101
|
Yao Y, Wang Z, Criddle CS. Robust Nitritation of Anaerobic Digester Centrate Using Dual Stressors and Timed Alkali Additions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2016-2026. [PMID: 33443415 DOI: 10.1021/acs.est.0c04613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrogen is commonly removed from wastewater by nitrification to nitrate followed by nitrate reduction to N2. Shortcut N removal saves energy by limiting ammonia oxidation to nitrite, but nitrite accumulation can be unstable. We hypothesized that repeated short-term exposures of ammonia-oxidizing communities to free ammonia (FA) and free nitrous acid (FNA) would stabilize nitritation by selecting against nitrite-oxidizing bacteria (NOB). Accordingly, we evaluated ammonium oxidation of anaerobic digester centrate in two bench-scale sequencing batch reactors (SBRs), seeded with the same inoculum and operated identically but with differing pH-control strategies. A single stressor SBR (SS/SBR) using pH set-point control produced HNO3, while a dual stressor SBR (DS/SBR) using timed alkalinity addition (TAA) produced HNO2 (ammonium removal efficiency of 97 ± 2%; nitrite accumulation ratio of 98 ± 1%). The TAA protocol was developed during an adaptation period with continuous pH monitoring. After adaptation, automated TAA enabled stable nitritation without set-point control. In the SS/SBR, repeatedly exposing the community to FA (8-10 h/exposure, one exposure/cycle) selected for FA-tolerant ammonia-oxidizing bacteria (Nitrosomonas sp. NM107) and NOB (Nitrobacter sp.). In the DS/SBR, repeatedly exposing the community to FA (2-4 h/exposure, three exposures/cycle) and FNA (4-6 h/exposure, two exposures/cycle) selected for FA- and FNA-resistant AOB (Nitrosomonas IWT514) and against NOB, stabilizing nitritation.
Collapse
Affiliation(s)
- Yinuo Yao
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhiyue Wang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
102
|
Wang Z, Zheng M, Meng J, Hu Z, Ni G, Guerrero Calderon A, Li H, De Clippeleir H, Al-Omari A, Hu S, Yuan Z. Robust Nitritation Sustained by Acid-Tolerant Ammonia-Oxidizing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2048-2056. [PMID: 33444018 DOI: 10.1021/acs.est.0c05181] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oxidation of ammonium to nitrite rather than nitrate, i.e., nitritation, is critical for autotrophic nitrogen removal. This study demonstrates a robust nitritation process in treating low-strength wastewater, obtained from a mixture of real mainstream sewage with sidestream anaerobic digestion liquor. This is achieved through cultivating acid-tolerant ammonia-oxidizing bacteria (AOB) in a laboratory nitrifying bioreactor at pH 4.5-5.0. It was shown that nitrite accumulation with a high NO2-/(NO2- + NO3-) ratio of 95 ± 5% was stably maintained for more than 300 days, and the obtained volumetric NH4+ removal rate (i.e., 188 ± 14 mg N L-1 d-1) was practically useful. 16S rRNA gene sequencing analyses indicated the dominance of new AOB, "Candidatus Nitrosoglobus," in the nitrifying guild (i.e., 1.90 ± 0.08% in the total community), with the disappearance of typical activated sludge nitrifying microorganisms, including Nitrosomonas, Nitrospira, and Nitrobacter. This is the first identification of Ca. Nitrosoglobus as key ammonia oxidizers in a wastewater treatment system. It was found that Ca. Nitrosoglobus can tolerate low pH (<5.0), and free nitrous acid (FNA) at levels that inhibit AOB and nitrite-oxidizing bacteria (NOB) commonly found in wastewater treatment processes. The in situ inhibition of NOB leads to accumulation of nitrite (NO2-), which along with protons (H+) also produced in ammonium oxidation generates and sustains FNA at 3.0 ± 1.4 mg HNO2-N L-1. As such, robust PN was achieved under acidic conditions, with a complete absence of NOB. Compared to previous nitritation systems, this acidic nitritation process is featured by a higher nitric oxide (NO) but a lower nitrous oxide (N2O) emission level, with the emission factors estimated at 1.57 ± 0.08 and 0.57 ± 0.03%, respectively, of influent ammonium nitrogen load.
Collapse
Affiliation(s)
- Zhiyao Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jia Meng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, P. R. China
| | - Zhetai Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Gaofeng Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | | | - Huijuan Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Haydee De Clippeleir
- DC Water, 5000 Overlook Avenue SW, Washington, District of Columbia 20032, United States
| | - Ahmed Al-Omari
- DC Water, 5000 Overlook Avenue SW, Washington, District of Columbia 20032, United States
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
103
|
Qian Y, Ding Y, Ma H, Chi Y, Yuan H, Li YY, Tian S, Zhang B. Startup and performance of a novel single-stage partial nitritation/anammox system for reject water treatment. BIORESOURCE TECHNOLOGY 2021; 321:124432. [PMID: 33260065 DOI: 10.1016/j.biortech.2020.124432] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
A novel internal circulation contact oxidation membrane bioreactor (ICCOMBR) was constructed to investigate a three steps startup strategy of single-stage partial nitritation-anammox (SPNA) system. A stable nitrite accumulation rate (NAR) of 86.60% was achieved with NH4+-N over 250 mg/L in nitritation process. The partial nitritation process could be effectively achieved by reducing the aeration rate (AR) by about 50% in the nitritation process, with an effluent NO2--N/NH4+-N ratio of 1.15 ± 0.04. The SPNA system was started up in 27 days following the inoculated anammox granular sludge. A total nitrogen removal efficiencies of 82% was achieved at a NLR of 0.60 gN/L/d and dissolved oxygen (DO) concentration below 0.55 mg/L. Anammox function genus (Ca.Kuenenia and Ca. Anammoximicrobium) abundance accounted for 20.77% in the biofilm, which is approximately equal to 22.2% in the suspended sludge. Nitrosomon as the dominant AOB genera, was detected in the biofilm (6.5%) and suspended sludge (13.3%).
