101
|
Chi M, Zheng P, Wei M, Zhu A, Zhong L, Zhang Q, Liu Q. Polyamide composite nanofiltration membrane modified by nanoporous TiO2 interlayer for enhanced water permeability. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
102
|
Mo J, Li X, Yang Z. Dissecting the structure-property relationship of ceramic membrane with asymmetric multilayer structures for maximizing permselectivity. WATER RESEARCH 2022; 220:118658. [PMID: 35640511 DOI: 10.1016/j.watres.2022.118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/02/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Robust ceramic membranes presented attractive features of easy cleaning and excellent stability compared to polymeric membranes. Nevertheless, their inherent relationships between the membrane microstructures and separation properties are not completely clear. In this work, we established a quantitative structure-property model using α-Al2O3 membrane on account of the theory of filtrated cake to predict the effects of membrane structure-controlled factors (i.e., α-Al2O3 particle size and layer thickness) on separation performances (i.e., solute rejection and water permeance). The simulation results show that membrane pore size mainly depends upon α-Al2O3 particle size rather than the layer thickness. When the microstructure of top layer in a double-layer asymmetric ceramic membrane is fixed, there exists optimum particle size and layer thickness that constitute the support layer to achieve maximum water permeance. For a triple-layer ceramic membrane, a similar matching relationship exists between top layer and intermediate layer, indicating that the intermediate layer has a vital role in determining water permeance. While the bottom layer has little effect on overall separation property. Finally, the upper-bound tradeoff relationship between permeance and selectivity is further established for the α-Al2O3 membrane. This study reveals the structure-property relationship of ceramic membrane and provides insights into performance enhancement.
Collapse
Affiliation(s)
- Jiahao Mo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
103
|
Zheng H, Mou Z, Lim YJ, Srikanth N, Zhang W, Guo S, Wang R, Zhou K. High‐Precision and High‐Flux Separation by Rationally Designing the Nanochannels and Surface Nanostructure of Polyamide Nanofiltration Membranes. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Han Zheng
- Environmental Process Modelling Centre Nanyang Environment and Water Research Institute Nanyang Technological University 1 Cleantech Loop Singapore 637141 Singapore
- Interdisciplinary Graduate Programme Graduate College Nanyang Technological University 61 Nanyang Drive Singapore 637553 Singapore
| | - Zihao Mou
- Institute for Advanced Study Chengdu University 2025 Chengluo Avenue Chengdu 610106 P. R. China
| | - Yu Jie Lim
- Interdisciplinary Graduate Programme Graduate College Nanyang Technological University 61 Nanyang Drive Singapore 637553 Singapore
- Singapore Membrane Technology Centre Nanyang Environment and Water Research Institute Nanyang Technological University 1 Cleantech Loop Singapore 637141 Singapore
| | - Narasimalu Srikanth
- Energy Research Institute @ NTU Nanyang Technological University 1 Cleantech Loop Singapore 637141 Singapore
| | - Wang Zhang
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Sheng Guo
- Environmental Process Modelling Centre Nanyang Environment and Water Research Institute Nanyang Technological University 1 Cleantech Loop Singapore 637141 Singapore
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Rong Wang
- Singapore Membrane Technology Centre Nanyang Environment and Water Research Institute Nanyang Technological University 1 Cleantech Loop Singapore 637141 Singapore
| | - Kun Zhou
- Environmental Process Modelling Centre Nanyang Environment and Water Research Institute Nanyang Technological University 1 Cleantech Loop Singapore 637141 Singapore
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
104
|
Hu P, Yuan B, Jason Niu Q, Wang N, Zhao S, Cui J, Jiang J. In situ assembled zeolite imidazolate framework nanocrystals hybrid thin film nanocomposite membranes for brackish water desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
105
|
Jiang C, Ma X, Zhang L, Tian L, Li P, Hou Y, Niu QJ. Thin-film composite membranes with programmable in-plane heterostructure for high degree-of-freedom performance control. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
106
|
Zhang X, Tian J, Xu R, Cheng X, Zhu X, Loh CY, Fu K, Zhang R, Wu D, Ren H, Xie M. In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28842-28853. [PMID: 35709360 PMCID: PMC9247986 DOI: 10.1021/acsami.2c05311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.
