101
|
Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg Med Chem 2019; 27:3454-3462. [PMID: 31253534 DOI: 10.1016/j.bmc.2019.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin. This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR. NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.
Collapse
|
102
|
Draft Genome Sequence of Lactobacillus paraplantarum OSY-TC318, a Producer of the Novel Lantibiotic Paraplantaracin TC318. Microbiol Resour Announc 2019; 8:8/19/e00274-19. [PMID: 31072901 PMCID: PMC6509526 DOI: 10.1128/mra.00274-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lactobacillus paraplantarum OSY-TC318 was isolated from Turkish Tulum cheese and found to produce a potent anti-Gram-positive peptide. Sequencing of the OSY-TC318 genome revealed a genome size of 3,587,488 bp and an average GC content of 43.4%. Lactobacillus paraplantarum OSY-TC318 was isolated from Turkish Tulum cheese and found to produce a potent anti-Gram-positive peptide. Sequencing of the OSY-TC318 genome revealed a genome size of 3,587,488 bp and an average GC content of 43.4%. Mining of the OSY-TC318 draft genome sequence revealed the gene cluster responsible for the biosynthesis of paraplantaricin TC318.
Collapse
|
103
|
Prediction and characterisation of lantibiotic structures with molecular modelling and molecular dynamics simulations. Sci Rep 2019; 9:7169. [PMID: 31073133 PMCID: PMC6509333 DOI: 10.1038/s41598-019-42963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/08/2019] [Indexed: 11/08/2022] Open
Abstract
Lantibiotics are lanthionine-containing bactericidal peptides produced by gram-positive bacteria as a defence mechanism against other bacterial species. Lantipeptides disrupt the integrity of target cells by forming pores in their cell membranes, or by preventing cell wall biosynthesis, which subsequently results in cell death. Lantibiotics are of immense importance to the food preservation and pharmaceutical industries. The rise in multidrug resistance demands the discovery of novel antimicrobials, and several authors advocate that lantibiotics hold the future of antimicrobial drug discovery. Owing to their amenability to structural modifications, novel lantibiotics with higher efficacy and antimicrobial activity can be constructed by bioengineering and nanoengineering strategies, and is opined to have immense therapeutic success in combating the rise in multidrug resistance. Understanding the structure and dynamics of lantibiotics is therefore crucial for the development of novel lantipeptides, and this study aimed to study the structural properties and dynamics of 37 lantibiotics using computational strategies. The structures of these 37 lantibiotics were constructed from homology, and their structural stability and compactness were analysed by molecular dynamics simulations. The phylogenetic relationships, physicochemical properties, disordered regions, pockets, intramolecular bonds and interactions, and structural diversity of the 37 lantipeptides were studied. The structures of the 37 lantipeptides constructed herein remained stable throughout simulation. The study revealed that the structural diversity of lantibiotics is not significantly correlated to sequence diversity, and this property could be exploited for designing novel lantipeptides with higher efficacy.
Collapse
|
104
|
Qu W, Yang K, Liu J, Liu K, Liu F, Ji J, Zhang W. Precise management of chronic wound by nisin with antibacterial selectivity. Biomed Mater 2019; 14:045008. [DOI: 10.1088/1748-605x/ab12b3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
105
|
Hayes K, Field D, Hill C, O'Halloran F, Cotter L. A novel bioengineered derivative of nisin displays enhanced antimicrobial activity against clinical Streptococcus agalactiae isolates. J Glob Antimicrob Resist 2019; 19:14-21. [PMID: 31054335 DOI: 10.1016/j.jgar.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/05/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Streptococcus agalactiae is the leading cause of neonatal disease worldwide, and infections caused by this opportunistic pathogen are becoming increasingly more prevalent in adults. With the global incidence of antimicrobial resistance continuing to rise, there is a recognised need for new therapeutic agents. Nisin is a potent antimicrobial peptide with demonstrated broad-spectrum activity against a range of clinically significant pathogens. This study aimed to examine the efficacy of nisin against a clinical population of S. agalactiae isolates and further to investigate the bioactivity of a novel bioengineered derivative of the peptide, designated nisin PV. METHODS A deferred antagonism assay was used to assess the bioactivity of wild-type nisin and nisin PV against 122 S. agalactiae isolates. Minimum inhibitory concentrations (MICs) were evaluated to determine the specific activity of both peptides. The genetic basis of nisin resistance among the isolate collection was investigated by PCR detection of the nsr gene. RESULTS In total, 91.0% (111/122) of the collection showed some level of susceptibility to nisin, whilst 9.0% (11/122) displayed complete resistance. Interestingly, the nisin derivative exhibited enhanced antimicrobial activity for 64.8% of the isolates. The frequency of the nsr gene conferring nisin resistance was 98.4% (120/122), suggesting that resistance may be linked to levels of expression of the protein or other regulatory elements. CONCLUSION This study indicates that there is potential for the use of nisin and its derivatives as therapeutic agents against S. agalactiae infections.
