobutenones and Pyrazolone 4,5-Diones: Access to Novel δ-Lactone-Fused Spiropyrazolones. J Org Chem 2022; 87:5358-5370. [PMID: 35324180 DOI: 10.1021/acs.joc.2c00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although numerous chiral pyrazolones with a six-membered spirocyclic center at the C4 position have been developed, the asymmetric construction of six-membered oxa-spiropyrazolones is still a challenging task in organic synthesis. Herein, we describe the [4 + 2] annulation of cyclobutanones and pyrazoline-4,5-diones for the efficient synthesis of δ-lactone-fused spiropyrazolone derivatives with generally high yields and good enantioselectivities under mild conditions. The successful scale-up synthesis and further transformation of the final product highlight the practicality and reliability of this reaction.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting-Ting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - You-Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
110
|
Jiang J, Wang X, Liu S, Zhang S, Yang B, Zhao Y, Lu S. Enantioselective Cascade Annulation of α-Amino-ynones and Enals Enabled by Gold and Oxidative NHC Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202115464. [PMID: 35029004 DOI: 10.1002/anie.202115464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 01/03/2023]
Abstract
We report herein an unprecedented gold and oxidative NHC relay catalysis that enables highly enantioselective cascade annulation between readily available α-amino-ynones with enals. This method utilizes the in situ-generated pyrrolin-4-ones as a novel and versatile synthon, which engage with α,β-unsaturated acylazolium intermediates generated from enals by oxidative NHC catalysis to produce pyrrole-fused lactones in high yield and excellent enantioselectivity. Synthetic utility of the lactone products is also demonstrated by facile conversion to densely functionalized pyrroles and pyrrolin-4-ones in high yields with excellent stereopurity.
Collapse
Affiliation(s)
- Jianfeng Jiang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Shengping Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Sichen Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Binmiao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore (NUS), 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
111
|
Wang L, Ma R, Sun J, Zheng G, Zhang Q. NHC and visible light-mediated photoredox co-catalyzed 1,4-sulfonylacylation of 1,3-enynes for tetrasubstituted allenyl ketones. Chem Sci 2022; 13:3169-3175. [PMID: 35414881 PMCID: PMC8926198 DOI: 10.1039/d1sc06100c] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
The modulation of selectivity of highly reactive carbon radical cross-coupling for the construction of C-C bonds represents a challenging task in organic chemistry. N-Heterocyclic carbene (NHC) catalyzed radical transformations have opened a new avenue for acyl radical cross-coupling chemistry. With this method, highly selective cross-coupling of an acyl radical with an alkyl radical for efficient construction of C-C bonds was successfully realized. However, the cross-coupling reaction of acyl radicals with vinyl radicals has been much less investigated. We herein describe NHC and visible light-mediated photoredox co-catalyzed radical 1,4-sulfonylacylation of 1,3-enynes, providing structurally diversified valuable tetrasubstituted allenyl ketones. Mechanistic studies indicated that ketyl radicals are formed from aroyl fluorides via the oxidative quenching of the photocatalyst excited state, allenyl radicals are generated from chemo-specific sulfonyl radical addition to the 1,3-enynes, and finally, the key allenyl and ketyl radical cross-coupling provides tetrasubstituted allenyl ketones.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Ruiyang Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
112
|
Jiang J, Wang X, Liu S, Zhang S, Yang B, Zhao Y, Lu S. Enantioselective Cascade Annulation of α‐Amino‐ynones and Enals Enabled by Gold and Oxidative NHC Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jianfeng Jiang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Shengping Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Sichen Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Binmiao Yang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Yu Zhao
- Department of Chemistry National University of Singapore (NUS) 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
113
|
Liu SL, Liu X, Wang Y, Wei D. Unraveling the mechanism and substituent effects on the N-heterocyclic carbene-catalyzed transformation reaction of enals and imines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
114
|
Zhang J, Liang Z, Zhang S, Chen L, Wang X, Wang Y, Feng J, Lu T, Du D, Gao J. An N-heterocyclic carbene-catalyzed enantioselective [3 + 2] annulation of enals with propargylic imines: access to γ,γ-disubstituted pyrrolidin-2-ones bearing quaternary stereogenic centers. Org Chem Front 2022. [DOI: 10.1039/d2qo00350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-heterocyclic carbene-catalyzed enantioselective [3 + 2] annulation of enals with propargylic imines for the construction of γ,γ-disubstituted pyrrolidin-2-ones was developed.
