101
|
Kameta N, Ding W, Masuda M. Glycolipid nanotube templates for the production of hydrophilic/hydrophobic and left/right-handed helical polydiacetylene nanotubes. Chem Commun (Camb) 2021; 57:464-467. [PMID: 33326541 DOI: 10.1039/d0cc07387c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulation and preorganization of diacetylene monomers in glycolipid nanotubes allows for the production of polydiacetylene nanotubes with hydrophilic/hydrophobic surfaces and left/right-handed helicities.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | |
Collapse
|
102
|
Oliveira IS, Machado RL, Araújo MJ, Gomes AC, Marques EF. Stimuli-Sensitive Self-Assembled Tubules Based on Lysine-Derived Surfactants for Delivery of Antimicrobial Proteins. Chemistry 2021; 27:692-704. [PMID: 32830362 DOI: 10.1002/chem.202003320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/06/2022]
Abstract
Drug delivery vectors based on amphiphiles have important features such as versatile physicochemical properties and stimuli-responsiveness. Amino acid-based surfactants are especially promising amphiphiles due to their enhanced biocompatibility compared to conventional surfactants. They can self-organize into micelles, vesicles and complex hierarchical structures, such as fibers, twisted and coiled ribbons, and tubules. In this work, we investigated the self-assembly and drug loading properties of a family of novel anionic double-tailed lysine-derived surfactants, with variable degree of tail length mismatch, designated as mLys10 and 10Lysn, where m and n are the number of carbon atoms in the tails. These surfactants form tubular aggregates with assorted morphologies in water that undergo gelation due to dense entanglement, as evidenced by light and electron microscopy. Lysozyme (LZM), an enzyme with antimicrobial properties, was selected as model protein for loading. After the characterization of the interfacial properties and phase behavior of the amphiphiles, the LZM-loading ability of the tubules was investigated, under varying experimental conditions, to assess the efficiency of the aggregates as pH- and temperature-sensitive nanocarriers. Further, the toxicological profile of the surfactants per se and surfactant/LZM hydrogels was obtained, using human skin fibroblasts (BJ-5ta cell line). Overall, the results show that the tubule-based hydrogels exhibit very interesting properties for the transport and controlled release of molecules of therapeutic interest.
Collapse
Affiliation(s)
- Isabel S Oliveira
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Rui L Machado
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Araújo
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Andreia C Gomes
- CBMA-Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
103
|
Ceccacci F, Sennato S, Rossi E, Proroga R, Sarti S, Diociaiuti M, Casciardi S, Mussi V, Ciogli A, Bordi F, Mancini G, Bombelli C. Synthesis and Characterization of Mitochondria-Targeted Triphenylphosphonium Bolaamphiphiles. Methods Mol Biol 2021; 2275:27-47. [PMID: 34118030 DOI: 10.1007/978-1-0716-1262-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this chapter we describe: (1) the procedure for the synthesis of four single chain bolaamphiphiles, displaying chains of 12, 16, 20 and 30 methylene units and triphenylphosphonium moieties as headgroups (TPP1-TPP4); (2) the methods used to characterize TPP1-TPP4 spontaneous aggregation in aqueous solution. We illustrate the determination of Krafft point and cac by conductivity measurements and the procedures used to investigate dimensions, morphology, and stability by dynamic and dielectrophoretic laser light scattering, dialysis, transmission electron microscopy, and Raman spectroscopy measurements.
Collapse
Affiliation(s)
- Francesca Ceccacci
- CNR-ISB, Sede Secondaria di Roma-Meccanismi di Reazione c/o Department of Chemistry, Sapienza University, Roma, Italy
| | - Simona Sennato
- CNR-ISC-UOS Sapienza c/o Physics Department, Sapienza University, Roma, Italy
| | - Edoardo Rossi
- Department of Chemistry, Sapienza University, Roma, Italy
| | | | - Stefano Sarti
- Physics Department, Sapienza University, Roma, Italy
| | - Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Roma, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy
| | - Valentina Mussi
- CNR-IMM Institute of Microelectronics and Microsystems, Roma, Italy
| | - Alessia Ciogli
- Department of Chemistry and Technology of Drug, Sapienza University, Roma, Italy
| | | | | | - Cecilia Bombelli
- CNR-ISB, Sede Secondaria di Roma-Meccanismi di Reazione c/o Department of Chemistry, Sapienza University, Roma, Italy.
| |
Collapse
|
104
|
Wagalgave SM, Aljabri MD, Bhamidipati K, Shejule DA, Nadimetla DN, Al Kobaisi M, Puvvada N, Bhosale SV, Bhosale SV. Characteristics of the pH-regulated aggregation-induced enhanced emission (AIEE) and nanostructure orchestrate via self-assembly of naphthalenediimide–tartaric acid bola-amphiphile: role in cellular uptake. NEW J CHEM 2021. [DOI: 10.1039/d0nj05845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A naphthalene diimide–tartaric acid conjugate was successfully synthesized, and the influence of tartaric acid on the self-assembly of the NDI–TA scaffold was explored.
Collapse
Affiliation(s)
- Sopan M. Wagalgave
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | - Mahmood D. Aljabri
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Keerti Bhamidipati
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Deepak A. Shejule
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Dinesh N. Nadimetla
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Mohammad Al Kobaisi
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Nagaprasad Puvvada
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | | |
Collapse
|
105
|
Das S, Roy S. 6-acylamino nicotinic acid-based hydrogelators applicable in phase selective gelation, reproducible mat formation and toxic dye removal. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
106
|
Jia F, Li Y, Lu J, Deng X, Wu Y. Amphiphilic Block Copolymers-Guided Strategies for Assembling Nanoparticles: From Basic Construction Methods to Bioactive Agent Delivery Applications. ACS APPLIED BIO MATERIALS 2020; 3:6546-6555. [PMID: 35019385 DOI: 10.1021/acsabm.0c01039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over recent decades, amphiphilic block copolymers (ABCs) comprising both hydrophobic and hydrophilic segments within their covalently bound structure have been extensively investigated from basic science to various biomedical applications. Nanoparticles (NPs) self-assembled from ABCs have been a center of interest for controlled delivery of various therapeutic drugs, genes, proteins, and imaging agents for decades and continue to attract attention owing to their unique physical and biological properties. In this Spotlight on Applications, we review and summarize recent optimized preparation techniques in the fabrication of "drugs"-loaded NPs from ABCs based on our group progress. These techniques can be categorized into four types including (i) emulsification and solvent evaporation, (ii) double emulsification and solvent evaporation, (iii) nanoprecipitation, and (iv) film dispersion. By selecting proper techniques, bioactive agents with different properties could be incorporated into the NPs either alone or in a combination pattern. We analyze the parameters of various techniques and specifically we highlight the improvements on the improved techniques to simultaneously coload both hydrophilic/hydrophobic drugs and therapeutic nucleic acids in the single NPs. These techniques will allow researchers to select proper methods in designing "drugs"-loaded NPs from ABCs.