Collapse
Affiliation(s)
- Yunzhi Qian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-857, Japan
| | - Yanmei Ding
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China.
| | - Huaji Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Hongying Yuan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-857, Japan
| | - Sufeng Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Bowen Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
104
|
Pedrouso A, Correa-Galeote D, Maza-Márquez P, Juárez-Jimenez B, González-López J, Rodelas B, Campos JL, Mosquera-Corral A, Val del Rio A. Understanding the microbial trends in a nitritation reactor fed with primary settled municipal wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
105
|
Al-Hazmi HE, Lu X, Majtacz J, Kowal P, Xie L, Makinia J. Optimization of the Aeration Strategies in a Deammonification Sequencing Batch Reactor for Efficient Nitrogen Removal and Mitigation of N 2O Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1218-1230. [PMID: 33378162 DOI: 10.1021/acs.est.0c04229] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In deammonification systems, nitrite-oxidizing bacteria (NOB) suppression and nitrous oxide (N2O) mitigation are two important operational objectives. To carry out this multivariable analysis of response, a comprehensive model for the N cycle was developed and evaluated against experimental data from a laboratory-scale deammonification granular sludge sequencing batch reactor. Different aeration strategies were tested, and the manipulated variables comprised the dissolved oxygen (DO) set point in the aerated phase, aeration on/off frequency (F), and the ratio (R) between the non-aerated and aerated phase durations. Experimental results showed that a high ammonium utilization rate (AUR) in relation to the low nitrate production rate (NPR) (NPR/AUR = 0.07-0.08) and limited N2O emissions (EN2O < 2%) could be achieved at the DO set point = 0.7 mg O2/L, R ratio = 2, and F frequency = 6-7 h-1. Under specific operational conditions (biomass concentration, NH4+-N loading rate, and temperature), simulation results confirmed the feasible aeration strategies for the trade-offs between the NOB suppression and N2O emission. The intermittent aeration regimes led to frequent shifts in the predominating N2O production pathways, that is, hydroxylamine (NH2OH) oxidation (aerated phase) versus autotrophic denitrification (non-aerated phase). The inclusion of the extracellular polymeric substance mechanism in the model explained the observed activity of heterotrophs, especially Anaerolineae, and granule formation.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Xi Lu
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
- Institute of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Li Xie
- Institute of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
106
|
Qiu S, Wang L, Chen Z, Yang M, Yu Z, Ge S. An integrated mainstream and sidestream strategy for overcoming nitrite oxidizing bacteria adaptation in a continuous plug-flow nutrient removal process. BIORESOURCE TECHNOLOGY 2021; 319:124133. [PMID: 32977093 DOI: 10.1016/j.biortech.2020.124133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
An integrated mainstream aeration and sidestream sludge treatment was demonstrated to be effective in overcoming the adaptationof nitrite oxidizing bacteria (NOB) in an anoxic/oxic process. Results showed that by employing the alternating free nitrous acid and free ammonia (FNA/FA) sidestream sludge treatment alone, nitritation was established but varied, which was addressed by integrating alternating aeration with step feeding (ALASF) in reactor. Two critical considerations contributed to stable effluent nitrite accumulation (>83.8 %)and nitrogen removal (>83.0 %): 1) aerobic sludge rather than return sludge should be taken for FNA/FA treatment to avoid anoxic starvation which facilitated NOB recovery; 2) ALASF ensured timely denitritation and created constant anoxic disturbance for NOB inhibition. Nitrospira and Nitrobacter after 540-day operation were 0.38 % of seed sludge.A20 % reduction of operating cost was obtained in this nitritation process. This study moved nitritation one step closer to application in continuous plug-flow process from municipal wastewater.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Lingfeng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Mingzhu Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China.
| |
Collapse
|
107
|
Zhao J, Zhao J, Xie S, Lei S. The role of hydroxylamine in promoting conversion from complete nitrification to partial nitrification: NO toxicity inhibition and its characteristics. BIORESOURCE TECHNOLOGY 2021; 319:124230. [PMID: 33049441 DOI: 10.1016/j.biortech.2020.124230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This study investigated a strategy for hydroxylamine (NH2OH) addition for promoting the conversion of complete nitrification to partial nitrification in a sequencing batch reactor (SBR). The results showed that continuous dosing of 5 mg-N/L NH2OH into a complete nitrification reactor for 16 days led to an increase in the nitrite accumulation ratio (NAR) from 0.22% to 95.08% and a significant enhancement in the accumulation of NO and N2O in the liquid. The maximum concentration of NO in each cycle rose with the increase of NAR during NH2OH addition. With the stopping of NH2OH addition, the partial nitrification disappeared progressively in 21 days. The analysis for microbial community showed that Nitrospira was the main NOB and its relative abundance decreased with NH2OH addition and recovered after the cessation of NH2OH addition. Accordingly, NH2OH has a significant and reversible inhibition on Nitrospira and its essence might be related to NO toxicity.
Collapse
Affiliation(s)
- Junkai Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China.
| | - Shuting Xie
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Shuhan Lei
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| |
Collapse
|
108
|
Activated sludge under free ammonia treatment using gel immobilization technology for long-term partial nitrification with different initial biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
109
|
Zheng M, Li S, Ni G, Xia J, Hu S, Yuan Z, Liu Y, Huang X. Critical Factors Facilitating Candidatus Nitrotoga To Be Prevalent Nitrite-Oxidizing Bacteria in Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15414-15423. [PMID: 33180465 DOI: 10.1021/acs.est.0c04192] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrite oxidation is the primary pathway that generates nitrate in engineered systems. However, little is known about the role of a novel nitrite-oxidizing bacteria (NOB) genus Candidatus Nitrotoga in activated sludge systems. To elucidate key factors that impact NOB community composition, laboratory-scale sequencing batch reactors (SBRs) were designed and operated under the same conditions as real wastewater treatment plants to achieve considerable nitrogen removal and similar community; then, different conditions including temperature (T), dissolved oxygen (DO), free nitrous acid (FNA), and free ammonia (FA) were applied. The 16S rRNA gene-based PCR and sequence analysis illustrated that Ca. Nitrotoga were abundant even at ambient temperature, thus further challenging the previous conception of them being solely cold-adapted. Ca. Nitrotoga are less competitive than Nitrospira during oxygen deficiency, indicating its lower affinity to dissolved oxygen. Ca. Nitrotoga are the dominant nitrite oxidizers under regular exposure to FNA and FA due to their relatively higher resistance than other NOB toward these two effective biocides. Therefore, this study demonstrates that Ca. Nitrotoga can play an important role in biological nitrogen removal and also highlights the need for multiple strategies for NOB suppression for the next-generation, shortcut nitrogen removal.