Collapse
Affiliation(s)
- K Hayes
- Cork Institute of Technology, Bishopstown, Cork, Ireland.
| | - D Field
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - C Hill
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - F O'Halloran
- Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - L Cotter
- Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
106
|
Liu L, Chan S, Mo T, Ding W, Yu S, Zhang Q, Yuan S. Movements of the Substrate-Binding Clamp of Cypemycin Decarboxylase CypD. J Chem Inf Model 2019; 59:2924-2929. [DOI: 10.1021/acs.jcim.9b00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lei Liu
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, P. R. China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Stephen Chan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaoning Yu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
107
|
Preclinical evaluation of the maximum tolerated dose and toxicokinetics of enteric-coated lantibiotic OG253 capsules. Toxicol Appl Pharmacol 2019; 374:32-40. [PMID: 31034929 DOI: 10.1016/j.taap.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
Clostridium difficile associated disease (CDAD) is the leading infectious cause of antibiotic-associated diarrhea and colitis in the United States. Both the incidence and severity of CDAD have been increased over the past two decades. We evaluated the maximum tolerated dose (MTD) and toxicokinetics of OG253, a novel lantibiotic in development for the treatment of CDAD. OG253 was orally administered to Wistar Han rats as enteric-coated capsules in a one-day dose escalation study, followed by a seven-day repeated dose toxicokinetics study. All three doses of OG253 (6.75, 27 and 108 mg/day) were generally well-tolerated with no treatment-related clinical signs, alterations in body weight or food consumption in both one-day acute tolerability and seven-days repeated dose tolerability and toxicokinetics study. OG253 capsule administration neither significantly alter the weight of organs nor affect the hematology, coagulation, clinical biochemistry parameters and urine pH compared to placebo capsule administered rats. LC-MS/MS analysis did not detect OG253 in the plasma, indicating that OG253 is not absorbed into the blood from the rat gastrointestinal tract. Glandular atrophy of the rectal mucosa was noticed in two out of six rats administered with a high dose of OG253. Surprisingly, we found that OG253 treatment significantly lowered both serum cholesterol and triglyceride levels in both sexes of rats. Overall, there was a 29.8 and 61.38% decrease in the serum cholesterol and triglyceride levels, respectively as compared to placebo-treated rats. The well-tolerated high dose of OG253 (425.7 mg/kg/day) is recommended as the MTD for safety and efficacy studies. Further preclinical study is needed to evaluate the safety profile of OG253 under longer exposure.
Collapse
|
108
|
Ali ZI, Saudi AM, Albrecht R, Talaat AM. The inhibitory effect of nisin on Mycobacterium avium ssp. paratuberculosis and its effect on mycobacterial cell wall. J Dairy Sci 2019; 102:4935-4944. [PMID: 30981481 DOI: 10.3168/jds.2018-16106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
Infection with Mycobacterium avium ssp. paratuberculosis (M. paratuberculosis) is a widespread problem in the United States and worldwide, and it constitutes a significant health problem for dairy animals with a potential effect on human health. Mycobacterium paratuberculosis is easily transmitted through consumption of contaminated milk; therefore, finding safe methods to reduce the mycobacterial load in milk and other dairy products is important to the dairy industry. The main objective of the current study was to investigate the effect of natural products, such as bacteriocins designated as "generally regarded as safe" (GRAS), on the survival of M. paratuberculosis in milk. Commercially synthesized bacteriocin (nisin) was used to examine its effect on the survival of laboratory and field isolates of M. paratuberculosis and in contaminated milk. Surprisingly, nisin had a higher minimum inhibitory concentration (MIC) against the laboratory strain (M. paratuberculosis K10), at 500 U/mL, than against field isolates (e.g., M. paratuberculosis 4B and JTC 1281), at 15 U/mL. In milk, growth of M. paratuberculosis was inhibited after treatment with levels of nisin that are permissible in human food at 4°C and 37°C. Using both fluorescent and scanning electron microscopy, we were able to identify defects in the bacterial cell walls of treated cultures. Our analysis indicated that nisin reduced membrane integrity by forming pores in the mycobacterial cell wall, thereby decreasing survival of M. paratuberculosis. Thus, nisin treatment of milk could be implemented as a control measure to reduce M. paratuberculosis secreted in milk from infected herds. Nisin could also be used to reduce M. paratuberculosis in colostrum given to calves from infected animals, improving biosecurity control in dairy herds affected by Johne's disease.