Collapse
Affiliation(s)
- Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
107
|
Minakawa M, Nakagawa M, Wang KH, Imura Y, Kawai T. Controlling Helical Pitch of Chiral Supramolecular Nanofibers Composed of Two Amphiphiles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Muneharu Minakawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Nakagawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
108
|
Wang L, Zhu Q, Bai Y. Transition of Ultrathick Polyamide Tubes into Vesicles with Great Stability. Macromol Rapid Commun 2020; 42:e2000481. [PMID: 33047435 DOI: 10.1002/marc.202000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Indexed: 11/11/2022]
Abstract
This work reports on the transition of a polyamide ultrathick wall microtubes to microvesicles through self-assembly. An amphiphilic polyamide is synthesized first by the solution polycondensation of sodium isophthalate-5-sulfonate (SIPA) and poly(propylene glycol) bis(2-aminopropyl ether) 2000. Then, its self-assembly in aqueous solution is investigated through direct hydration. The size and morphology of the self-assemblies is investigated by transmission electron microscope (TEM), scanning electron microscope (SEM), atomic force microscope (AFM), and optical microscope (OM) measurements. The result shows that the as-prepared polyamide first self-assembles to thick walled tubes, then these tubes can gradually evolve to ultrathick wall microvesicles with an unusually thick membrane above 330 nm. Both the transition pathway and the mechanism are investigated in micromicroscopy. Most importantly, the microvesicles show great thermal and chemical stability. The novel superstable self-assembly structures as well as the transition mechanism presented here offer a promising perspective for the application in the scope of the biological membrane movements and nanoelectromechanics in medical devices.
Collapse
Affiliation(s)
- Lipeng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qing Zhu
- Institute of chemical materials, China Academy of Engineering Physics, Mianyang, 621999, P. R. China
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.,Wuxi HIT New Material Research Institute Co., Ltd, Wuxi, 214183, P. R. China
| |
Collapse
|
109
|
Arumugaperumal R, Shellaiah M, Srinivasadesikan V, Awasthi K, Sun KW, Lin MC, Ohta N, Chung WS. Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45222-45234. [PMID: 32985177 DOI: 10.1021/acsami.0c14107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dual-emissive tetraphenylethene (TPE) and pyrene-containing amphiphilic molecules are of great interest because they can be integrated to form stimuli responsive materials with various biological applications. Herein, we report the study of mechanically interlocked molecules (MIMs) with aggregation-induced static excimer emission (AISEE) property through a series of TPE and pyrene-based amphiphilic [2]rotaxanes, where t-butylcalix[4]arene with hydrophobic nature was used as the macrocycle. Evidently, by adorning TPE and pyrene units in [2]rotaxanes P1, P2, P1-b, and P2-b, they display remarkable emission bands in 70% of water fraction (fw) in tetrahydrofuran (THF)/water mixture, which could be attributed to the restricted intramolecular rotation of phenyl groups, whereas prominent blue-shifted excimer emission of pyrene started to appear as fw reached 80% for P1 and 90% for P1-b, P2, and P2-b, which was ascribed to the favorable π-π stacking and hydrophobic interactions of the pyrene rings that enabled their static excimer formation. The well-defined distinct amphiphilic nanostructures of [2]rotaxanes including hollowspheres, mesoporous nanostructures, spheres, and network linkages can be driven smoothly depending on the molecular structures and their aggregated states in THF/water mixture. These fascinating diversiform nanostructures were mainly controlled by the skillful manner of reversible molecular shuttling of t-butylcalix[4]arene macrocycle and also the interplay of multinoncovalent interactions. To further understand the aggregation capabilities of [2]rotaxanes, the human lung fibroblasts (MRC-5) living cell incubated with either P1, P2, P1-b, or P2-b was studied and monitored by confocal laser scanning microscopy. The AISEE property was achieved at an astonishing level by integrating TPE and pyrene to MIM-based reversible molecular switching [2]rotaxanes; furthermore, distinct nanostructures, especially hollowspheres and mesoporous nanostructures, were observed, which are rarely reported in the literature but are highly desirable for future applications.
Collapse
Affiliation(s)
- Reguram Arumugaperumal
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Muthaiah Shellaiah
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Venkatesan Srinivasadesikan
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Division Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Ming-Chang Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
110
|
Henderson WR, Castellano RK. Supramolecular polymerization of chiral molecules devoid of chiral centers. POLYM INT 2020. [DOI: 10.1002/pi.6111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
111
|
Castelletto V, Seitsonen J, Ruokolainen J, Piras C, Cramer R, Edwards-Gayle CJC, Hamley IW. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem Commun (Camb) 2020; 56:11977-11980. [PMID: 33033814 DOI: 10.1039/d0cc04299d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The designed arginine-rich surfactant-like peptide R3L12 (arginine3-leucine12) is shown to form a remarkable diversity of self-assembled nanostructures in aqueous solution, depending on pH, including nanotubes, mesh-like tubular networks in three-dimensions and square planar arrays in two-dimensions. These structures are built from α-helical antiparallel coiled-coil peptide dimers arranged perpendicular to the nanotube axis, in a "cross-α" nanotube structure. The aggregation behavior is rationalized based on the effects of dimensionality, and the balance of hydrophobic and electrostatic interactions. The nanotube and nanomesh structures display arginine at high density on their surfaces, which may be valuable for future applications.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | | | | | | | | | | | | |
Collapse
|
112
|
Alegre‐Requena JV, Herrera RP, Díaz Díaz D. Self‐Assembly of Hollow Organic Nanotubes Driven by Arene Regioisomerism. Chempluschem 2020; 85:2372-2375. [DOI: 10.1002/cplu.202000473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | - Raquel P. Herrera
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - David Díaz Díaz
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93040 Regensburg Germany
- Departamento de Química Orgánica Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 2 38206 La Laguna Tenerife Spain
| |
Collapse
|
113
|
Sun H, Dong L, Kim Y, Lee M. Supramolecular Tubule from Seesaw Shaped Amphiphile and Its Hierarchical Evolution into Sheet. Chem Asian J 2020; 15:2470-2474. [PMID: 32614501 DOI: 10.1002/asia.202000654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Although supramolecular one-dimensional (1D) and two-dimensional (2D) structures with various unique properties have been extensively studied, the reversible switching between tubules and sheets via lateral association remains challenging. Here, we report the unique structures of a supramolecular tubular bamboo culm in which the hollow-tubular interior is separated, at intervals, by nodes per 1.3 nm. Interestingly, the discrete tubules are able to hierarchically assemble into a flat sheet in response to an aromatic guest. The addition of trans-azobenzene, as a guest, enables the tubules to form a hierarchical sheet assembly via the lateral interaction. The hierarchical sheet structures are disassembled into their constituent tubules upon UV irradiation due to trans-cis isomerization. The recovery from cis-azobenzene to trans-form induces repeatedly the hierarchical sheet assembly, indicative of a reversible switching behavior between tubules and sheets triggered by an external stimulus.