Collapse
Affiliation(s)
- Jianming Zhang
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Zheng Liang
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Simiao Zhang
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Lei Chen
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Xiaoxue Wang
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Yuchan Wang
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Jie Feng
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Tao Lu
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Ding Du
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Jian Gao
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| |
Collapse
|
115
|
Guo L, Wang J, Luo J, Shi Q, Wei D, Chen X. Prediction on chemoselectivity for selected organocatalytic reactions by the DFT version of the Hückel-defined free valence index. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DFT version of the Hückel-defined free valence (HFV) index has been suggested and successfully used for predicting the origin of chemoselectivity in the selected organocatalytic reactions.
Collapse
Affiliation(s)
- Limin Guo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Juanjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
- Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Jing Luo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Qianqian Shi
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|
116
|
Meng FT, Chen JL, Qin XY, Zhang TS, Tu SJ, Jiang B, Hao WJ. Gold self-relay catalysis for accessing functionalized cyclopentenones bearing an all-carbon quaternary stereocenter. Org Chem Front 2022. [DOI: 10.1039/d1qo01313k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new gold(i) self-relay catalysis consisting of a 3,3-rearrangement, Nazarov cyclization and Michael addition cascade of 1,3-enyne acetates with aurones and their derived azadienes is reported, producing functionalized cyclopentenones.
Collapse
Affiliation(s)
- Fan-Tao Meng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Jing-Long Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiao-Yan Qin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
117
|
Shyam A, Pradhan AK, Mondal P. Remote N–H activation of indole aldehydes: an investigation of the mechanism, origin of selectivities, and role of the catalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj05500c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory investigation on the N-heterocyclic carbene-catalysed synthesis of oxazinoindole derivatives via N–H activation of indole aldehydes.
Collapse
Affiliation(s)
- Abhijit Shyam
- Department of Chemistry, Assam University, Silchar-788011, Assam, India
| | | | - Paritosh Mondal
- Department of Chemistry, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
118
|
Dong M, Duan XY, Li Y, Liu B, Qi J. Highly enantioselective δ-protonation and formal [3 + 3] annulation promoted by N-heterocyclic carbene. Org Chem Front 2022. [DOI: 10.1039/d2qo00257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chiral NHC catalyst reacts with α,β-γ,δ-diunsaturated aldehydes to generate an extended Breslow intermediate. Upon δ-protonation and tautomerization, the resulting α,β-unsaturated acyl azolium undergoes [3 + 3] annulation with enamines to afford various dihydropyridinones.
Collapse
Affiliation(s)
- Mengdie Dong
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Xiao-Yong Duan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| | - Yanting Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Binghao Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Jing Qi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
119
|
Abstract
An efficient construction of amides through NHC-mediated oxidation of imines is described. This work has the advantages of wide scope, fast assembly and high yield, and can avoid the use of coupling agents, such as HATU, DCC, etc.
Collapse
Affiliation(s)
- Shaofa Sun
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Fangyi Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
120
|
Liu H, Sun S, Ma X, Chen Y, Xu Y. Synthesis of Selenylated Spiro[indole-3,3'-quinoline] Derivatives via Visible-Light-Promoted Isocyanide Insertion. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
121
|
Gil-Ordóñez M, Maestro A, Ortega P, Jambrina PG, Andrés JM. NHC-catalysed [3 + 2]-asymmetric annulation between pyrazolin-4,5-diones and enals: synthesis of novel spirocyclic pyrazolone γ-butyrolactones and computational study of mechanism and stereoselectivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01462e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we present the first asymmetric synthesis of spiropyrazolone γ-butyrolactones from 1H-pyrazol-4,5-diones and enals by an NHC-catalysed [3 + 2] annulation. DFT calculations carried out predict the experimental configuration of final adducts.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pablo Ortega
- Departamento de Química Física, University of Salamanca, 37008, Salamanca, Spain
| | - Pablo G. Jambrina
- Departamento de Química Física, University of Salamanca, 37008, Salamanca, Spain
| | - José M. Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
122
|
Zhang B, Li X, Ai Z, Zhao B, Yu Z, Du Y. Chemoselective Synthesis of Sulfenylated Spiroindolenines from Indolyl-ynones via Organosulfenyl Chloride-Mediated Dearomatizing Spirocyclization. Org Lett 2021; 24:390-394. [PMID: 34964636 DOI: 10.1021/acs.orglett.1c04063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free sulfenylation/spirocyclization of indolyl-ynones realized by organosulfenyl chloride, generated in situ from the reaction of disulfides and PhICl2, is presented. This cascade one-pot process enables a chemoselective synthesis of diverse sulfenylated spiroindolenines depending on the substituent pattern at the two-position of indolyl-ynones.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Zhenkang Ai
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Bingyue Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Zhenyang Yu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| |
Collapse
|
123
|
Pitchumani V, Breugst M, Lupton DW. Enantioselective Rauhut-Currier Reaction with β-Substituted Acrylamides Catalyzed by N-Heterocyclic Carbenes. Org Lett 2021; 23:9413-9418. [PMID: 34842439 DOI: 10.1021/acs.orglett.1c03554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Substituted acrylamides have low electrophilicity and are yet to be exploited in the enantioselective Rauhut-Currier reaction. By exploiting electron-withdrawing protection of the amide and moderate nucleophilicity N-heterocyclic carbenes, such substrates have been converted to enantioenriched quinolones. The reaction proceeds with complete diastereoselectivity, good yield, and modest enantioselectivity. Derivatizations are reported, as are computational studies, supporting decreased amide bond character with electron-withdrawing protection of the nitrogen.