Collapse
Affiliation(s)
- Min Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gaofeng Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
110
|
Chu Z, Huang X, Su Y, Yu H, Rong H, Wang R, Zhang L. Low-dose Ultraviolet-A irradiation selectively eliminates nitrite oxidizing bacteria for mainstream nitritation. CHEMOSPHERE 2020; 261:128172. [PMID: 33113654 DOI: 10.1016/j.chemosphere.2020.128172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Nitritation is currently known as a bottleneck for mainstream nitrite shunt or partial nitritation/anammox (PN/A). Here we propose a new approach to selectively eliminate nitrite oxidizing bacteria (NOB) for mainstream nitritation by low-dose ultraviolet-A (UVA) irradiation. The results showed that mainstream nitritation was rapidly achieved within 10 days with UVA irradiation at the dose of 0.87 μE L-1 s-1, and nitrite accumulation ratio (NO2--N/(NO2--N + NO3--N) ×100%) stabilized over 80%. Microbial community analysis revealed that two typical NOB populations (Nitrospira and Ca. Nitrotoga) detected in the control reactor were suppressed efficiently in UVA irradiation reactor, whereas the Nitrosomonas genus of ammonium oxidizing bacteria (AOB) remained at similar level. Intracellular reactive oxygen species (ROS) analysis indicated that NOB-dominant sludge tends to generate more intracellular ROS compared with AOB-dominant sludge in the presence of UVA, leading to the inactivation and elimination of NOB. Additionally, amounts of microalgae found in UVA irradiation reactor could help to suppress NOB by generating ROS during photosynthesis. Briefly, the UVA irradiation approach proposed in this study was shown to be promising in NOB suppression for reliable mainstream nitritation.
Collapse
Affiliation(s)
- Zhaorui Chu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaoyu Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yikui Su
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huarong Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Randeng Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Liqiu Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
111
|
Cui Y, Gao J, Zhang D, Zhao Y, Wang Y. Rapid start-up of partial nitrification process using benzethonium chloride-a novel nitrite oxidation inhibitor. BIORESOURCE TECHNOLOGY 2020; 315:123860. [PMID: 32707510 DOI: 10.1016/j.biortech.2020.123860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Benzethonium chloride (BZC) is an antibacterial compound with extensive applications in various anti-infective products. However, the feasibility of attaining partial nitrification of municipal wastewater using BZC has not been reported. In this work, BZC was used for the first time to attain partial nitrification. Batch experiments indicated nitrite oxidizing bacteria (NOB) was more vulnerable to BZC than ammonia oxidizing bacteria (AOB). When activated sludge was treated only once with 0.023 g BZC·(g MLSS)-1 for 18 h, partial nitrification was attained at the 29th cycle with NAR of 97.46% and sustained 91 cycles in stability tests. Complimentary DNA sequencing analysis revealed the suppression of Nitrospira was the reason for partial nitrification. Oligotyping analysis indicated AOB could likely resist to BZC by both the species shifts and development of tolerance, while most NOB species could not adapt to BZC. This study revealed the feasibility of BZC as a novel NOB inhibitor.
Collapse
Affiliation(s)
- Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuwei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
112
|
Wang J, Yang H, Liu X, Wang J, Chang J. The impact of temperature and dissolved oxygen (DO) on the partial nitrification of immobilized fillers, and application in municipal wastewater. RSC Adv 2020; 10:37194-37201. [PMID: 35521268 PMCID: PMC9057151 DOI: 10.1039/d0ra05908k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
To achieve the stable partial nitrification of municipal wastewater, activated sludge with high ammonia-oxidizing bacteria (AOB) content and low nitrite-oxidizing bacteria (NOB) content were immobilized in a polyvinyl alcohol filler. The effects of different levels of dissolved oxygen (DO) on the activity of AOB and NOB in the filler with temperature changes at the initial ammonia concentration of approximately 100 mg L-1 were investigated. At 25 °C, when the DO concentration was greater than 5 mg L-1, the O2-limiting condition inside the filler was destroyed as the demand for oxygen in AOB was certain, and resulted in enhanced NOB activity. At 15 °C, the DO concentration was not a key factor in determining the NOB activity due to the negative effect of temperature on NOB activity. The immobilized filler reactor of municipal wastewater achieved a nitrite accumulation rate (NAR) of >86.7 and >82% at 24-26 °C and 14-16 °C, respectively. Low temperatures did not deteriorate the stable partial nitrification performance. The total nitrogen (TN) removal efficiency of the immobilized filler reactor was 21.7-26.1% and 10.3-15.3% at 24-26 °C and 14-16 °C, respectively. The TN removal efficiency and NAR in municipal wastewater were higher as compared to simulated wastewater, indicating that the organic carbon in municipal wastewater enhanced nitrate reduction by denitrification. High-throughput sequencing analysis showed that denitrifying bacteria and nitrifying bacteria were identified as the predominant bacteria genera, while the dominant species of NOB was Nitrobacter. This study is a viable approach to promoting partial nitrification in municipal WWTPs.
Collapse
Affiliation(s)
- Jiawei Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Xuyan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Jiawei Wang
- Beijing Drainage Group Co. Ltd Beijing 100022 China
| | - Jiang Chang
- Beijing Drainage Group Co. Ltd Beijing 100022 China
| |
Collapse
|
113
|
Li S, Duan H, Zhang Y, Huang X, Yuan Z, Liu Y, Zheng M. Adaptation of nitrifying community in activated sludge to free ammonia inhibition and inactivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138713. [PMID: 32380412 DOI: 10.1016/j.scitotenv.2020.138713] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Sludge treatment using free ammonia (FA) is an innovative approach that was recently reported effective achieving stable mainstream nitrogen removal via the nitrite pathway. This study aims to investigate the adaptation of nitrifying community and the response of nitrification performance to high-level of FA exposure under real wastewater conditions. Two parallel lab-scale sequencing batch reactors were operated and fed with real municipal wastewater, with one receiving sludge treatment by FA and another as a control. While the FA approach rapidly achieved partial nitrification with a nitrite accumulation ratio (NAR) of approximately 60%, the partial nitrification eventually failed due to nitrite-oxidizing bacteria (NOB) adaptation to FA inactivation. NOB activity in the inoculum was suppressed by 82% after exposure to FA at ~220 mg NH3-N/L. However, towards the end of the experiments, significantly higher NOB activities were observed after exposure to the same level of FA. Distinct behaviours of NOB observed in batch tests during the study supported the reactor operational data and strongly suggested the adaptation of NOB under the FA stress. Furthermore, microbial community analysis revealed the underlying mechanism of the observed adaptation: the dominant NOB changed from Nitrospira to Candidatus Nitrotoga. It is for the first time shown that Ca. Nitrotoga are highly resistant to FA inhibition and inactivation in comparison to Nitrospira and Nitrobacter. In addition, while the Nitrosomonas genus was always the dominant ammonia-oxidizing bacteria (AOB) throughout the study, different shift in a species level was observed.