Collapse
Affiliation(s)
- Haonan Sun
- State Key Lab for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Longlong Dong
- State Key Lab for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 (Republic of, Korea
| | - Myongsoo Lee
- State Key Lab for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
114
|
Wang Q, He L, Fan D, Liang W, Wang X, Fang J. PLA2-Triggered Release of Drugs from Self-Assembled Lipid Tubules for Arthritis Treatments. ACS APPLIED BIO MATERIALS 2020; 3:6488-6496. [DOI: 10.1021/acsabm.0c00883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochen Wang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
115
|
Oosumi R, Ikeda M, Ito A, Izumi M, Ochi R. Structural diversification of bola-amphiphilic glycolipid-type supramolecular hydrogelators exhibiting colour changes along with the gel-sol transition. SOFT MATTER 2020; 16:7274-7278. [PMID: 32658225 DOI: 10.1039/d0sm01068e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We diversified the structures of bola-amphiphilic glycolipid-type supramolecular hydrogelators that exhibited reversible thermochromism along with a gel-sol transition. The hydrogelators were designed and synthesized to have homo- or hetero-saccharides on each end of their molecules. Herein, the effects of the saccharides' structure on the gelation ability are discussed.
Collapse
Affiliation(s)
- Ryoya Oosumi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan and United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan and Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Masayuki Izumi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan. and Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Rika Ochi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan. and Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
116
|
Takafuji M, Kawahara T, Sultana N, Ryu N, Yoshida K, Kuwahara Y, Oda R, Ihara H. Extreme enhancement of secondary chirality through coordination-driven steric changes of terpyridyl ligand in glutamide-based molecular gels. RSC Adv 2020; 10:29627-29632. [PMID: 35518247 PMCID: PMC9056163 DOI: 10.1039/d0ra05057a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Aggregation-induced chirality is potentially useful in sensor technology applications. Herein we show extreme enhancement of secondary chirality through coordination-driven steric changes of terpyridyl ligand in molecular gels. The secondary chirality reflecting on enhancement of chiral signals (i.e., circular dichroism (CD) and circularly polarised luminescence (CPL)) of the molecular gels formed from glutamide-attached terpyridine (G-tpy) is extremely enhanced by the coordination of its terpyridyl groups to metal ions such as Cu2+, Zn2+ and Ru2+, which is due to dramatic changes in the stacked structure of the chromophore groups through the formation of metal ion complex. Metal-free terpyridine exists in a non-planar geometry, which suppress π-π stacking interactions among aggregates. The planarity of the terpyridyl group is improved through metal-ion complexation, which induces the metal-ion-coordinated terpyridyl groups to stack. The thermal stabilities of the CD signals are strongly affected by the metal-ion species. CPL signal is generated in the molecular gel formed from G-tpy-Zn2+ complex accompanied by chelation-enhanced fluorescence. It is expected that large and sensitive coordination-driven secondary chirality signals (CD and CPL) are useful for sensing guest molecules and the surrounding environment.
Collapse
Affiliation(s)
- Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Tomoki Kawahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Nahid Sultana
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Naoya Ryu
- Materials Development Department, Kumamoto Industrial Research Institute 3-11-38 Higashimachi, Higashi-ku Kumamoto 862-0901 Japan
| | - Kyohei Yoshida
- Institut de Chimie & Biologie des Membranes & des Nano-objets (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique Bordeaux 2 rue Robert Escarpit 33607 Pessac France
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Reiko Oda
- Institut de Chimie & Biologie des Membranes & des Nano-objets (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique Bordeaux 2 rue Robert Escarpit 33607 Pessac France
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
117
|
Aparicio F, Chamorro PB, Chamorro R, Casado S, González‐Rodríguez D. Nanostructured Micelle Nanotubes Self‐Assembled from Dinucleobase Monomers in Water. Angew Chem Int Ed Engl 2020; 59:17091-17096. [DOI: 10.1002/anie.202006877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Fátima Aparicio
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Paula B. Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Raquel Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Santiago Casado
- IMDEA Nanociencia c/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - David González‐Rodríguez
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
118
|
Aparicio F, Chamorro PB, Chamorro R, Casado S, González‐Rodríguez D. Nanostructured Micelle Nanotubes Self‐Assembled from Dinucleobase Monomers in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fátima Aparicio
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Paula B. Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Raquel Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Santiago Casado
- IMDEA Nanociencia c/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - David González‐Rodríguez
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
119
|
Zapién-Castillo S, Díaz-Zavala NP, Melo-Banda JA, Schwaller D, Lamps JP, Schmutz M, Combet J, Mésini PJ. Structure of Nanotubes Self-Assembled from a Monoamide Organogelator. Int J Mol Sci 2020; 21:ijms21144960. [PMID: 32674288 PMCID: PMC7404320 DOI: 10.3390/ijms21144960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
Some organic compounds are known to self-assemble into nanotubes in solutions, but the packing of the molecules into the walls of the tubes is known only in a very few cases. Herein, we study two compounds forming nanotubes in alkanes. They bear a secondary alkanamide chain linked to a benzoic acid propyl ester (HUB-3) or to a butyl ester (HUB-4). They gel alkanes for concentrations above 0.2 wt.%. The structures of these gels, studied by freeze fracture electron microscopy, exhibit nanotubes: for HUB-3 their external diameters are polydisperse with a mean value of 33.3 nm; for HUB-4, they are less disperse with a mean value of 25.6 nm. The structure of the gel was investigated by small- and wide-angle X-ray scattering. The evolution of the intensities show that the tubes are metastable and transit slowly toward crystals. The intensities of the tubes of HUB-4 feature up to six oscillations. The shape of the intensities proves the tubular structure of the aggregates, and gives a measurement of 20.6 nm for the outer diameters and 11.0 nm for the inner diameters. It also shows that the electron density in the wall of the tubes is heterogeneous and is well described by a model with three layers.