Collapse
Affiliation(s)
| | - Martin Breugst
- Department für Chemie, Universität zu Köln, 50939 Köln, Germany
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
124
|
Maiti R, Yan J, Yang X, Mondal B, Xu J, Chai H, Jin Z, Chi YR. Carbene‐Catalyzed Enantioselective Hydrophosphination of α‐Bromoenals to Prepare Phosphine‐Containing Chiral Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rakesh Maiti
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jia‐Lei Yan
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Bivas Mondal
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
125
|
|
126
|
Kise N, Mitsui Y, Sakurai T. Reductive coupling of isatins with α,β-unsaturated carbonyl compounds by low-valent titanium. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Naoki Kise
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552
| | - Yuki Mitsui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
| | - Toshihiko Sakurai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552
| |
Collapse
|
127
|
Li YY, Li S, Fan T, Zhang ZJ, Song J, Gong LZ. Enantioselective Formal [4 + 3] Annulations to Access Benzodiazepinones and Benzoxazepinones via NHC/Ir/Urea Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yang-Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Jing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, 230026, China
| |
Collapse
|
128
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
129
|
|
130
|
Chen L, Lin C, Zhang S, Zhang X, Zhang J, Xing L, Guo Y, Feng J, Gao J, Du D. 1,4-Alkylcarbonylation of 1,3-Enynes to Access Tetra-Substituted Allenyl Ketones via an NHC-Catalyzed Radical Relay. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Chen
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Lin
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaojin Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianming Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lianjie Xing
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yage Guo
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
131
|
Guo D, Peng Q, Zhang B, Wang J. Atroposelective Dynamic Kinetic Resolution via In Situ Hemiaminals Catalyzed by N-Heterocyclic Carbene. Org Lett 2021; 23:7765-7770. [PMID: 34569804 DOI: 10.1021/acs.orglett.1c02780] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Axially chiral amino acids and its derivatives are vital building blocks of bioactive molecules, artificial peptides, and asymmetric catalysts. Herein, we report an unprecedented carbene-catalyzed atroposelective dynamic kinetic resolution to access axially chiral amino esters via in situ hemiaminals. This protocol features a broad substrate scope and good functional group tolerance and allows the rapid assembly of axially chiral amino esters in good to high yields with high enantioselectivities.
Collapse
Affiliation(s)
- Donghui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Qiupeng Peng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
132
|
Wang Z, Shen F, Yang T, Zhang J, Chen R, Wang K, Liu H. Carbene‐Catalyzed Three‐Component Cascade Reaction of Benzofuran‐2‐ones and Enals: Construction of Spirobenzofuranone‐δ‐lactones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhan‐Yong Wang
- School of Pharmacy Xinxiang University Xinxiang 453003 P. R. China
| | - Fumin Shen
- School of Pharmacy Xinxiang University Xinxiang 453003 P. R. China
| | - Ting Yang
- Nursing College Xinxiang University Xinxiang 453003 P. R. China
| | - Jun‐Kai Zhang
- School of Pharmacy Xinxiang University Xinxiang 453003 P. R. China
| | - Rongxiang Chen
- School of Pharmacy Xinxiang University Xinxiang 453003 P. R. China
| | - Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang 453003 P. R. China
- Key Laboratory of Nano-carbon Modified Film Technology Engineering Xinxiang 453003 P. R. China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
- Institute of New Materials & Industrial Technology Wenzhou University Wenzhou 325035 P. R. China
| |
Collapse
|
133
|
Maiti R, Yan JL, Yang X, Mondal B, Xu J, Chai H, Jin Z, Chi YR. Carbene-Catalyzed Enantioselective Hydrophosphination of α-Bromoenals to Prepare Phosphine-Containing Chiral Molecules. Angew Chem Int Ed Engl 2021; 60:26616-26621. [PMID: 34599547 DOI: 10.1002/anie.202112860] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Disclosed herein is the first carbene-organocatalyzed asymmetric addition of phosphine nucleophiles to the in situ generated α,β-unsaturated acyl azolium intermediates. Our reaction enantioselectively constructs carbon-phosphine bonds and prepares chiral phosphines with high optical purities. The phosphine products are suitable for transforming to chiral ligands or catalysts with applications in asymmetric catalysis. The diarylalkyl or trialkyl phosphine products from our catalytic reactions, air-sensitive and reactive in nature, can be trapped (and stored) in their sulfur-oxidized form for operational simplicities.