Collapse
Affiliation(s)
- Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yizhen Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
114
|
Yu L, Wang Y, Li R, Zhang R, Zhang X, Hua S, Peng D. The differential proliferation of AOB and NOB during natural nitrifier cultivation and acclimation with raw sewage as seed sludge. RSC Adv 2020; 10:28277-28286. [PMID: 35519145 PMCID: PMC9055716 DOI: 10.1039/d0ra05252c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
Nitrifier immigration from sewers to wastewater treatment systems is attracting increasing attention for understanding nitrifier community assembly mechanisms, and improving process modeling and operation. In this study, nitrifiers in raw sewage were cultivated and acclimated in a sequencing batch reactor (SBR) for 90 days to investigate the characteristics of the influent nitrifiers after immigration. During the experiment, specific nitrite utilization rate (SNUR) exceeded specific ammonia utilization rate (SAUR) when floc size reached 224 ± 46 μm, and nitrogen loss occurred at the same time. The ratio of nitrite oxidizing bacteria (NOB) to ammonia oxidizing bacteria (AOB) increased from 0.84 to 2.14 after cultivation. The Illumina MiSeq sequencing showed that the dominant AOB was Nitrosomonas sp. Nm84 and unidentified species, and the three most abundant Nitrospira were Nitrospira defluvii, Nitrospira calida, and unidentified Nitrospira spp. in both raw sewage and cultivated activated sludge. The shared reads of raw sewage and activated sludge were 48.76% for AOB and 89.35% for Nitrospira. These indicated that nitrifiers, especially NOB, immigrated from influent can survive and propagate in wastewater systems, which may be a significant hinder to suppress NOB in the application of advanced nitrogen remove process based on partial nitrification in the mainstream.
Collapse
Affiliation(s)
- Lifang Yu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Yu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Ren Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Ru Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Xingxiu Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Sisi Hua
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Dangcong Peng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| |
Collapse
|
115
|
Wang B, Wang Z, Wang S, Qiao X, Gong X, Gong Q, Liu X, Peng Y. Recovering partial nitritation in a PN/A system during mainstream wastewater treatment by reviving AOB activity after thoroughly inhibiting AOB and NOB with free nitrous acid. ENVIRONMENT INTERNATIONAL 2020; 139:105684. [PMID: 32247103 DOI: 10.1016/j.envint.2020.105684] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 05/16/2023]
Abstract
Starting up or recovering partial nitritation is a major challenge for achieving or maintaining stable partial nitritation/anammox (PN/A) during mainstream wastewater treatment. This study presents a novel strategy for recovering the nitrite pathway by selectively reviving ammonium oxidizing bacteria (AOB) after thoroughly inhibiting AOB and nitrite oxidizing bacteria (NOB) using free nitrous acid (FNA). A sequencing batch reactor was operated for PN/A to treat real domestic wastewater for 423 days, during which twice FNA treatment was temporarily implemented. Results showed that with a single 0.45 mg/L FNA treatment on flocculent sludge, the NO3--N concentration during the aerobic period showed an uptrend again and the partial nitritation performance was deteriorated. In contrast, 1.35 mg/L FNA treatment induced the inhibition of both AOB and NOB leading to regressive ammonium oxidation, but a subsequently higher DO (1.5 mg/L) and longer aeration duration recovered partial nitritation. For the relative abundances of the acquired biomass related to nitrogen conversion, Nitrosomonas, Nitrospira and Nitrolancea increased to 9.65%, 10.27% and 4.35%, respectively, at the beginning of the 1.35 mg/L FNA treatment, and Nitrospira and Nitrolancea decreased to 2.80% and 0.03% whereas Nitrosomonas declined to 8.71% after 76 days. Ca. Brocadia showed less resilience after the 1.35 mg/L FNA treatment, with the relative abundance decreasing from 13.38% to 0.62% due to insufficient nitrite. Molecular ecological network analysis indicates that among anammox taxa, Ca. Kuenenia and Ca. Brocadia formed important links with other N cycle processes. Moreover, the proposed strategy shows operational flexibility because it can be easily used to control NOB in mainstream PN/A applications offered by flocculent sludge systems.
Collapse
Affiliation(s)
- Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Zenghua Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xin Qiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Xiaofei Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Xuefan Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China.