Collapse
Affiliation(s)
- Samuel Zapién-Castillo
- Centro de Investigación en Petroquímica, Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Prolongación Bahía de Aldair, Ave. de las Bahías, Parque de la Pequeña y Mediana Industria, Altamira 89600, Mexico; (S.Z.-C.); (J.A.M.-B.)
| | - Nancy P. Díaz-Zavala
- Centro de Investigación en Petroquímica, Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Prolongación Bahía de Aldair, Ave. de las Bahías, Parque de la Pequeña y Mediana Industria, Altamira 89600, Mexico; (S.Z.-C.); (J.A.M.-B.)
- Correspondence: (N.P.D.-Z.); (P.J.M.)
| | - José A. Melo-Banda
- Centro de Investigación en Petroquímica, Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Prolongación Bahía de Aldair, Ave. de las Bahías, Parque de la Pequeña y Mediana Industria, Altamira 89600, Mexico; (S.Z.-C.); (J.A.M.-B.)
| | - Duncan Schwaller
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, F-67000 Strasbourg, France; (D.S.); (J.-P.L.); (M.S.); (J.C.)
| | - Jean-Philippe Lamps
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, F-67000 Strasbourg, France; (D.S.); (J.-P.L.); (M.S.); (J.C.)
| | - Marc Schmutz
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, F-67000 Strasbourg, France; (D.S.); (J.-P.L.); (M.S.); (J.C.)
| | - Jérôme Combet
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, F-67000 Strasbourg, France; (D.S.); (J.-P.L.); (M.S.); (J.C.)
| | - Philippe J. Mésini
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, F-67000 Strasbourg, France; (D.S.); (J.-P.L.); (M.S.); (J.C.)
- International Center for Frontier Research in Chemistry, 8 allée Gaspard Monge, 67000 Strasbourg, France
- Correspondence: (N.P.D.-Z.); (P.J.M.)
| |
Collapse
|
120
|
Zhao J, Xing P. Helical Nanostructures with Circularly Polarized Luminescence from the Multicomponent Assembly of π-Conjugated N-terminal Amino Acids. Chempluschem 2020; 85:1511-1522. [PMID: 32644303 DOI: 10.1002/cplu.202000397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Self-assembled structures with circularly polarized luminescence (CPL) have attracted great attention in recent years. π-conjugated N-terminal amino acids with chiral amino acid residues and luminophores are capable of forming self-assembled structures at hierarchical levels, whereby chirality can be transferred to the macroscopic scale with easily modulated CPL properties. Due to the presence of multiple noncovalent binding sites, including hydrogen bonding and aromatic interactions, π-conjugated N-terminal amino acids are emerging core candidates for incorporation into multicomponent self-assembled architectures, accomplishing rational control over supramolecular chirality as well as showing rich chiroptical properties. In this Minireview, we provide a brief summary of multiple-component coassembled systems comprising π-conjugated N-terminal amino acids, small organic species and metal ions. The synthesis of helical structures and manipulation of supramolecular chirality by controlling the self-assembled species is introduced, and the CPL properties of multiple-component π-conjugated N-terminal amino acids are also briefly summarized.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
121
|
Johnson M, Bhattacharya A, Brea RJ, Podolsky KA, Devaraj NK. Temperature-Dependent Reversible Morphological Transformations in N-Oleoyl β-d-Galactopyranosylamine. J Phys Chem B 2020; 124:5426-5433. [PMID: 32437154 DOI: 10.1021/acs.jpcb.0c01410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphilic molecules self-assemble into supramolecular structures of various sizes and morphologies depending on their molecular packing and external factors. Transformations between various self-assembled morphologies are a matter of great fundamental interest. Recently, we reported the discovery of a novel class of single-chain galactopyranosylamide amphiphiles that self-assemble to form vesicles in water. Here, we describe how the vesicles composed of the amphiphile N-oleoyl β-d-galactopyranosylamine (GOA) undergo a morphological transition to fibers consisting of mainly flat sheet-like structures. Moreover, we show that this transformation is reversible in a temperature-dependent manner. We used several optical microscopy and electron microscopy techniques, circular dichroism spectroscopy, small-angle X-ray scattering, and differential scanning calorimetry, to fully investigate and characterize the morphological transformations of GOA and provide a structural basis for such phenomena. These studies provide significant molecular insight into the structural polymorphism of sugar-based amphiphiles and foresee future applications in rational design of self-assembled materials.
Collapse
Affiliation(s)
- Mai Johnson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
122
|
Matthews L, Przybyłowicz Ż, Rogers SE, Bartlett P, Johnson AJ, Sochon R, Briscoe WH. The curious case of SDS self-assembly in glycerol: Formation of a lamellar gel. J Colloid Interface Sci 2020; 572:384-395. [DOI: 10.1016/j.jcis.2020.03.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023]
|
123
|
Ghimire G, Moore MM, Leuschen R, Nagasaka S, Kameta N, Masuda M, Higgins DA, Ito T. Influences of Hydrogen Bonding-Based Stabilization of Bolaamphiphile Layers on Molecular Diffusion within Organic Nanotubes Having Inner Carboxyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6145-6153. [PMID: 32396729 DOI: 10.1021/acs.langmuir.0c00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper reports molecular diffusion behavior in two bolaamphiphile-based organic nanotubes having inner carboxyl groups with different inner dimeters (10 and 20 nm) and wall structures, COOH-ONT10nm and COOH-ONT20nm, using imaging fluorescence correlation spectroscopy (imaging FCS). The results were compared to those previously obtained in a similar nanotube with inner amine groups (NH2-ONT10nm). COOH-ONT10nm, as with NH2-ONT10nm, were formed from a rolled bolaamphiphile layer incorporating triglycine moieties, whereas COOH-ONT20nm consisted of four stacks of triglycine-free bolaamphiphile layers. Imaging FCS measurements were carried out for anionic sulforhodamine B (SRB), zwitterionic/cationic rhodamine B (RB), and cationic rhodamine-123 (R123) diffusing within ONTs (1-9 μm long) at different pH (3.4-8.4) and ionic strengths (1.6-500 mM). Diffusion coefficients (D) of these dyes in the ONTs were very small (0.01-0.1 μm2/s), reflecting the significant contributions of molecule-nanotube interactions to diffusion. The D of SRB was larger at higher pH and ionic strength, indicating the essential role of electrostatic repulsion that was enhanced by the deprotonation of the inner carboxyl groups. Importantly, the D of SRB was virtually independent of nanotube inner diameter and wall structure, indicating the diffusion of the hydrophilic molecule was controlled by short time scale adsorption/desorption processes onto the inner surface. In contrast, pH effects on D were less clear for relatively hydrophobic R123 and RB, suggesting the significant contributions of non-Coulombic interactions. Interestingly, the diffusion of these molecules in COOH-ONT20nm was slower than in COOH-ONT10nm. Slower diffusion in COOH-ONT20nm was attributable to relatively efficient partitioning of the hydrophobic dyes into the bolaamphiphile layers, which was reduced in COOH-ONT10nm due to the stabilization of its layer by polyglycine-II-type hydrogen bonding networks. These results show that, by tuning the bolaamphiphile structures and their intermolecular interactions, unique environments can be created within the nanospaces for enhanced molecular separations and reactions.
