101
|
You C, Huang R, Wei X, Zhu Z, Zhang YHP. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol 2017; 2:208-218. [PMID: 29318201 PMCID: PMC5655348 DOI: 10.1016/j.synbio.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Two natural nicotinamide-based coenzymes (NAD and NADP) are indispensably required by the vast majority of oxidoreductases for catabolism and anabolism, respectively. Most NAD(P)-dependent oxidoreductases prefer one coenzyme as an electron acceptor or donor to the other depending on their different metabolic roles. This coenzyme preference associated with coenzyme imbalance presents some challenges for the construction of high-efficiency in vivo and in vitro synthetic biology pathways. Changing the coenzyme preference of NAD(P)-dependent oxidoreductases is an important area of protein engineering, which is closely related to product-oriented synthetic biology projects. This review focuses on the methodology of nicotinamide-based coenzyme engineering, with its application in improving product yields and decreasing production costs. Biomimetic nicotinamide-containing coenzymes have been proposed to replace natural coenzymes because they are more stable and less costly than natural coenzymes. Recent advances in the switching of coenzyme preference from natural to biomimetic coenzymes are also covered in this review. Engineering coenzyme preferences from natural to biomimetic coenzymes has become an important direction for coenzyme engineering, especially for in vitro synthetic pathways and in vivo bioorthogonal redox pathways.
Collapse
Affiliation(s)
- Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yi-Heng Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
102
|
Thompson MP, Turner NJ. Two-Enzyme Hydrogen-Borrowing Amination of Alcohols Enabled by a Cofactor-Switched Alcohol Dehydrogenase. ChemCatChem 2017. [DOI: 10.1002/cctc.201701092] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Matthew P. Thompson
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
103
|
A genetically encoded tool for manipulation of NADP +/NADPH in living cells. Nat Chem Biol 2017; 13:1088-1095. [PMID: 28805804 PMCID: PMC5605434 DOI: 10.1038/nchembio.2454] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023]
Abstract
NADH and NADPH are redox coenzymes broadly required for energy metabolism, biosynthesis and detoxification. Despite detailed knowledge of specific enzymes and pathways that utilize these coenzymes, a holistic understanding of the regulation and compartmentalization of NADH and NADPH-dependent pathways is lacking, in part because of a lack of tools with which to investigate them in living cells. We previously reported the use of the naturally occurring Lactobacillus brevis H2O-forming NADH oxidase (LbNOX) as a genetic tool for manipulation of the NAD+/NADH ratio in human cells. Here we present TPNOX (triphosphopyridine nucleotide oxidase), a rationally designed and engineered mutant of LbNOX that is strictly specific towards NADPH. We characterize the effects of TPNOX expression on cellular metabolism and use it in combination with LbNOX to show how the redox states of mitochondrial NADPH and NADH pools are connected.
Collapse
|
104
|
Kumar H, Nguyen QT, Binda C, Mattevi A, Fraaije MW. Isolation and characterization of a thermostable F 420:NADPH oxidoreductase from Thermobifida fusca. J Biol Chem 2017; 292:10123-10130. [PMID: 28411200 DOI: 10.1074/jbc.m117.787754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
F420H2-dependent enzymes reduce a wide range of substrates that are otherwise recalcitrant to enzyme-catalyzed reduction, and their potential for applications in biocatalysis has attracted increasing attention. Thermobifida fusca is a moderately thermophilic bacterium and holds high biocatalytic potential as a source for several highly thermostable enzymes. We report here on the isolation and characterization of a thermostable F420: NADPH oxidoreductase (Tfu-FNO) from T. fusca, the first F420-dependent enzyme described from this bacterium. Tfu-FNO was heterologously expressed in Escherichia coli, yielding up to 200 mg of recombinant enzyme per liter of culture. We found that Tfu-FNO is highly thermostable, reaching its highest activity at 65 °C and that Tfu-FNO is likely to act in vivo as an F420 reductase at the expense of NADPH, similar to its counterpart in Streptomyces griseus We obtained the crystal structure of FNO in complex with NADP+ at 1.8 Å resolution, providing the first bacterial FNO structure. The overall architecture and NADP+-binding site of Tfu-FNO were highly similar to those of the Archaeoglobus fulgidus FNO (Af-FNO). The active site is located in a hydrophobic pocket between an N-terminal dinucleotide binding domain and a smaller C-terminal domain. Residues interacting with the 2'-phosphate of NADP+ were probed by targeted mutagenesis, indicating that Thr-28, Ser-50, Arg-51, and Arg-55 are important for discriminating between NADP+ and NAD+ Interestingly, a T28A mutant increased the kinetic efficiency >3-fold as compared with the wild-type enzyme when NADH is the substrate. The biochemical and structural data presented here provide crucial insights into the molecular recognition of the two cofactors, F420 and NAD(P)H by FNO.
Collapse
Affiliation(s)
- Hemant Kumar
- From the Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Quoc-Thai Nguyen
- From the Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy.,Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City, 41 Dinh Tien Hoang St., Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam, and
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Marco W Fraaije
- From the Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands,
| |
Collapse
|