| |
Collapse
|
116
|
Jiang H, Peng Y, Li X, Zhang F, Wang Z, Ren S. Advanced nitrogen removal from mature landfill leachate via partial nitrification-Anammox biofilm reactor (PNABR) driven by high dissolved oxygen (DO): Protection mechanism of aerobic biofilm. BIORESOURCE TECHNOLOGY 2020; 306:123119. [PMID: 32192962 DOI: 10.1016/j.biortech.2020.123119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
A novel partial nitrification-Anammox biofilm reactor (PNABR) operated under high dissolved oxygen (DO) with pre-anoxic - aerobic - anoxic operational mode was developed for efficient denitrogenation from mature landfill leachate. With DO concentration gradually increasing to 4.03 ± 0.03 mg/L, the ammonia oxidation rate (AOR) was enhanced to 25.8 mgNH4+-N/(L h), while nitrite oxidation bacteria (NOB) was inhibited effectively by alternating free ammonia (FA) and oxygen starvation. DO micro-distribution revealed that estimated 1900 μm of aerobic biofilm could protect anammox biofilm underneath from being inhibited by high DO. qPCR analysis further suggested that ammonia oxidation bacteria (AOB) abundance in whole biofilm was 6.12 × 109 gene copies/(g dry sludge), which was twice than found in the floc. Anammox bacteria accounted for 2.39% of total bacteria in whole biofilm, contributing 90.0% to nitrogen removal. Nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) finally reached 396.6 gN/(m3 d) and 96.1%, respectively.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
117
|
Du R, Cao S, Zhang H, Li X, Peng Y. Flexible Nitrite Supply Alternative for Mainstream Anammox: Advances in Enhancing Process Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6353-6364. [PMID: 32343566 DOI: 10.1021/acs.est.9b06265] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has attracted extensive attention as a potentially sustainable and economical municipal wastewater treatment process. However, its large-scale application is limited by unstable nitrite (NO2--N) production and associated excessive nitrate (NO3--N) residue. Thus, our study sought to evaluate an efficient alternative to the current nitritation-based anammox process substituting NO2--N supply by partial-denitrification (PD; NO3--N → NO2--N) under mainstream conditions. Ammonia (NH4+-N) was partly oxidized to NO3--N and removed via a PD coupled anammox (PD/A) process by mixing the nitrifying effluents with raw wastewater (NH4+-N of 57.87 mg L-1, COD of 176.02 mg L-1). Excellent effluent quality was obtained with< 5 mg L-1 of total nitrogen (TN) despite frequent temperature fluctuations (25.7-16.3 °C). The genus Thauera (responsible for PD) was the dominant denitrifiers (36.4%-37.4%) and coexisted with Candidatus Brocadia (anammox bacteria; 0.33%-0.46%). The efficient PD/A allowed up to 50% reduction in aeration energy consumption, 80% decrease in organic resource demand, and lower nitrous oxide (N2O) production compared to conventional nitrification/denitrification process. Our study demonstrates that coupling anammox with flexible NO2--N supply has great potential as a stable and efficient mainstream wastewater treatment.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hanyu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
118
|
Li X, Du R, Peng Y, Zhang Q, Wang J. Characteristics of sludge granulation and EPS production in development of stable partial nitrification. BIORESOURCE TECHNOLOGY 2020; 303:122937. [PMID: 32062316 DOI: 10.1016/j.biortech.2020.122937] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/14/2023]
Abstract
In this study, sequencing batch reactor (SBR) and aerobic upflow sludge bed reactor (AeUSB) were used to investigate the effects of sludge granulation on establishing partial nitrification (PN) process and explore the potential mechanism. The particle size was positively related to the NO2--N accumulating performance, satisfactory nitrite accumulation rate (NAR) of 96.4% and 77.3% were obtained with the appearance of micro-granules in SBR and AeUSB after day 105 and 83, respectively. To our knowledge, it is the first report describing the importance of extracellular polymeric substances (EPS) content and components, such as aromatic protein-like substances, by-product-like substances and special protein secondary structures (α-helices and 3-turn helices) for sludge granulation and even PN process. Quantitative microbial analysis suggested that ammonium oxidizing bacteria (AOB) predominated in nitrifying-bacterium in micro-granules system, guaranteeing a highly efficient PN process.
Collapse
Affiliation(s)
- Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jincheng Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
119
|
Duan H, Gao S, Li X, Ab Hamid NH, Jiang G, Zheng M, Bai X, Bond PL, Lu X, Chislett MM, Hu S, Ye L, Yuan Z. Improving wastewater management using free nitrous acid (FNA). WATER RESEARCH 2020; 171:115382. [PMID: 31855696 DOI: 10.1016/j.watres.2019.115382] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/06/2023]
Abstract
Free nitrous acid (FNA), the protonated form of nitrite, has historically been an unwanted substance in wastewater systems due to its inhibition on a wide range of microorganisms. However, in recent years, advanced understanding of FNA inhibitory and biocidal effects on microorganisms has led to the development of a series of FNA-based applications that improve wastewater management practices. FNA has been used in sewer systems to control sewer corrosion and odor; in wastewater treatment to achieve carbon and energy efficient nitrogen removal; in sludge management to improve the sludge reduction and energy recovery; in membrane systems to address membrane fouling; and in wastewater algae systems to facilitate algae harvesting. This paper aims to comprehensively and critically review the current status of FNA-based applications in improving wastewater management. The underlying mechanisms of FNA inhibitory and biocidal effects are also reviewed and discussed. Knowledge gaps and current limitations of the FNA-based applications are identified; and perspectives on the development of FNA-based applications are discussed. We conclude that the FNA-based technologies have great potential for enhancing the performance of wastewater systems; however, further development and demonstration at larger scales are still required for their wider applications.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Shuhong Gao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, United States
| | - Xuan Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xue Bai
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariella M Chislett
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
120
|
Liu W, Yin F, Yang D. Granules abrasion cause deterioration of nitritation in a mainstream granular sludge reactor with high loading rate. CHEMOSPHERE 2020; 243:125433. [PMID: 31995883 DOI: 10.1016/j.chemosphere.2019.125433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Biomass detachment generally occurred in granular sludge systems. However, little is known about the influence of biomass detachment on the granules performing nitritation. Here, a granular sludge reactor with high loading rates (6.8 ± 0.4 kg N·m-3·d-1) was achieved at mainstream conditions. Though the low ratio control strategy was maintained, the deterioration of nitritation performance was observed after the further increase of air supply rates to 3.4 ± 0.2 L min-1. In parallel with that, the loss of AOB and the proliferation of NOB was observed. Additionally, with the decrease of granules size and biomass concentration, the incomplete stratification of nitrifiers in the granules was confirmed by batch tests. All these results suggested that granules abrasion under the high shear stress conditions caused the detachment of external AOB and hence resulted in the deteriorated stratified structure of nitrifiers, which subsequently contributed to the proliferation of the internal NOB and the deterioration of nitritation. These findings highlight that the granules abrasion should be well controlled in the development of high-rate nitritation process with granular sludge.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Fangfang Yin
- Suzhou Jing Yan Environmental Protection Technology Co. Ltd, Suzhou, 215009, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
121
|
Huang S, Zhu Y, Zhang G, Lian J, Liu Z, Zhang L, Tian S. Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135985. [PMID: 31841915 DOI: 10.1016/j.scitotenv.2019.135985] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound technology has attracted increasing attention in the field of sewage sludge treatment. This study investigated the nitrite accumulation ratio (NAR) and microbial characteristics of the partial nitrification (PN) process in a sequencing batch reactor employing ultrasonic treatment (ultrasound density = 0.25 W/mL, irradiation time = 10 min). PN was achieved over 73 days with a NAR above 85% under ambient temperatures. A low dissolved oxygen (DO) environment was generated in the reactor by enhancing the oxygen utilization rate of ammonia-oxidizing bacteria (AOB). Additionally, the application of long-term ultrasonic treatment led to the enhancement of the dominance of the Nitrosomonas genus of AOB, while populations of the Nitrospira genus of nitrite-oxidizing bacteria (NOB) were eradicated. At the same time, the activities of the aerobic denitrifying bacteria Thauera, Terrimonas, Defluviimonas, and Thermomonas were enhanced and their relative abundance was increased. Overall, the results suggest that ultrasonic treatment can enhance AOB activity and generate a low DO environment that facilitates effective PN.