Collapse
Affiliation(s)
- Govinda Ghimire
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Mikaela M Moore
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Rebecca Leuschen
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Shinobu Nagasaka
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
124
|
Chen S, Leung FKC, Stuart MCA, Wang C, Feringa BL. Dynamic Assemblies of Molecular Motor Amphiphiles Control Macroscopic Foam Properties. J Am Chem Soc 2020; 142:10163-10172. [PMID: 32379449 PMCID: PMC7273467 DOI: 10.1021/jacs.0c03153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 11/30/2022]
Abstract
Stimuli-responsive supramolecular assemblies controlling macroscopic transformations with high structural fluidity, i.e., foam properties, have attractive prospects for applications in soft materials ranging from biomedical systems to industrial processes, e.g., textile coloring. However, identifying the key processes for the amplification of molecular motion to a macroscopic level response is of fundamental importance for exerting the full potential of macroscopic structural transformations by external stimuli. Herein, we demonstrate the control of dynamic supramolecular assemblies in aqueous media and as a consequence their macroscopic foam properties, e.g., foamability and foam stability, by large geometrical transformations of dual light/heat stimuli-responsive molecular motor amphiphiles. Detailed insight into the reversible photoisomerization and thermal helix inversion at the molecular level, supramolecular assembly transformations at the microscopic level, and the stimuli-responsive foam properties at the macroscopic level, as determined by UV-vis absorption and NMR spectroscopies, electron microscopy, and foamability and in situ surface tension measurements, is presented. By selective use of external stimuli, e.g., light or heat, multiple states and properties of macroscopic foams can be controlled with very dilute aqueous solutions of the motor amphiphiles (0.2 weight%), demonstrating the potential of multiple stimuli-responsive supramolecular systems based on an identical molecular amphiphile and providing opportunities for future soft materials.
Collapse
Affiliation(s)
- Shaoyu Chen
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Key
Laboratory of Eco-Textile, Ministry of Education, College of Textiles
Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People’s
Republic of China
| | - Franco King-Chi Leung
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Chaoxia Wang
- Key
Laboratory of Eco-Textile, Ministry of Education, College of Textiles
Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People’s
Republic of China
| | - Ben L. Feringa
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
125
|
|
126
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
127
|
Dedovets D, Martin B, Okazaki Y, Buffeteau T, Pouget E, Oda R. Hierarchical chirality expression of gemini surfactant aggregates via equilibrium between chiral nucleotide and nonchiral mono-anions. Chirality 2020; 32:949-960. [PMID: 32346925 DOI: 10.1002/chir.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 11/06/2022]
Abstract
The assembling behaviors of nonchiral dicationic amphiphilic molecules (gemini) in the presence of the mixture of chiral anionic nucleotides and nonchiral anions are investigated. We demonstrate that subtle balance of various physico-chemical parameters and the competition between chiral and nonchiral anions at the interface of gemini assemblies influences the expression of molecular chirality at the micrometer scale through the hierarchical molecular assembly.
Collapse
Affiliation(s)
- Dmytro Dedovets
- CBMN, UMR 5248, CNRS-Université de Bordeaux-IPB 2 rue Robert Escarpit, Pessac, France.,Laboratoire du Futur, UMR 5258, CNRS-Université de Bordeaux-Solvay 178 avenue du Dr Schweitzer, Pessac, France
| | - Barbara Martin
- CBMN, UMR 5248, CNRS-Université de Bordeaux-IPB 2 rue Robert Escarpit, Pessac, France
| | - Yutaka Okazaki
- CBMN, UMR 5248, CNRS-Université de Bordeaux-IPB 2 rue Robert Escarpit, Pessac, France.,School of Energy Science, Kyoto University, Kyoto, Japan
| | - Thierry Buffeteau
- ISM, UMR 5255, CNRS-Université de Bordeaux, 351 Cours de la Libération, Talence, France
| | - Emilie Pouget
- CBMN, UMR 5248, CNRS-Université de Bordeaux-IPB 2 rue Robert Escarpit, Pessac, France
| | - Reiko Oda
- CBMN, UMR 5248, CNRS-Université de Bordeaux-IPB 2 rue Robert Escarpit, Pessac, France
| |
Collapse
|
128
|
Liu D, Fan X, Dong D, Zhang Z, Yu N, Yang Z, Liu R, Liu B. Synthesis and high pressure studies of white luminescence host-guest complex nanocrystals based on C 60 and p-But-calix[8]arene. NANOTECHNOLOGY 2020; 31:165701. [PMID: 31846936 DOI: 10.1088/1361-6528/ab62ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host-guest structured nanocrystals consisting of p-But-calix[8]arene and fullerene C60 were fabricated with the facial solution deposition method. The as-prepared host-guest complex nanocrystals are well crystallized in a tetragonal structure, in which the guest C60 and host p-But-calix[8]arene molecules interact with each other via the van der Waals force. The host-guest crystal has a wider band gap compared to that of C60 crystals. The luminescence range of the host-guest structured nanocrystals was widely extended, and its photoluminescence (PL) intensity was highly enhanced by one order of magnitude. High pressure studies on such host-guest nanocrystals were carried out using the diamond anvil cell technique with the associated spectroscopic measurements. Raman and PL spectra show a phase transition occurred on the samples owing to the deformation of fullerene molecules. A PL behavior change was also observed synchronously with the phase transition. The host-guest structure strongly influences the structure and optical behaviors of C60 under pressure.