Collapse
Affiliation(s)
- Xinyu Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jiayu Tian
- School
of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruiyang Xu
- International
Education School, Shandong Polytechnic College
(SDPC), Jining 272100, PR China
| | - Xiaoxiang Cheng
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ching Yoong Loh
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Kaifang Fu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidong Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
- .
Phone: +44(0)1225 383246
| | - Huixue Ren
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
107
|
Soyekwo F, Wen H, Dan L, Liu C. Crumpled Globule-Heterotextured Polyamide Membrane Interlayered with Protein-Polyphenol Nanoaggregates for Enhanced Forward Osmosis Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24806-24819. [PMID: 35594151 DOI: 10.1021/acsami.2c05075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface modulation of polyamide structures and the development of nanochanneled membranes with excellent water transport properties are crucial for the separation performance enhancement of thin-film composite membranes. Here, we demonstrate the fabrication of a modular nanochannel-integrated polyamide network on a nanoporous interlayer membrane comprising Mxene-reinforced protein-polyphenol nanoaggregates. The research indicates that the confined growth of the polyamide matrix inside this hydrophilic sub-10 nm nanochannel nanoporous intermediate layer stiffened the interfacial channels, leading to the formation of a polyamide layer with a spatial distribution of a network of unique 3D crumpled globule-like nanostructures. The high specific surface area of such a morphology bestowed the membrane with increased filtration area while facilitating the nanofluidic transport of water molecules through the nanochanneled membrane structure, leading to enhanced water flux of up to 26.6 L m-2 h-1 (active layer facing the feed solution) and 41.0 L m-2 h-1 (active layer facing the draw solution) using 1.0 M NaCl as the draw solution. The membrane equally exhibited good treatment for organic solvent forward osmosis filtration and typical seawater desalination. Moreover, the hierarchical nanostructures induced antimicrobial activity by effectively reducing the biofilm formation of Gram-negative Escherichia coli bacteria. This work provides significant insights into the interfacial engineering and compatibility of the nanomaterials and the polymers in interlayer mixed-matrix membranes, which are environmentally sustainable and cost-effective for the fabrication of advanced forward osmosis membranes for water purification and osmotic energy applications.
Collapse
Affiliation(s)
- Faizal Soyekwo
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Hui Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Liao Dan
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| |
Collapse
|
108
|
Construction of novel maple leaf-like MnO2–SiO2@PDA composites for highly efficient removal of Cu(II), Cd(II) and Ni(II) from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
109
|
Yao A, Hua D, Gao ZF, Pan J, Ibrahim AR, Zheng D, Hong Y, Liu Y, Zhan G. Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via interfacial polymerization on top of metal-organic frameworks interlayer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
110
|
Chen M, Luo J, Wan Y, Chen X, Liang X. Probing the influence of shape and loading of CeO2 nanoparticles on the separation performance of thin-film nanocomposite membranes with an interlayer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
111
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
112
|
Song Q, Graham N, Tang Y, Siddique MS, Kimura K, Yu W. The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration. WATER RESEARCH 2022; 215:118263. [PMID: 35290872 DOI: 10.1016/j.watres.2022.118263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Nanofiltration (NF) is utilized in water treatment for controlling disinfection by-products formation potential (DBPFP) and disinfection by-products (DBPs). Attention regarding NF-based technology has been paid on membrane fouling of NF and the rejection efficiency of contaminants by NF membranes. Natural organic matter (NOM) presenting in surface waters is one main removal target in drinking water treatment by NF-based technology, and is thereby a contributor to the membrane fouling of NF. In application, pretreatments of other membrane filtration (e.g., microfiltration (MF) and ultrafiltration (UF)) has been taken prior to NF, resulting in the separation of NOM of specific molecular weight. Meanwhile, it is well known that NOM is composed of organic compounds of different molecular weights. However, the effect of NOM of specific molecular weight has been seldom investigated from the aspects of membrane fouling and the resulting DBPFP after membrane filtration. By using combinations of MF and UF (molecular weight cut-off of 100K or 20K) as pretreatment prior to NF, the NOM of various molecular weight on DBPFP and DBPs in the NF-treated water were investigated. The experiments were conducted with two real-world surface water samples and one tap water sample. It was found that medium molecular weight NOM, defined as NOM that passed UF100K but did not pass UF20K in this study, reduced fouling of the NF membrane. This is supported by the excitation and emission matrix (EEM) fluorescence spectra, size exclusion chromatography (SEC) and flux analysis. In addition, the medium molecular weight NOM also reduced the DBPFP in the NF treated water and eventually the DBPs by participating in forming a protective layer on the NF surface, blocking the transfer of small molecular weight NOM into the NF filtrate, thereby reducing the DBPFP of the NF filtrate since small molecular weight NOM was the major contributor to DBPFP in this study.