Collapse
Affiliation(s)
- Shuchang Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yichun Zhu
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Junfeng Lian
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zuwen Liu
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shuai Tian
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
122
|
Zhang Z, Zhang Y, Chen Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. BIORESOURCE TECHNOLOGY 2020; 298:122444. [PMID: 31784254 DOI: 10.1016/j.biortech.2019.122444] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/12/2023]
Abstract
To maximize energy recovery, carbon capture followed by shortcut nitrogen removal is becoming the most promising route in biological wastewater treatment. As the intermediate of microbial denitrification, nitrite could serve as a substrate for anammox bacteria, while N2O is a combustion promoter that can increase 37% energy release from CH4 than O2. Therefore, the important advances in partial denitrification (PD) that produces nitrite or N2O as the main product using inorganic or organic electron donors were critically reviewed. Specifically, the enrichment strategies of PD microorganisms were obtained by analyzing the selection pressures, metabolism, physiology, and microbiology of these microorganisms. Furthermore, some prospective and promising processes integrating PD microorganisms and the bottlenecks of current applications were discussed. The obtained knowledge would provide new insights into the upgrading of current WWTPs involving commitment to achieve nitrogen removal from wastewaters more economically and environmentally friendly.
Collapse
Affiliation(s)
- Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
123
|
Li J, Xu K, Liu T, Bai G, Liu Y, Wang C, Zheng M. Achieving Stable Partial Nitritation in an Acidic Nitrifying Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:456-463. [PMID: 31790214 DOI: 10.1021/acs.est.9b04400] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Partial nitritation providing a suitable effluent for subsequent anammox is a critical step in a two-stage autotrophic nitrogen removal system. This study demonstrates an innovative approach for attaining partial nitritation in an acidic bioreactor operating at a slightly low pH (i.e., 5-6). This approach is based on our hypothesis in this study that acid-tolerant ammonia-oxidizing bacteria (AOB) can produce nitrite and protons to self-sustain free nitrous acid (FNA, NO2- + H+ ↔ HNO2) at a parts per million level, as an inhibitor of nitrite-oxidizing bacteria (NOB). With influent nitrogen of about 200 mg/L and operating conditions of high dissolved oxygen, long sludge retention time, and moderate temperature, a lab-scale acidic bioreactor with FNA up to 2 mg of HNO2-N/L successfully established stable nitrite accumulation in the effluent for 200 days, with an average ratio [NO2-/(NO2- + NO3-)] exceeding 95%. A 16S rRNA amplicon sequencing analysis showed that Nitrosospira was the dominant AOB in the biomass of the bioreactor, while Nitrosomonas and Nitrospira, two typical nitrifying genera in neutral wastewater treatment, both disappeared after the startup of partial nitritation. Kinetic characterization revealed that Nitrosospira had a substrate affinity of 11.4-16.5 mg of total ammonia (NH4+ + NH3)/L. It also revealed that less than 3.5 mg of HNO2-N/L FNA did not inhibit AOB activity significantly. Acidic operation is economically attractive because it can be achieved via acidophilic ammonia oxidation without adding chemical acid. However, hazardous gas, nitric oxide (NO), should be removed from gas produced by acidic nitrifying bioreactors.
Collapse
Affiliation(s)
- Jiyun Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Kangning Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tingsheng Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ge Bai
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
124
|
Yu H, Tian Z, Zuo J, Song Y. Enhanced nitrite accumulation under mainstream conditions by a combination of free ammonia-based sludge treatment and low dissolved oxygen: reactor performance and microbiome analysis. RSC Adv 2020; 10:2049-2059. [PMID: 35494565 PMCID: PMC9048193 DOI: 10.1039/c9ra07628j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022] Open
Abstract
Partial nitritation under mainstream conditions is one of the major bottlenecks for the application of deammonification processes to municipal wastewater treatment plants. This study aimed at evaluating the combination effect of a side-stream free ammonia (FA) treatment and low dissolved oxygen (0.2 ± 0.1 mg L−1) on inhibiting nitrite oxidizing bacteria (NOB) from enhancing nitrite accumulation in long-term lab-scale experiments. Two continuous floccular sludge reactors treating low-strength synthetic wastewater (60 mg N–NH4+ L−1 without COD) with a fixed nitrogen loading rate of 0.22 ± 0.03 g N per L per day were operated in a varied temperature range of 7–31 °C, with one acting as the experimental reactor and the other as the control. Side-stream sludge treatment with a stepwise elevation of FA concentration (65.2–261.1 mg NH3 L−1) was carried out every day in the experimental reactor; the nitrite accumulation ratio (NAR, (NO2–N/(NO2−–N + NO3−–N) × 100%)) in the experimental reactor was always about twice that in the control one. Quantitative PCR (q-PCR) and high-throughput sequencing analyses showed the dominant NOB was mostly Nitrobacter, while there was an alternating trend between Nitrobacter and Nitrospira. Even though the whole microbial communities of each experimental stage between the two reactors were relatively clustered due to an incomplete NOB washout, three abundant metabolisms (amino acid metabolism, pyruvate metabolism and nitrogen metabolism) and key functional genes of nitrification predicted by PICRUSt in the experimental reactor were enriched, providing a better understanding of nitrite accumulation. These results have demonstrated that the positive hybrid effects of FA side-stream sludge treatment and a low DO could enhance nitrite accumulation. It is expected that a complete washout of NOB would be achieved after further process optimization. An introduction of the combination of side-stream sludge treatment using FA and low DO could more effectively enhance nitrite accumulation than single low DO.![]()
Collapse
Affiliation(s)
- Heng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Zhiyong Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Department of Urban Water Environmental Research
- Beijing 100012
- China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Department of Urban Water Environmental Research
- Beijing 100012
- China
| |
Collapse
|
125
|
Li J, Zhang L, Liu J, Lin J, Peng Y. Hydroxylamine addition and real-time aeration control in sewage nitritation system for reduced start-up period and improved process stability. BIORESOURCE TECHNOLOGY 2019; 294:122183. [PMID: 31683455 DOI: 10.1016/j.biortech.2019.122183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Sewage nitritation is a promising process for nitrogen removal, but its practical application is limited by long start-up period and unstable operation. In this study, hydroxylamine (NH2OH) addition and real-time aeration control strategies were adopted for the promotion of sewage nitritation in a sequencing batch reactor. Initially, 4.5 mg/L NH2OH was added into reactor every 24 h to establish nitritation, increasing the nitrite accumulation ratio (NAR) from 1.7% to 93% in 19 d. In the following period, NH2OH addition was stopped and nitritation remained stable over 55 d, with NAR of 97% by real-time aeration control. The aeration duration was determined by characteristic points on pH curve. The main genera of nitrite oxidizing bacteria, Nitrobacter and Nitrospira, were both eliminated from the system, supporting the long-term stability of nitritation. Overall, NH2OH addition and real-time aeration control is an excellent strategy for establishing and maintaining effective sewage nitritation.