Collapse
Affiliation(s)
- Dedi Liu
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Lehmann A, Alaasar M, Poppe M, Poppe S, Prehm M, Nagaraj M, Sreenilayam SP, Panarin YP, Vij JK, Tschierske C. Stereochemical Rules Govern the Soft Self-Assembly of Achiral Compounds: Understanding the Heliconical Liquid-Crystalline Phases of Bent-Core Mesogens. Chemistry 2020; 26:4714-4733. [PMID: 31859404 PMCID: PMC7186843 DOI: 10.1002/chem.201904871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Indexed: 11/16/2022]
Abstract
A series of bent-shaped 4-cyanoresorcinol bisterephthalates is reported. Some of these achiral compounds spontaneously form a short-pitch heliconical lamellar liquid-crystalline phase with incommensurate 3-layer pitch and the helix axis parallel to the layer normal. It is observed at the paraelectric-(anti)ferroelectric transition, if it coincides with the transition from random to uniform tilt and with the transition from anticlinic to synclinic tilt correlation of the molecules in the layers of the developing tilted smectic phase. For compounds with long chains the heliconical phase is only field-induced, but once formed it is stable in a distinct temperature range, even after switching off the field. The presence of the helix changes the phase properties and the switching mechanism from the naturally preferred rotation around the molecular long axis, which reverses the chirality, to a precession on a cone, which retains the chirality. These observations are explained by diastereomeric relations between two coexisting modes of superstructural chirality. One is the layer chirality, resulting from the combination of tilt and polar order, and the other one is the helical twist evolving between the layers. At lower temperature the helical structure is replaced by a non-tilted and ferreoelectric switching lamellar phase, providing an alternative non-chiral way for the transition from anticlinic to synclinic tilt.
Collapse
Affiliation(s)
- Anne Lehmann
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Mohamed Alaasar
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
- Department of ChemistryCairo University12613GizaEgypt
| | - Marco Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Silvio Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Marko Prehm
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Mamatha Nagaraj
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Sithara P. Sreenilayam
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Yuri P. Panarin
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Jagdish K. Vij
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Carsten Tschierske
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| |
Collapse
|
130
|
Sekhar KPC, Swain DK, Holey SA, Bojja S, Nayak RR. Unsaturation and Polar Head Effect on Gelation, Bioactive Release, and Cr/Cu Removal Ability of Glycolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3080-3088. [PMID: 32134673 DOI: 10.1021/acs.langmuir.0c00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing of multifunctional soft and smart materials from natural sources is a useful strategy for producing safer chemicals having potential applications in biomedical research and pharmaceutical industries. Herein, eight glycolipids with variation in unsaturation of hydrophobic tail and polar headgroup size were designed. The effect of unsaturation in the tail group and headgroup size on gelation ability, and mechanical and thermal stability of glycolipid hydro/organogels was studied to understand structure and property relationship. Glycolipids are functional amphiphilic molecules having potential applications in the field of drug delivery and metal removal. The encapsulation capacity and kinetic release behavior of hydrophobic/hydrophilic bioactives like curcumin/riboflavin from the hydrophobic/hydrophilic pockets of glycolipids hydro/organogels was examined. A significant observation was that the glucamine moiety of the glycolipid headgroup plays a vital role in removal of Cr and Cu from oil/water biphasic systems. Typical functions of the glycolipid hydrogels are metal chelation and enzyme-triggered release behavior, enabled them as promising material for Cr, Cu removal from edible oils and controlled release of water soluble/insoluble bioactives.
Collapse
Affiliation(s)
- Kanaparedu P C Sekhar
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Kumar Swain
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Snehal Ashokrao Holey
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreedhar Bojja
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Rati Ranjan Nayak
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
131
|
Zaldivar G, Conda-Sheridan M, Tagliazucchi M. Twisting of Charged Nanoribbons to Helicoids Driven by Electrostatics. J Phys Chem B 2020; 124:3221-3227. [DOI: 10.1021/acs.jpcb.0c01301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Gervasio Zaldivar
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía and Departamento de Química Inorgánica Analítica y Química Física, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Mario Tagliazucchi
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía and Departamento de Química Inorgánica Analítica y Química Física, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
132
|
|
133
|
Wang L, Zhu Q, Ding L, Bai Y. Super stable giant tubes with densely packed multilayer ultrathick membranes self-assembled from amphiphilic polyamide. Chem Commun (Camb) 2020; 56:2650-2653. [PMID: 32021995 DOI: 10.1039/c9cc08227a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work reports on the preparation of giant tubes with millimeter-scale length, micron diameter and ultrathick walls above 250 nm, from the aqueous self-assembly of a novel amphiphilic polyamide. Most interestingly, the tubes display great chemical and thermal stability.