Collapse
Affiliation(s)
- Qingyun Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
113
|
MXenes and other 2D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
114
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
115
|
Zhang M, Hu X, Peng L, Zhou S, Zhou Y, Xie S, Song X, Gao C. The Intrinsic Parameters of the Polyamide Nanofilm in Thin-Film Composite Reverse Osmosis (TFC-RO) Membranes: The Impact of Monomer Concentration. MEMBRANES 2022; 12:membranes12040417. [PMID: 35448387 PMCID: PMC9032585 DOI: 10.3390/membranes12040417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
The realistic resistance zone of water and salt molecules to transport across a TFC-RO membrane is the topmost polyamide nanofilm. The existence of hollow voids in the fully aromatic polyamide (PA) film gives its surface ridge-and-valley morphologies, which confuses the comprehensions of the definition of the PA thickness. The hollow voids, however, neither participate in salt–water separation nor hinder water penetrating. In this paper, the influence of intrinsic thickness (single wall thickness) of the PA layer on water permeability was studied by adjusting the concentration of reacting monomers. It confirms that the true permeation resistance of water molecules originates from the intrinsic thickness portion of the membrane. The experimental results show that the water permeability constant decreases from 3.15 ± 0.02 to 2.74 ± 0.10 L·m−2·h−1·bar−1 when the intrinsic thickness of the membrane increases by 9 nm. The defects on the film surface generate when the higher concentration of MPD is matched with the relatively low concentration of TMC. In addition, the role of MPD and TMC in the micro-structure of the PA membrane was discussed, which may provide a new way for the preparation of high permeability and high selectivity composite reverse osmosis membranes.
Collapse
Affiliation(s)
- Mengling Zhang
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Xiangyang Hu
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Lei Peng
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Shilin Zhou
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Yong Zhou
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
- Correspondence: (Y.Z.); (S.X.); (X.S.)
| | - Shijie Xie
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
- Correspondence: (Y.Z.); (S.X.); (X.S.)
| | - Xiaoxiao Song
- Bruker Shanghai Office 9F, Building NO.1, Lane 2570 Hechuan Rd, Minhang District, Shanghai 200233, China
- Correspondence: (Y.Z.); (S.X.); (X.S.)
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| |
Collapse
|
116
|
Zhang T, Fu RY, Wang KP, Gao YW, Li HR, Wang XM, Xie YF, Hou L. Effect of synthesis conditions on the non-uniformity of nanofiltration membrane pore size distribution. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
117
|
Nanofiltration membranes with enhanced performance by constructing an interlayer integrated with dextran nanoparticles and polyethyleneimine coating. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
118
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
119
|
Ag-based nanocapsule-regulated interfacial polymerization Enables synchronous nanostructure towards high-performance nanofiltration membrane for sustainable water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
120
|
|
121
|
Wang Y, Wang T, Li S, Zhao Z, Zheng X, Zhang L, Zhao Z. Novel Poly(piperazinamide)/poly(m-phenylene isophthalamide) composite nanofiltration membrane with polydopamine coated silica as an interlayer for the splendid performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
122
|
Gao H, Zhong S, Zhang W, Igou T, Berger E, Reid E, Zhao Y, Lambeth D, Gan L, Afolabi MA, Tong Z, Lan G, Chen Y. Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2572-2581. [PMID: 34968041 DOI: 10.1021/acs.est.1c04373] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymeric membrane design is a multidimensional process involving selection of membrane materials and optimization of fabrication conditions from an infinite candidate space. It is impossible to explore the entire space by trial-and-error experimentation. Here, we present a membrane design strategy utilizing machine learning-based Bayesian optimization to precisely identify the optimal combinations of unexplored monomers and their fabrication conditions from an infinite space. We developed ML models to accurately predict water permeability and salt rejection from membrane monomer types (represented by the Morgan fingerprint) and fabrication conditions. We applied Bayesian optimization on the built ML model to inversely identify sets of monomer/fabrication condition combinations with the potential to break the upper bound for water/salt selectivity and permeability. We fabricated eight membranes under the identified combinations and found that they exceeded the present upper bound. Our findings demonstrate that ML-based Bayesian optimization represents a paradigm shift for next-generation separation membrane design.