Collapse
Affiliation(s)
- Jia Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Beijing Capital Company Limited, Beijing 100044, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Liu
- Beijing Capital Company Limited, Beijing 100044, China
| | - Jia Lin
- Beijing Capital Company Limited, Beijing 100044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
126
|
Zhang M, Wang S, Ji B, Liu Y. Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:393-401. [PMID: 31351283 DOI: 10.1016/j.scitotenv.2019.07.293] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The mainstream deammonification has been believed as a viable technology for the energy-neutral municipal wastewater treatment, which can be realized through two approaches known as partial nitrification-anammox (PN/AMX) and partial denitrification-anammox (PDN/AMX). However, large-scale applications of these deammonification processes for municipal wastewater treatment have been rarely reported thus far. Given such a situation, this review examined the mainstream PN/AMX and PDN/AMX processes with the focus on their engineering feasibility, economic viability and potential challenges. It was revealed that soluble COD and stable nitrite production were the main challenges for mainstream deammonification. Pre-capture of COD was essential for mitigating the competition between denitrifiers and anammox bacteria on nitrite, while NOB suppression and partial denitrification control to nitrite stage were critical issues for stable nitrite production in PN and PDN processes respectively. Compared to nitrification-denitrification, the unit oxygen demand for nitrogen removal in PN/AMX and PDN/AMX could be reduced by 57.3% and 47.7%, while the sludge production could also be cut off by 83.7% and 66.3% in PN/AMX and PDN/AMX respectively. These clearly showed the greater economic viability and environmental sustainability of PN/AMX against PDN/AMX. Consequently, more effort is needed to improve the engineering feasibility of large-scale mainstream deammonification for municipal wastewater treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
127
|
Zheng M, Duan H, Dong Q, Ni BJ, Hu S, Liu Y, Huang X, Yuan Z. Effects of ultrasonic treatment on the ammonia-oxidizing bacterial (AOB) growth kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:629-635. [PMID: 31301503 DOI: 10.1016/j.scitotenv.2019.06.435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound has in the past few decades found applications in a variety of disciplines including chemistry, medicine, physics, and to a much less extent microbiology. Our previous studies found that ultrasonic treatment increases the activity of ammonia-oxidizing bacteria (AOB) while suppressing nitrite-oxidizing bacteria (NOB), resulting in beneficial effects in wastewater treatment. In this study, the kinetic and microbiological features of nitrifying microorganisms in activated sludge intermittently treated with ultrasound were investigated to gain an improved understanding of the mechanism involved in ultrasound-induced stimulation of AOB kinetics. The nitrifying microorganisms were initially enriched over 100 days in a laboratory sequential batch reactor (SBR). Ultrasonic treatment of the sludge was then applied with the treatment time in each 12 h SBR cycle progressively increased from 4 to 24 min. Application of the treatment for 21 days led to a doubled maximum specific ammonia oxidation rate, and also the enhanced dominance of known AOB Nitrosomonas genus in the biomass. This stimulatory effect is well described by a modified enzyme catalyzed reaction model, showing a good linear relationship between the natural logarithm value of μmax,AOB and the applied ultrasonic energy density. This result suggests that ultrasonic treatment likely reduced the activation energy of key enzymes involved in ammonium oxidation.
Collapse
Affiliation(s)
- Min Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiguo Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
128
|
Duan H, Ye L, Wang Q, Zheng M, Lu X, Wang Z, Yuan Z. Nitrite oxidizing bacteria (NOB) contained in influent deteriorate mainstream NOB suppression by sidestream inactivation. WATER RESEARCH 2019; 162:331-338. [PMID: 31288143 DOI: 10.1016/j.watres.2019.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
Sidestream sludge treatment approaches have been developed in recent years to achieve mainstream nitrite shunt or partial nitritation, where NOB are selectively inactivated by biocidal factors such as free nitrous acid (FNA) or free ammonium (FA) in a sidestream reactor. The existence of NOB in raw wastewater has been increasingly realized and could pose critical challenge to stable NOB suppressions in those systems. This study, for the first time, evaluated the impact of influent NOB on the NOB suppressions in a mainstream nitrite shunt system achieved through sidestream sludge treatment. An over 500-day sequential batch reactor operation with six experimental phases rigorously demonstrated the negative effects of influent NOB on mainstream NOB control. Continuously seeding of NOB contained in influent stimulated NOB community shifts, leading to different extents of ineffective NOB suppression. The role of primary wastewater treatment in NOB removal from raw wastewater was also investigated. Results suggest primary settling and High Rate Activated Sludge system could remove a large part of NOB contained in raw wastewater. Primary treatment for raw wastewater is necessary for ensuring stable mainstream NOB suppressions.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Qilin Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiyao Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
129
|
Du R, Peng Y, Ji J, Shi L, Gao R, Li X. Partial denitrification providing nitrite: Opportunities of extending application for anammox. ENVIRONMENT INTERNATIONAL 2019; 131:105001. [PMID: 31336256 DOI: 10.1016/j.envint.2019.105001] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 05/26/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has been extensively investigated for cost-efficient nitrogen removal from wastewater. However, the major issues of nitrate (NO3--N) residue and instability in the current combination of nitritation and anammox process necessitates being addressed efficiently. The recently proposed partial-denitrification (PD), terminating NO3--N reduction to nitrite (NO2--N), has been regarded as a promising alternative of NO2--N supplying for anammox bacteria. Given the engineering practices, the steadily high NO2--N production, alleviating organic inhibition, and reducing greenhouse gas of PD process offers a viable and efficient approach for anammox implementation. Moreover, it allows for the extending applications of anammox process due to the NO3--N removal availability. Here we comprehensively review the important new outcomes and discuss the emerging applications of PD-based anammox including the process development, mechanism understanding, and future trends. Significant greater stability and enhanced nitrogen removal efficiency have been demonstrated in the novel integrations of PD and anammox process, indicating a broad perspective in dealing with the mainstream municipal sewage, ammonia-rich streams, and industrial NO3--N contained wastewater. Furthermore, researches are still needed for the predictable and controllable strategies, along with the detailed microbiological information in future study. Overall, the achievement of PD process provides unique opportunity catalyzing the engineering applications of energy-efficient and environmental-friendly wastewater treatment via anammox technology.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Jiantao Ji