Collapse
Affiliation(s)
- Rakesh Maiti
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jia-Lei Yan
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bivas Mondal
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
134
|
Dzieszkowski K, Słotwiński M, Rafińska K, Muzioł TM, Rafiński Z. NHC-catalyzed enantioselective C2-functionalization of 3-hydroxychromenones via α,β-unsaturated acyl azoliums. Chem Commun (Camb) 2021; 57:9999-10002. [PMID: 34490868 DOI: 10.1039/d1cc03708k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic method for enantioselective C2-functionalization of 3-hydroxychromenones promoted by N-heterocyclic carbenes via the formation of α,β-unsaturated acyl azolium intermediates, which occurs with Coates-Claisen rearrangement is established. This synthetic strategy enabled the rapid assembly of enantiomerically enriched δ-hydroxychromenone-derived esters/amides under mild conditions with good to excellent yields and broad substrate scope.
Collapse
Affiliation(s)
- Krzysztof Dzieszkowski
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| | - Michał Słotwiński
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| | - Katarzyna Rafińska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| | - Tadeusz M Muzioł
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| | - Zbigniew Rafiński
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| |
Collapse
|
135
|
Wang J, Zhao C, Wang J. Recent Progress toward the Construction of Axially Chiral Molecules Catalyzed by an N-heterocyclic Carbene. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiaming Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beiing 100875, People’s Republic of China
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beiing 100875, People’s Republic of China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
136
|
Wang G, Zhang M, Guan Y, Zhang Y, Hong X, Wei C, Zheng P, Wei D, Fu Z, Chi YR, Huang W. Desymmetrization of Cyclic 1,3-Diketones under N-Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. RESEARCH 2021; 2021:9867915. [PMID: 34549186 PMCID: PMC8422277 DOI: 10.34133/2021/9867915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Symmetric 1,3-diketones with fluorine or fluorinated substituents on the prochiral carbon remain to be established. Herein, we have developed a novel prochiral fluorinated oxindanyl 1,3-diketone and successfully applied these substrates in carbene-catalyzed asymmetric desymmetrization. Accordingly, a versatile strategy for asymmetric generation of organofluorines with fluorine or fluorinated methyl groups has been developed. Multiple stereogenic centers were selectively constructed with satisfactory outcomes. Structurally diverse enantioenriched organofluorines were generated with excellent results in terms of yields, diastereoselectivities, and enantioselectivities. Notably, exchanging fluorinated methyl groups to fluorine for this prochiral 1,3-diketones leads to switchable stereoselectivity. Mechanistic aspects and origin of stereoselectivity were studied by DFT calculations. Notably, some of the prepared organofluorines demonstrated competitive antibacterial activities.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Min Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yezhi Guan
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xianfang Hong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Donghui Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.,Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
137
|
Maji S, Das A, Mandal SK. Mesoionic N-heterocyclic olefin catalysed reductive functionalization of CO 2 for consecutive N-methylation of amines. Chem Sci 2021; 12:12174-12180. [PMID: 34667583 PMCID: PMC8457391 DOI: 10.1039/d1sc02819g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
A mesoionic N-heterocyclic olefin (mNHO) was introduced as a metal-free catalyst for the reductive functionalization of CO2 leading to consecutive double N-methylation of primary amines in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN). A wide range of secondary amines and primary amines were successfully methylated under mild conditions. The catalyst sustained over six successive cycles of N-methylation of secondary amines without compromising its activity, which encouraged us to check its efficacy towards double N-methylation of primary amines. Moreover, this method was utilized for the synthesis of two commercially available drug molecules. A detailed mechanistic cycle was proposed by performing a series of control reactions along with the successful characterisation of active catalytic intermediates either by single-crystal X-ray study or by NMR spectroscopic studies in association with DFT calculations.