Collapse
Affiliation(s)
- Haiping Gao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shifa Zhong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wenlong Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas Igou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Eli Berger
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elliot Reid
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dylan Lambeth
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lan Gan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moyosore A Afolabi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhaohui Tong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Guanghui Lan
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
123
|
Long L, Wu C, Yang Z, Tang CY. Carbon Nanotube Interlayer Enhances Water Permeance and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2656-2664. [PMID: 35113549 DOI: 10.1021/acs.est.1c07332] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interlayered thin-film nanocomposite (TFNi) membranes have been shown to achieve enhanced water permeance as a result of the gutter effect. Nevertheless, some studies report impaired separation performance after the inclusion of an interlayer. In this study, we resolve the competing mechanisms of water transport in the transverse direction vs that in the normal direction. To enable easy comparison, carbon nanotube (CNT)-incorporated TFNi membranes with an identical polyamide rejection layer but different interlayer thicknesses were investigated. While increasing the thickness of the CNT interlayer facilitates water transport in the transverse direction (therefore improving the gutter effect), it simultaneously increases its hydraulic resistance in the normal direction. An optimal water permeance of 13.0 ± 0.7 L m-2 h-1 bar-1, which was more than doubled over the control membrane of 6.1 ± 0.7 L m-2 h-1 bar-1, was realized at a moderate interlayer thickness, resulting from the trade-off between these two competing mechanisms. In this study, we demonstrate reduced membrane fouling and improved fouling reversibility for a TFNi membrane over its control without an interlayer, which can be attributed to its more uniform water flux distribution. The fundamental mechanisms revealed in this study lay a solid foundation for the future development of TFNi membranes toward enhanced separation properties and antifouling ability.
Collapse
Affiliation(s)
- Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
124
|
Preparation of advanced reverse osmosis membrane by a wettability-transformable interlayer combining with N-acyl imidazole chemistry. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
125
|
Tian J, Song B, Gao S, Van der Bruggen B, Zhang R. Omnifarious performance promotion of the TFC NF membrane prepared with hyperbranched polyester intervened interfacial polymerization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
126
|
Khoo YS, Lau WJ, Liang YY, Karaman M, Gürsoy M, Ismail AF. Eco-friendly surface modification approach to develop thin film nanocomposite membrane with improved desalination and antifouling properties. J Adv Res 2022; 36:39-49. [PMID: 35127163 PMCID: PMC8802863 DOI: 10.1016/j.jare.2021.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/01/2022] Open
Abstract
Introduction Nanomaterials aggregation within polyamide (PA) layer of thin film nanocomposite (TFN) membrane is found to be a common issue and can negatively affect membrane filtration performance. Thus, post-treatment on the surface of TFN membrane is one of the strategies to address the problem. Objective In this study, an eco-friendly surface modification technique based on plasma enhanced chemical vapour deposition (PECVD) was used to deposit hydrophilic acrylic acid (AA) onto the PA surface of TFN membrane with the aims of simultaneously minimizing the PA surface defects caused by nanomaterials incorporation and improving the membrane surface hydrophilicity for reverse osmosis (RO) application. Methods The TFN membrane was first synthesized by incorporating 0.05 wt% of functionalized titania nanotubes (TNTs) into its PA layer. It was then subjected to 15-s plasma deposition of AA monomer to establish extremely thin hydrophilic layer atop PA nanocomposite layer. PECVD is a promising surface modification method as it offers rapid and solvent-free functionalization for the membranes. Results The findings clearly showed that the sodium chloride rejection of the plasma-modified TFN membrane was improved with salt passage reduced from 2.43% to 1.50% without significantly altering pure water flux. The AA-modified TFN membrane also exhibited a remarkable antifouling property with higher flux recovery rate (>95%, 5-h filtration using 1000 mg/L sodium alginate solution) compared to the unmodified TFN membrane (85.8%), which is mainly attributed to its enhanced hydrophilicity and smoother surface. Furthermore, the AA-modified TFN membrane also showed higher performance stability throughout 12-h filtration period. Conclusion The deposition of hydrophilic material on the TFN membrane surface via eco-friendly method is potential to develop a defect-free TFN membrane with enhanced fouling resistance for improved desalination process.