Collapse
Affiliation(s)
- Lipeng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | | | | | | |
Collapse
|
134
|
Kameta N, Shimizu T. Time-controllable roll-up onset of polythiophene sheets into nanotubes that exhibit circularly polarized luminescence. NANOSCALE 2020; 12:2999-3006. [PMID: 31912065 DOI: 10.1039/c9nr08032e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of a polythiophene-conjugated glycolipid exclusively produced square sheets a few micrometers on each side. Seventeen hours after the sheets were dispersed in ethanol at 25 °C, they suddenly started to roll up, and eventually they were completely transformed into nanotubes. The onset timing of the roll-up was temperature-dependent. The roll-up involved rearrangement of the molecular packing within the bilayer membranes, which was accompanied by strengthening of the intermolecular hydrogen bonds, alteration of the polythiophene aggregation mode and enhancement of supramolecular chirality due to chiral packing. The nanotubes exhibited not only strong fluorescence derived from J-type aggregation of the polythiophene aromatic moiety but also circularly polarized luminescence (CPL) originating from the left-handed helicity of the polythiophene main chain backbone. Because the CPL onset was concurrent with the sheet roll-up, the CPL onset was also able to be controlled by varying the temperature. Such delayed CPL onset has never been reported in chiral supramolecular structures, in which CPL onset and helicity inversion usually begin immediately upon application of a stimulus and then progress either quickly or gradually. Our findings can be expected to facilitate the development of new stimulus-responsive supramolecular structures that can be used for delayed-action capsules or optical switching devices.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
135
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
136
|
Kumar S, Nandi SK, Suman S, Haldar D. A new dipeptide as a selective gelator of Cu( ii), Zn( ii), and Pb( ii). CrystEngComm 2020. [DOI: 10.1039/d0ce01199a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallogelation was observed selectively for CuSO4, ZnSO4 and Pb(OAc)2 and a dipeptide containing N-phenylglycine and l-Phe, whereas other metals and analogue dipeptides failed to form gel.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Saurav Suman
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
137
|
Hoang M, Kumar RA, Buisson DA, Ling WL, Gravel E, Doris E. Self‐assembled Polydiacetylene Nanoribbons for Semi‐heterogeneous and Enantioselective Organocatalysis of Aldol Reactions in Water. ChemCatChem 2019. [DOI: 10.1002/cctc.201901960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Minh‐Duc Hoang
- Service de Chimie Bioorganique et de Marquage (SCBM) CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Ramar Arun Kumar
- Service de Chimie Bioorganique et de Marquage (SCBM) CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
- SRM Research Institute, Department of ChemistrySRM Institute of Science and Technology Kattankulathur 603203 Chennai India
| | - David A. Buisson
- Service de Chimie Bioorganique et de Marquage (SCBM) CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS 38000 Grenoble France
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM) CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM) CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| |
Collapse
|
138
|
Faujan NH, Abedi Karjiban R, Kashaban I, Basri M, Basri H. Computational simulation of palm kernel oil-based esters nano-emulsions aggregation as a potential parenteral drug delivery system. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
139
|
Jiang Y, Wang C, Lu G, Zhao L, Gong L, Wang T, Qi D, Chen Y, Jiang J. Compartmentalization within Nanofibers of Double‐Decker Phthalocyanine Induces High‐Performance Sensing in both Aqueous Solution and the Gas Phase. Chemistry 2019; 25:16207-16213. [DOI: 10.1002/chem.201903553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yuying Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Chiming Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Guang Lu
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Luyang Zhao
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Lei Gong
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Yanli Chen
- School of ScienceChina University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
140
|
Kuang H, Gartner Iii TE, Dorneles de Mello M, Guo J, Zuo X, Tsapatsis M, Jayaraman A, Kokkoli E. ssDNA-amphiphile architecture used to control dimensions of DNA nanotubes. NANOSCALE 2019; 11:19850-19861. [PMID: 31559999 DOI: 10.1039/c9nr03761f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the dimensions of DNA nanotubes is of great interest as they can be used in different applications ranging from functional elements in nanodevices to carriers for drug delivery. ssDNA-amphiphiles composed of a ssDNA headgroup, a hydrophobic dialkyl tail and a polycarbon spacer between the tail and the headgroup, self-assemble into hollow DNA nanotubes by forming bilayer nanotapes that transition from twisted nanotapes, to helical nanotapes, to nanotubes. The presence of the DNA nanotubes is verified via cryo-TEM and SAXS. We further explore the effect of the ssDNA secondary structure and tail length on the assembly of the ssDNA-amphiphiles. We demonstrate that the presence of intermolecular G-quadruplexes in the ssDNA sequence dictates the nanotube length. The nanotube diameter is controlled by the hydrophobic tail length, and coarse-grained molecular dynamics simulations are employed to elucidate the tail design impact on assembly.
Collapse
Affiliation(s)
- Huihui Kuang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Thomas E Gartner Iii
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Matheus Dorneles de Mello
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Guo
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Xiaobing Zuo
- X-Ray, Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Tsapatsis
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA and Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
141
|
Jang D, Pramanik SK, Das A, Baek W, Heo JM, Ro HJ, Jun S, Park BJ, Kim JM. Photoinduced Reversible Bending and Guest Molecule Release of Azobenzene-Containing Polydiacetylene Nanotubes. Sci Rep 2019; 9:15982. [PMID: 31690756 PMCID: PMC6831582 DOI: 10.1038/s41598-019-52462-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022] Open
Abstract
Creation of hollow, one-dimensional nanomaterials has gained great recent attention in the chemical and material sciences. In a study aimed at discovering new functional materials of this type, we observed that an amphiphilic diacetylene (DA) derivative, containing an azobenzene moiety and an oligo-ethylene group, self-assembles to form nanotubes and undergoes photopolymerization to form hollow polydiacetylene (PDA) nanotubes with a uniform wall thickness and diameter. The azobenzene-PDA nanotubes are photoresponsive in that on-and-off UV-irradiation leads to a reversible morphological change between straight and bent forms in association with E-Z photoisomerization of the azobenzene group. Owing to the UV-induced structural change feature, the new DA and PDA nanotubes serve as a controlled release material. Accordingly, fluorescent rhodamine B encapsulated inside the nanotubes are effectively released by using repeated on-off UV irradiation. Furthermore, photo-release of rhodamine B was shown to occur in an artemia (brine shrimp).
Collapse
Affiliation(s)
- Daewoong Jang
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Sumit Kumar Pramanik
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - Amitava Das
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India.
| | - Woohyun Baek
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Jung-Moo Heo
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Hyun-Joo Ro
- Drug and Disease Target Team, Korea Basic Science Institute, Cheongu, 28119, Korea
| | - Sangmi Jun
- Drug and Disease Target Team, Korea Basic Science Institute, Cheongu, 28119, Korea
- Convergent Research Center for Emerging Virus Infection Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Bum Jun Park
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Korea.
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
142
|
Sakakibara S, Yotsuji H, Higashiguchi K, Matsuda K. Photoinduced repetitive separation of a supramolecular assembly composed of an amphiphilic diarylethene mixture. SOFT MATTER 2019; 15:7918-7925. [PMID: 31538159 DOI: 10.1039/c9sm01301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A supramolecular assembly composed of a two-component mixture of amphiphilic diarylethenes, which have octyloxycarbonyl and N-octylcarbamoyl groups, showed a unique macroscopic transformation upon irradiation with UV light and subsequent standing in the dark. Unlike the pure compounds, the assembly was repetitively separated into a blue sphere and a red-purple sparse structure. Both the blue sphere and the sparse structure turned into colorless spheres upon irradiation with visible light and the divided colorless spheres showed the same response to UV and visible light. Phase diagrams based on the change in absorption spectra upon temperature change suggested that the transformation originates from a LCST transition. In the 0.5 : 0.5 mixture, in contrast to the pure compounds, the transition temperature sharply changed at around 50% of the fraction of the closed-ring isomer. TEM imaging showed that the 0.5 : 0.5 mixture with high photoisomerization yield formed a 10 nm-sized network. Judging from the phase diagram and TEM images, the separation is understood as the local phase transition of the regions with a high fraction of the closed-ring isomer.