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
130
|
Jiang C, Xu S, Wang R, Feng S, Zhou S, Wu S, Zeng X, Wu S, Bai Z, Zhuang G, Zhuang X. Achieving efficient nitrogen removal from real sewage via nitrite pathway in a continuous nitrogen removal process by combining free nitrous acid sludge treatment and DO control. WATER RESEARCH 2019; 161:590-600. [PMID: 31238224 DOI: 10.1016/j.watres.2019.06.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 05/03/2023]
Abstract
The incomplete denitrification due to insufficient carbon resource in the wastewater treatment plants (WWTPs) resulted in low nitrogen removal efficiency, which has become a widespread problem in China and all around the world. Reducing the requirement of carbon source by manipulating the nitrogen removal pathway from conventional nitrification-denitrification to partial nitrification-denitrification is considered as an efficient solution. In this article, the feasibility of combining free nitrous acid (FNA) sludge treatment and DO control to achieve partial nitrification-denitrification in a continuous flow system (aerobic-anoxic-oxic process) using real sewage was assessed. The nitrite pathway was rapidly established in the experimental reactor within 23 days by simultaneously lowering DO concentration in aerobic zone to 0.5 mg/L and treating 30% of the activated sludge per day from the reactor in the FNA sludge treatment unit with FNA concentration of 1.2 mg N/L and exposure time of 18 h. The nitrite oxidizing bacteria (NOB) were efficiently washed out and the partial nitrification process could maintain stable in the experimental reactor even after cease of FNA treatment and increase of DO concentrations in the main stream to 1.5 mg/L, with an average nitrite accumulation rate of above 78%. In contrast, the nitrite accumulation rate was just around 58% during low DO concentrations phase and declined quickly to below 1% after the DO concentrations were increased to 1.5 mg/L in the control reactor which only utilized single strategy of DO control to achieve nitrite pathway. Moreover, a better sludge settleability and nitrogen removal performance could also be realized in the experimental reactor. The results of nitrifying bacteria activities and quantities detection demonstrated that although NOB activities in both reactors were effectively inhibited, a certain amount of NOB (6.26 × 106 copies/g MLSS) were remained in the control reactor and multiplied rapidly as the DO concentration increased, which might break down the partial nitrification. Furthermore, the quantity results of nitrogen cycling related functional genes showed that the increment of the ratio of nitrate reduced bacteria to total bacteria was 0.35% larger than that of nitric oxide bacteria in the control reactor, while those two ratios increased similarly by 1.11% and 1.12% in the experimental reactor, respectively, which might be one potential cause of reduction in N2O emission of nitrite pathway achieved by FNA-based technologies.
Collapse
Affiliation(s)
- Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shugeng Feng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sining Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shimin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangui Zeng
- Shenzhen DiDa Water Engineering Limited Company, Shenzhen, 518116, China
| | - Shanghua Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
131
|
Partial nitritation at elevated loading rates: design curves and biofilm characteristics. Bioprocess Biosyst Eng 2019; 42:1809-1818. [PMID: 31350606 DOI: 10.1007/s00449-019-02177-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
There is a need to develop low operational intensity, cost-effective, and small-footprint systems to treat wastewater. Partial nitritation has been studied using a variety of control strategies, however, a gap in passive operation is evident. This research investigates the use of elevated loading rates as a strategy for achieving low operational intensity partial nitritation in a moving bed biofilm reactor (MBBR) system. The effects of loading rates on nitrification kinetics and biofilm characteristics were determined at elevated, steady dissolved oxygen concentrations between 5.5 and 7.0 mg O2/L and ambient temperatures between 19 and 21 °C. Four elevated loading rates (3, 4, 5 and 6.5 g NH4+-N/m2 days) were tested with a distinct shift in kinetics being observed towards nitritation at elevated loadings. Complete partial nitritation (100% nitrite production) was achieved at 6.5 g NH4+-N/m2 days, likely due to thick biofilm (572 µm) and elevated NH4+-N load, which resulted in suppression of nitrite oxidation.
Collapse
|
132
|
Xu Q, Liu X, Yang G, Wang D, Wang Q, Liu Y, Li X, Yang Q. Free nitrous acid-based nitrifying sludge treatment in a two-sludge system obtains high polyhydroxyalkanoates accumulation and satisfied biological nutrients removal. BIORESOURCE TECHNOLOGY 2019; 284:16-24. [PMID: 30925419 DOI: 10.1016/j.biortech.2019.03.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
A novel strategy to achieve substantial polyhydroxyalkanoates (PHA) accumulation in waste activated sludge (WAS) was developed, which was conducted in a two-sludge system consisted of an anaerobic/anoxic/oxic reactor (AAO-SBR) and a nitrifying reactor (N-SBR), where the nitrifying-sludge was treated by free nitrous acid (FNA). Initially, 0.98 ± 0.09 and 1.46 ± 0.10 mmol-c/g VSS of PHA were respectively determined in the control-SBR and AAO-SBR. When 1/16 of nitrifying sludge was daily treated with 1.49 mg N/L FNA for 24 h, ∼46.5% of nitrite was accumulated in the N-SBR, ∼2.43 ± 0.12 mmol-c/g VSS of PHA was accumulated in WAS in AAO-SBR without deteriorating nutrient removal. However, nutrient removal of control-SBR was completely collapsed after implementing the same FNA treatment. Further investigations revealed that the activity and abundance of nitrite oxidizing bacteria (NOB) was decreased significantly after FNA treatment. Finally, sludge with high PHA level to generate more methane was confirmed.
Collapse
Affiliation(s)
- Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guojing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|