Collapse
Affiliation(s)
- Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Yong Yeow Liang
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mustafa Karaman
- Department of Chemical Engineering, Konya Technical University, Konya 42075, Turkey
| | - Mehmet Gürsoy
- Department of Chemical Engineering, Konya Technical University, Konya 42075, Turkey
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
127
|
Nambi Krishnan J, Venkatachalam KR, Ghosh O, Jhaveri K, Palakodeti A, Nair N. Review of Thin Film Nanocomposite Membranes and Their Applications in Desalination. Front Chem 2022; 10:781372. [PMID: 35186879 PMCID: PMC8848102 DOI: 10.3389/fchem.2022.781372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
All over the world, almost one billion people live in regions where water is scarce. It is also estimated that by 2035, almost 3.5 billion people will be experiencing water scarcity. Hence, there is a need for water based technologies. In separation processes, membrane based technologies have been a popular choice due to its advantages over other techniques. In recent decades, sustained research in the field of membrane technology has seen a remarkable surge in the development of membrane technology, particularly because of reduction of energy footprints and cost. One such development is the inclusion of nanoparticles in thin film composite membranes, commonly referred to as Thin Film Nanocomposite Membranes (TFN). This review covers the development, characteristics, advantages, and applications of TFN technology since its introduction in 2007 by Hoek. After a brief overview on the existing membrane technology, this review discusses TFN membranes. This discussion includes TFN membrane synthesis, characterization, and enhanced properties due to the incorporation of nanoparticles. An attempt is made to summarize the various nanoparticles used for preparing TFNs and the effects they have on membrane performance towards desalination. The improvement in membrane performance is generally observed in properties such as permeability, selectivity, chlorine stability, and antifouling. Subsequently, the application of TFNs in Reverse Osmosis (RO) alongside other desalination alternatives like Multiple Effect Flash evaporator and Multi-Stage Flash distillation is covered.
Collapse
Affiliation(s)
- Jegatha Nambi Krishnan
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
- *Correspondence: Jegatha Nambi Krishnan,
| | - Kaarthick Raaja Venkatachalam
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| | - Oindrila Ghosh
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| | - Krutarth Jhaveri
- Strategic Engagement and Analysis Group, Rocky Mountain Institute, Boulder, CO, United States
| | - Advait Palakodeti
- Process and Environmental Technology Lab, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Nikhil Nair
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
128
|
Liu C, Guo Y, Zhou Y, Yang B, Xiao K, Zhao HZ. High-hydrophilic and antifouling reverse osmosis membrane prepared based an unconventional radiation method for pharmaceutical plant effluent treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
129
|
Peng LE, Yang Z, Long L, Zhou S, Guo H, Tang CY. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119871] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
130
|
Zhang W, Guo D, Li Z, Shen L, Li R, Zhang M, Jiao Y, Xu Y, Lin H. A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119866] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
131
|
Shen Q, Xing DY, Sun F, Dong W, Zhang F. Designed water channels and sieving effect for heavy metal removal by a novel silica-poly(ionic liquid) nanoparticles TFN membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
132
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
133
|
Cheng X, Lai C, Li J, Zhou W, Zhu X, Wang Z, Ding J, Zhang X, Wu D, Liang H, Zhao C. Toward Enhancing Desalination and Heavy Metal Removal of TFC Nanofiltration Membranes: A Cost-Effective Interface Temperature-Regulated Interfacial Polymerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57998-58010. [PMID: 34817167 DOI: 10.1021/acsami.1c17783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyamide (PA) chemistry-based nanofiltration (NF) membranes have an important role in the field of seawater desalination and wastewater reclamation. Achieving an ultrathin and defect-free active layer via precisely controlled interfacial polymerization (IP) is an effective routine to improve the separation efficiencies of NF membranes. Herein, the morphologies and chemical structures of the thin-film composite (TFC) NF membranes were accurately regulated by tailoring the interfacial reaction temperature during the IP process. This strategy was achieved by controlling the temperature (-15, 5, 20, 35, and 50°) of the oil-phase solutions. The structural compositions, morphological variations, and separation features of the fabricated NF membranes were studied in detail. In addition, the formation mechanisms of the NF membranes featuring different PAs were also proposed and discussed. The temperature-assisted IP (TAIP) method greatly changed the compositions of the resultant PA membranes. A very smooth and thin PA film was