Collapse
Affiliation(s)
- Seiya Sakakibara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | |
Collapse
|
143
|
Luo Y, Song Y, Wang M, Jian T, Ding S, Mu P, Liao Z, Shi Q, Cai X, Jin H, Du D, Dong WJ, Chen CL, Lin Y. Bioinspired Peptoid Nanotubes for Targeted Tumor Cell Imaging and Chemo-Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902485. [PMID: 31468663 DOI: 10.1002/smll.201902485] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/11/2019] [Indexed: 05/23/2023]
Abstract
Substantial progress has been made in applying nanotubes in biomedical applications such as bioimaging and drug delivery due to their unique architecture, characterized by very large internal surface areas and high aspect ratios. However, the biomedical applications of organic nanotubes, especially for those assembled from sequence-defined molecules, are very uncommon. In this paper, the synthesis of two new peptoid nanotubes (PepTs1 and PepTs2) is reported by using sequence-defined and ligand-tagged peptoids as building blocks. These nanotubes are highly robust due to sharing a similar structure to those of nontagged ones, and offer great potential to hold guest molecules for biomedical applications. The findings indicate that peptoid nanotubes loaded with doxorubicin drugs are promising candidates for targeted tumor cell imaging and chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Yanan Luo
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Mingming Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Peng Mu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zhihao Liao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Haibao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wen-Ji Dong
- Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Washington, 98195, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
144
|
Tang H, Gu Z, Ding H, Li Z, Xiao S, Wu W, Jiang X. Nanoscale Crystalline Sheets and Vesicles Assembled from Nonplanar Cyclic π-Conjugated Molecules. RESEARCH 2019; 2019:1953926. [PMID: 31549048 PMCID: PMC6750094 DOI: 10.34133/2019/1953926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/15/2019] [Indexed: 11/06/2022]
Abstract
A fundamental challenge in chemistry and materials science is to create new carbon nanomaterials by assembling structurally unique carbon building blocks, such as nonplanar π-conjugated cyclic molecules. However, self-assembly of such cyclic π-molecules to form organized nanostructures has been rarely explored despite intensive studies on their chemical synthesis. Here we synthesized a family of new cycloparaphenylenes and found that these fully hydrophobic and nonplanar cyclic π-molecules could self-assemble into structurally distinct two-dimensional crystalline multilayer nanosheets. Moreover, these crystalline multilayer nanosheets could overcome inherent rigidity to curve into closed crystalline vesicles in solution. These supramolecular assemblies show that the cyclic molecular scaffolds are homogeneously arranged on the surface of nanosheets and vesicles with their molecular isotropic x-y plane standing obliquely on the surface. These supramolecular architectures that combined exact crystalline order, orientation-specific arrangement of π-conjugated cycles, controllable morphology, uniform molecular pore, superior florescence quench ability, and photoluminescence are expected to give rise to a new class of functional materials displaying unique photonic, electronic, and biological functions.
Collapse
Affiliation(s)
- Huang Tang
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhewei Gu
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haifeng Ding
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhibo Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
145
|
Unsal H, Kalaycioglu GD, Aydogan N, Karakuscu N. Smart Lipid Nanotubes for Easy Formation of Gold‐Lipid Hybrid Nanotubes and Tunable Gold Superstructures. ChemistrySelect 2019. [DOI: 10.1002/slct.201902636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hande Unsal
- Chemical Engineering Department1 Hacettepe University, Beytepe 06800 Ankara Turkey
| | - Gokce D. Kalaycioglu
- Chemical Engineering Department1 Hacettepe University, Beytepe 06800 Ankara Turkey
| | - Nihal Aydogan
- Chemical Engineering Department1 Hacettepe University, Beytepe 06800 Ankara Turkey
| | - Nazli Karakuscu
- Chemical Engineering Department1 Hacettepe University, Beytepe 06800 Ankara Turkey
| |
Collapse
|
146
|
Akagi K. Interdisciplinary Chemistry Based on Integration of Liquid Crystals and Conjugated Polymers: Development and Progress. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190092] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kazuo Akagi
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
147
|
Vázquez-González V, Mayoral MJ, Chamorro R, Hendrix MMRM, Voets IK, González-Rodríguez D. Noncovalent Synthesis of Self-Assembled Nanotubes through Decoupled Hierarchical Cooperative Processes. J Am Chem Soc 2019; 141:16432-16438. [DOI: 10.1021/jacs.9b07868] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Violeta Vázquez-González
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Maria J. Mayoral
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Raquel Chamorro
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Marco M. R. M. Hendrix
- Laboratory of Self-Organizing Soft Matter, Laboratory of Macro-Organic Chemistry, Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Laboratory of Macro-Organic Chemistry, Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
148
|
Pathan S, Noguchi H, Yamada N, Kuwahara Y, Takafuji M, Oda R, Ihara H. Fabrication of Fluorescent One-dimensional-nanocomposites through One-pot Self-assembling Polymerization on Nano-helical Silica. CHEM LETT 2019. [DOI: 10.1246/cl.190339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaheen Pathan
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Chemistry and Biology of Membranes and Nano-object, UMR5248 (CBMN), CNRS – Université de Bordeaux – Bordeaux INP, 2 rue Robert Escarpit, Pessac 33607, France
| | - Hiroki Noguchi
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Nobuo Yamada
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Reiko Oda
- Institute of Chemistry and Biology of Membranes and Nano-object, UMR5248 (CBMN), CNRS – Université de Bordeaux – Bordeaux INP, 2 rue Robert Escarpit, Pessac 33607, France
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
149
|
Fan H, Jiang H, Zhu X, Zhu M, Zhang L, Liu M. Homo- and heterochirality regulated blue and red phase polymerization of diacetylene with enantiomeric and racemic gelators. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
150
|
Tan J, Cao F, Chen H, Liu K, Sun D. Aggregation properties of siloxane surfactants with phenyldimethylsiloxyl groups in aqueous solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|