Collapse
Affiliation(s)
- Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur-741246 India
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur-741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur-741246 India
| |
Collapse
|
138
|
Sysoeva AA, Novikov AS, Il'in MV, Suslonov VV, Bolotin DS. Predicting the catalytic activity of azolium-based halogen bond donors: an experimentally-verified theoretical study. Org Biomol Chem 2021; 19:7611-7620. [PMID: 34323914 DOI: 10.1039/d1ob01158h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report demonstrates the successful application of electrostatic surface potential distribution analysis for evaluating the relative catalytic activity of a series of azolium-based halogen bond donors. A strong correlation (R2 > 0.97) was observed between the positive electrostatic potential of the σ-hole on the halogen atom and the Gibbs free energy of activation of the model reactions (i.e., halogen abstraction and carbonyl activation). The predictive ability of the applied approach was confirmed experimentally. It was also determined that the catalytic activity of azolium-based halogen bond donors was generally governed by the structure of the azolium cycle, whereas the substituents on the heterocycle had a limited impact on the activity. Ultimately, this study highlighted four of the most promising azolium halogen bond donors, which are expected to exhibit high catalytic activity.
Collapse
Affiliation(s)
- Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Vitalii V Suslonov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
139
|
Wang X, Shao Y, Zhang S, Lu T, Du D. N-Heterocyclic Carbene-Catalyzed Formal [3+3] Annulation of Alkynyl Acylazoliums for the Synthesis of Benzofuro[3,2- b]pyridin-2-ones. J Org Chem 2021; 86:12336-12343. [PMID: 34328328 DOI: 10.1021/acs.joc.1c01230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Through β-activation of alkynoic acid esters with N-heterocyclic carbene catalysis, a formal [3+3] annulation of alkynyl acylazoliums with indolin-3-ones has been developed for the rapid construction of structurally interesting benzofuro[3,2-b]pyridin-2-ones with potential bioactivities. This protocol provides a highly efficient and simple method for the synthesis of the target molecules under mild reaction conditions with a wide substrate scope and excellent chemoselectivity. The synthetic utility of this protocol was also demonstrated by the versatile late-stage modifications.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuebo Shao
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
140
|
Ghosh A, Barik S, Shee S, Biju AT. Enantioselective synthesis of tetra-substituted tetralines and tetrahydro-indolizines by NHC-catalyzed azolium-enolate cascade. Chem Commun (Camb) 2021; 57:7794-7797. [PMID: 34268547 DOI: 10.1039/d1cc03165a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
NHC-catalyzed cascade reaction of enals with suitably substituted β-(hetero)aryl enones allowing the enantioselective synthesis of tetra-substituted tetralines and tetrahydro indolizines is presented. The catalytically generated chiral α,β-unsaturated acylazoliums from enals under oxidative conditions reacted in a Michael-Michael-lactonization sequence to form the tricyclic δ-lactone products bearing four contiguous stereocentres.
Collapse
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Shilpa Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
141
|
Ghosh A, Barik S, Barik S, Shee S, Biju AT. Oxidative N-heterocyclic carbene (NHC) catalysis for the rapid access to functionalized pyrrolo-oxazinones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
142
|
N-heterocyclic carbene-catalyzed intramolecular aza-Michael addition of alkyl amines to α,β-unsaturated carboxylic acid: Synthesis of pyrrolidines and piperidines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
143
|
Axelsson A, Westerlund M, Zacharias SC, Runemark A, Haukka M, Sundén H. Asymmetric Synthesis of Dihydropyranones with Three Contiguous Stereocenters by an NHC‐Catalyzed Kinetic Resolution. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anton Axelsson
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
| | - Mathias Westerlund
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
| | - Savannah C. Zacharias
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 412 96 Göteborg Sweden
| | - August Runemark
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Henrik Sundén
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 412 96 Göteborg Sweden
| |
Collapse
|
144
|
Ghosh A, Shee S, Barik S, Gonnade RG, Biju AT. Enantioselective Synthesis of 5,6-Dihydroindolizines by N-Heterocyclic Carbene (NHC)-Catalyzed Core-Structure-Inspired Strategy of Azolium-Enolate Cascade. Org Lett 2021; 23:5223-5228. [PMID: 34160226 DOI: 10.1021/acs.orglett.1c01761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The core-structure motivated design has allowed the enantioselective synthesis of 5,6-dihydroindolizines via N-heterocyclic carbene (NHC) catalysis. The NHC-catalyzed reaction of α,β-unsaturated aldehydes with the suitably substituted pyrrole derivatives proceed via the initial generation of α,β-unsaturated acylazoliums from enals, and enolates from pyrroles and the reaction culminated in an efficient cascade process involving the Michael-aldol-lactonization-decarboxylation sequence to afford the products in reasonable yields and high selectivities. The method is further extended to the construction of spirocyclic 5,6-dihydroindolizines.