obtained for the NF membranes fabricated at a low interfacial temperature; thus, a high 19.2 L m-2 h-1 bar-1 of water permeance and 97.7% of Na2SO4 rejection were observed. With regard to the NF membranes obtained at a high interfacial temperature, a lower water permeance and higher salt rejection with fewer membrane defects were achieved. Impressively, the high interfacial temperature-assisted NF membranes exhibited uniform coffee-ring-like surface morphologies. The special surface-featured NF membrane showed superior separation for selected heavy metals. Rejections of 93.9%, 97.9%, and 87.7% for Cu2+, Mn2+, and Cd2+ were observed with the optimized membrane. Three cycles of fouling tests indicated that NF membranes fabricated at low temperatures exhibited excellent antifouling behavior, whereas a high interface temperature contributed to the formation of NF membranes with high fouling tendency. This study provides an economical, facile, and universal TAIP strategy for tailoring the performances of TFC PA membranes for environmental water treatment.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Cunxian Lai
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jinyu Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weiwei Zhou
- Shandong Urban Construction Vocational College, Jinan 250103, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
134
|
Tailored thin film nanocomposite membrane incorporated with Noria for simultaneously overcoming the permeability-selectivity trade-off and the membrane fouling in nanofiltration process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
135
|
Liu X, Zhang L, Cui X, Zhang Q, Hu W, Du J, Zeng H, Xu Q. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102493. [PMID: 34668340 PMCID: PMC8655186 DOI: 10.1002/advs.202102493] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Since the discovery of 2D materials, 2D material nanofiltration (NF) membranes have attracted great attention and are being developed with a tremendously fast pace, due to their energy efficiency and cost effectiveness for water purification. The most attractive aspect for 2D material NF membranes is that, anomalous water and ion permeation phenomena have been constantly observed because of the presence of the severely confined nanocapillaries (<2 nm) in the membrane, leading to its great potential in achieving superior overall performance, e.g., high water flux, high rejection rates of ions, and high resistance to swelling. Hence, fundamental understandings of such water and ion transport behaviors are of great significance for the continuous development of 2D material NF membranes. In this work, the microscopic understandings developed up to date on 2D material NF membranes regarding the abnormal transport phenomena are reviewed, including ultrafast water and ion permeation rates with the magnitude several orders higher than that predicted by conventional diffusion behavior, ion dehydration, ionic Coulomb blockade, ion-ion correlations, etc. The state-of-the-art structural designs for 2D material NF membranes are also reviewed. Discussion and future perspectives are provided highlighting the rational design of 2D material membrane structures in the future.
Collapse
Affiliation(s)
- Xiaopeng Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ling Zhang
- School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Qian Zhang
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Wenjihao Hu
- School of Metallurgy & EnvironmentCentral South UniversityChangshaHunan410083China
| | - Jiang Du
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
136
|
High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly(dopamine) coated UiO66-(COOH)2. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
137
|
Guo H, Li X, Yang W, Yao Z, Mei Y, Peng LE, Yang Z, Shao S, Tang CY. Nanofiltration for drinking water treatment: a review. Front Chem Sci Eng 2021; 16:681-698. [PMID: 34849269 PMCID: PMC8617557 DOI: 10.1007/s11705-021-2103-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, nanofiltration (NF) is considered as a promising separation technique to produce drinking water from different types of water source. In this paper, we comprehensively reviewed the progress of NF-based drinking water treatment, through summarizing the development of materials/fabrication and applications of NF membranes in various scenarios including surface water treatment, groundwater treatment, water reuse, brackish water treatment, and point of use applications. We not only summarized the removal of target major pollutants (e.g., hardness, pathogen, and natural organic matter), but also paid attention to the removal of micropollutants of major concern (e.g., disinfection byproducts, per- and polyfluoroalkyl substances, and arsenic). We highlighted that, for different applications, fit-for-purpose design is needed to improve the separation capability for target compounds of NF membranes in addition to their removal of salts. Outlook and perspectives on membrane fouling control, chlorine resistance, integrity, and selectivity are also discussed to provide potential insights for future development of high-efficiency NF membranes for stable and reliable drinking water treatment.
Collapse
Affiliation(s)
- Hao Guo
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Wulin Yang
- College of Environmental Science and Engineering, Peking University, Beijing, 100871 China
| | - Zhikan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087 China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Zhe Yang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072 China
| | - Chuyang Y. Tang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
138
|
Sun F, Yang J, Shen Q, Li M, Du H, Xing DY. Conductive polyethersulfone membrane facilely prepared by simultaneous phase inversion method for enhanced anti-fouling and separation under low driven-pressure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113363. [PMID: 34314960 DOI: 10.1016/j.jenvman.2021.113363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Electrically conductive membranes have been regarded as a new alternative to overcome the crucial drawbacks of membranes, including permeability-selectivity trade-off and fouling. It is still challenging to prepare conductive membranes with good mechanical strength, high conductivity and stable separation performance by reliable materials and methods. This work developed a facile method of simultaneous phase inversion to prepare electrically conductive polyethersulfone (PES) membranes with carboxylic multiwalled carbon nanotubes (MWCNT) and graphene (Gr). The resultant MWCNT/Gr/PES nanocomposite membranes are composed of the upper MWCNT/Gr layer with good conductivity and the base PES layer providing mechanical support. MWCNT as nanofillers effectively turns the insulting PES layers to be electrically conductive. With the dispersing and bridging functions of Gr, the MWCNT/Gr layer shows an enhanced electric conductivity of 0.10 S/cm. This MWCNT/Gr/PES membrane in an electro-filtration cell achieves excellent retention of Cu(II) ions up to 98 % and a high flux of 94.5 L m-2∙h-1∙bar-1 under a low driven-pressure of 0.1 MPa. The conductive membrane also shows improved anti-fouling capability during protein filtration, due mainly to the electrostatic repulsion and hydrogen evolution reaction on the electrode. This facile strategy has excellent potential in electro-assistant membrane filtration for fouling control and effective separation.
Collapse
Affiliation(s)
- Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Jingyi Yang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Qi Shen
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Hong Du
- Shenzhen Water Group, Shenzhen, China
| | - Ding Yu Xing
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|
139
|
Ng ZC, Lau WJ, Wong KC, Al-Ghouti MA, Ismail AF. Improving properties of thin film nanocomposite membrane through polyethyleneimine intermediate layer: A parametric study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
140
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
141
|
Zhang X, Zeng Y, Shen C, Fan Z, Meng Q, Zhang W, Zhang G, Gao C. In Situ Assembly of Polyamide/Fe(BTC) Nanocomposite Reverse Osmosis Membrane Assisted by Fe 3+-Polyphenolic Complex for Desalination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48679-48690. [PMID: 34622650 DOI: 10.1021/acsami.1c13801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The metal-organic framework (MOF)-based polyamide (PA) membranes applied for desalination with high permeability and selectivity are attracting more and more attention. However, the design and fabrication of high-quality and stable MOF-based PA nanocomposite reverse osmosis (RO) membrane still remain a big challenge. Herein, Fe3+-polyphenolic complex coating via interfacial coordination was first explored as an interlayer of an in situ assembled stable and high-quality Fe(BTC)-based PA nanocomposite RO membranes for desalination. Although depositing the Fe3+-polyphenolic complex on the polymer support, sufficient heterogeneous nucleation sites for the in situ synthesizing Fe(BTC) are provided. Using this strategy, we can not only facilely prepare continuous MOF-based PA nanocomposite RO membranes, ignoring the complicated and time-consuming co-blending process and the MOF-particle aggregation, but also restrict the formation of PA matrix inside the pores of the support membrane and increase the rigidity of the polyamide chain. The method also gives a proper level of generality for the fabrication of versatile stable MOF-based PA RO membranes on various supports. The prepared PA/Fe(BTC) composite membrane exhibited excellent separation performance with a large permeate flux of 2.93 L m-2 h-1 bar-1 and a high NaCl rejection of 96.8%.