Collapse
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Shilpa Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rajesh G Gonnade
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
145
|
Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021; 50:1522-1586. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
146
|
Ghosh A, Biju AT. Revealing the Similarities of α,β-Unsaturated Iminiums and Acylazoliums in Organocatalysis. Angew Chem Int Ed Engl 2021; 60:13712-13724. [PMID: 33205860 DOI: 10.1002/anie.202012581] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 01/05/2023]
Abstract
The secondary amine-catalyzed reactions proceeding via α,β-unsaturated iminiums and the N-heterocyclic carbene (NHC)-catalyzed transformations taking place via α,β-unsaturated acylazoliums are the two widely used electrophilic intermediates in organocatalysis. Over the last two decades, these two intermediates are extensively utilized for the enantioselective construction of valuable molecules. Both intermediates are generated by the covalent binding of catalysts to the substrates leading to LUMO activation of α,β-unsaturated carbonyls. A variety of soft nucleophiles are known to add to the α,β-unsaturated iminiums and acylazoliums in a conjugate fashion, and in many cases, striking similarity in reactivity has been observed. Having said this, there are few cases where these intermediates exhibit difference in reactivity. This Minireview is aimed at highlighting the resemblances in reactivity between α,β-unsaturated iminiums and acylazoliums thereby shedding light on the unnoticed parallels of the two intermediates in organocatalysis.
Collapse
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
147
|
Ghosh A, Biju AT. Revealing the Similarities of α,β‐Unsaturated Iminiums and Acylazoliums in Organocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012 India
| | - Akkattu T. Biju
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
148
|
Zhang C, Gao Y, Wang H, Zhou B, Ye S. Enantioselective Synthesis of Axially Chiral Benzothiophene/Benzofuran‐Fused Biaryls by N‐Heterocyclic Carbene Catalyzed Arene Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chun‐Lin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yuan‐Yuan Gao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hai‐Ying Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bang‐An Zhou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
149
|
Jiang P, Guo J, Gong M, Zhou X, Cao W, Fu Z, Huang W. N-Heterocyclic carbene-catalyzed [3 + 3] annulation of bromoenals with 2-aminochromones to access chromeno[2,3- b]pyridinones. Org Biomol Chem 2021; 19:4882-4886. [PMID: 34013952 DOI: 10.1039/d1ob00720c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Heterocyclic carbene-catalyzed [3 + 3] annulation of bromoenals with 2-aminochromones has been successfully developed. A structurally diverse set of chromeno[2,3-b]pyridinones was efficiently constructed in acceptable to excellent yields. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Pengrui Jiang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
150
|
Ma R, Wang X, Zhang Q, Chen L, Gao J, Feng J, Wei D, Du D. Atroposelective Synthesis of Axially Chiral 4-Aryl α-Carbolines via N-Heterocyclic Carbene Catalysis. Org Lett 2021; 23:4267-4272. [PMID: 33973794 DOI: 10.1021/acs.orglett.1c01221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first catalytic asymmetric construction of axially chiral 4-aryl α-carboline skeletons has been accomplished through an N-heterocyclic carbene (NHC)-catalyzed atroposelective formal [3 + 3] annulation of 4-nitrophenyl 3-arylpropiolates with 2-sulfonamidoindolines. The synthetic utility of the title compounds has been demonstrated by the diverse late-stage structural modifications. Density functional theory calculations were also conducted to illuminate the key factors for controlling the origin of the enantioselectivity. This strategy not only provides an efficient pathway to access axially chiral α-carboline atropisomers but also offers a novel catalytic enantioselective mode for the construction of axially chiral heterobiaryls by using NHC-bound alkynyl acylazoliums.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoxue Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiaoyu Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Lei Chen
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|