Collapse
Affiliation(s)
- Xu Zhang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yong Zeng
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chong Shen
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38#, Hangzhou 310027, P. R. China
| | - Zixuan Fan
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qin Meng
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38#, Hangzhou 310027, P. R. China
| | - Weizhen Zhang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Congjie Gao
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
142
|
Sun PF, Yang Z, Song X, Lee JH, Tang CY, Park HD. Interlayered Forward Osmosis Membranes with Ti 3C 2T x MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13219-13230. [PMID: 34314168 DOI: 10.1021/acs.est.1c01968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) hybrid systems have the potential to simultaneously recover nutrients and water from wastewater. However, the lack of membranes with high permeability and selectivity has limited the development and scale-up of these hybrid systems. In this study, we fabricated a novel thin-film nanocomposite membrane featuring an interlayer of Ti3C2Tx MXene intercalated with carbon nanotubes (M/C-TFNi). Owing to the enhanced confinement effect on interfacial degassing and increased amine monomer sorption by the interlayer, the resulting M/C-TFNi FO membrane has a greater degree of cross-linking and roughness. In comparison with the thin-film composite (TFC) membrane without an interlayered structure, the M/C-TFNi membrane attained a water flux that was four times higher and a lower specific salt flux. Notably, the M/C-TFNi membrane exhibited excellent concentration efficiency for real municipal wastewater and enhanced rejection of ammonia nitrogen, which breaks the permeability-selectivity upper bound. This study provides a new avenue for the rational design and development of high-performance FO membranes for environmental applications.
Collapse
Affiliation(s)
- Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jeong Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea
| |
Collapse
|
143
|
Wei Y, Yang Z, Wang L, Yu Y, Yang H, Jin H, Lu P, Wang Y, Wu D, Li Y, Tang CY. Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
144
|
Park KH, Sun PF, Kang EH, Han GD, Kim BJ, Jang Y, Lee SH, Shim JH, Park HD. Photocatalytic anti-biofouling performance of nanoporous ceramic membranes treated by atomic layer deposited ZnO. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
145
|
Zhu X, Zhang X, Li J, Luo X, Xu D, Wu D, Wang W, Cheng X, Li G, Liang H. Crumple-textured polyamide membranes via MXene nanosheet-regulated interfacial polymerization for enhanced nanofiltration performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
146
|
Zhan ZM, Zhang X, Fang YX, Tang YJ, Zhu KK, Ma XH, Xu ZL. Polyamide Nanofiltration Membranes with Enhanced Desalination and Antifouling Performance Enabled by Surface Grafting Polyquaternium-7. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin-Xin Fang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ka-Ke Zhu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Hua Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
147
|
Guo Y, Liu C, Xu W, Liu G, Xiao K, Zhao HZ. Interpenetrating network nanoarchitectonics of antifouling poly(vinylidene fluoride) membranes for oil-water separation. RSC Adv 2021; 11:31865-31876. [PMID: 35495518 PMCID: PMC9041979 DOI: 10.1039/d1ra05970j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Poly(vinylidene fluoride) (PVDF) membranes are a commonly used cheap material and have been widely used in wastewater treatment. In this study, a simple strategy was proposed to construct PVDF-g-PEG membranes with an interpenetrating network structure by simulating plant roots for the treatment of oil/water emulsion. Meanwhile, the hydrophilicity, antifouling, and mechanical properties of the membrane were improved. A series of chemical and physical characterization methods were used to verify the successful formation of a PVDF-g-PEG layer on the membrane surface. The effects of graft modifier content on the crystallization behavior, microstructure, and membrane permeability were studied. When the optimized membrane (m-PVDF-2) was applied to the treatment of oily wastewater, its separation performance was significantly better than that of the blank PVDF membrane, and the oil removal rate was over 99.3%. BSA and oil contamination were nearly reversible, and excellent oil resistance to high-viscosity oil was also observed. The method reported in this article is a one-step, simple method for constructing hydrophilic and oil-resistant PVDF membranes without any intermediate additives and harmful or costly catalysts. They can be used as an ideal material for preparing efficient oil–water separation membranes. A simple strategy was proposed to construct PVDF-g-PEG membranes with an interpenetrating network structure.![]()
Collapse
Affiliation(s)
- Yongqiang Guo
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University Shenzhen 518060 PR China .,Jiangsu Hengrui Medicine Co.,Ltd Lianyungang 222000 PR China
| | - Chao Liu
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University Shenzhen 518060 PR China .,The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing 100871 PR China
| | - Wei Xu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing 100871 PR China
| | - Guangli Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing 100871 PR China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University Shenzhen 518060 PR China
| | - Hua-Zhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing 100871 PR China
| |
Collapse
|
148
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
149
|
Tian J, Chang H, Gao S, Zong Y, Van der Bruggen B, Zhang R. Direct generation of an ultrathin (8.5 nm) polyamide film with ultrahigh water permeance via in-situ interfacial polymerization on commercial substrate membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
150
|
Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|