Collapse
Affiliation(s)
- Zeinab I Ali
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Adel M Saudi
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Ralph Albrecht
- Department of Animal Science, University of Wisconsin, Madison 53706
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706.
| |
Collapse
|
109
|
Li Z, Gentry Z, Murphy B, VanNieuwenhze MS. Scalable Synthesis of Orthogonally Protected β-Methyllanthionines by Indium(III)-Mediated Ring Opening of Aziridines. Org Lett 2019; 21:2200-2203. [PMID: 30855974 DOI: 10.1021/acs.orglett.9b00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotics are a class of peptide antibiotics with activity against most Gram-positive bacteria. Lanthionine (Lan) and β-MeLan are unusual thioether-bridged, non-proteinogenic amino acids, which are characteristic features of lantibiotics. In this paper, we report the facile stereoselective synthesis of β-methyllanthionines with orthogonal protection by nucleophilic ring opening of aziridines. This method leads to an expedient access to β-methyllanthionines and allows production of over 30 g of β-methyllanthionine in a single batch.
Collapse
Affiliation(s)
- Ziran Li
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Zachary Gentry
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Brennan Murphy
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Michael S VanNieuwenhze
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| |
Collapse
|
110
|
Jangra M, Kaur M, Nandanwar H. In-vitro studies on a natural lantibiotic, paenibacillin: A new-generation antibacterial drug candidate to overcome multi-drug resistance. Int J Antimicrob Agents 2019; 53:838-843. [PMID: 30928682 DOI: 10.1016/j.ijantimicag.2019.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
Abstract
The alarming burden of antibiotic resistance in nosocomial pathogens warrants the discovery and development of new and effective antimicrobial compounds. Small cationic antimicrobial peptides seem to be a promising therapeutic alternative to fight multi-drug resistance. This study investigated the in-vitro potential of a previously reported lantibiotic, paenibacillin, from the clinical perspective. An antimicrobial peptide, M152-P4, was isolated, purified and characterized from a mud isolate, and its susceptibility was determined in clinical isolates of Staphylococcus aureus and Enterococcus spp. Time-kill kinetics, resistance, probable mode of action, haemolytic activity and mammalian cytotoxicity were investigated. M152-P4 was identified as paenibacillin based on mass spectroscopy data, amino acid analysis and biosynthetic gene cluster analysis. It had potent antibacterial activity against the Gram-positive pathogens tested, with minimum inhibitory concentrations from 0.1 to 1.56 µM. It appeared very challenging for S. aureus to develop resistance to this compound. Also, paenibacillin penetrated the outer layer of bacteria, and depolarized the membrane completely by creating pores in the plasma membrane with better potential than nisin. Paenibacillin showed no haemolysis up to 60 µM, and the half maximal inhibitory concentration on mammalian cell lines was >100 µM. These results highlight the excellent antibacterial properties of paenibacillin in clinically relevant pathogens. It is stable in the presence of serum, and non-haemolytic and non-cytotoxic even above the therapeutic concentration. Further research efforts regarding toxicity and in-vivo efficacy are necessary to develop paenibacillin as a next-generation therapeutic drug to overcome multi-drug resistance in Gram-positive pathogens.
Collapse
Affiliation(s)
- Manoj Jangra
- Clinical Microbiology and Bioactive Screening Laboratory, Council of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh, India
| | - Manpreet Kaur
- Clinical Microbiology and Bioactive Screening Laboratory, Council of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh, India
| | - Hemraj Nandanwar
- Clinical Microbiology and Bioactive Screening Laboratory, Council of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
111
|
Pharmacological, Toxicological, and Dose Range Assessment of OG716, a Novel Lantibiotic for the Treatment of Clostridium difficile-Associated Infection. Antimicrob Agents Chemother 2019; 63:AAC.01904-18. [PMID: 30670434 DOI: 10.1128/aac.01904-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Lantibiotics present an attractive scaffold for the development of novel antibiotics. We report here a novel lantibiotic for the treatment of Clostridium difficile infection. The lead compounds were selected from a library of over 700 single- and multiple-substitution variants of the lantibiotic mutacin 1140 (MU1140). The best performers in vitro and in vivo were further used to challenge Golden Syrian hamsters orally in a Golden Syrian hamster model of Clostridium difficile-associated disease (CDAD) in a dose-response format, resulting in the selection of OG716 as the lead compound. This lantibiotic was characterized by a 50% effective dose of 23.85 mg/kg of body weight/day (10.97 μmol/kg/day) in this model. Upon oral administration of the maximum feasible dose (≥1,918 mg/kg/day), no observable toxicities or side effects were noted, and no effect on intestinal motility was observed. Compartmentalization to the gastrointestinal tract was confirmed. MU1140-derived variants offer a large pipeline for the development of novel antibiotics for the treatment of several indications and are particularly attractive considering their novel mechanism of action. Based on the currently available data, OG716 has an acceptable profile for further development for the treatment of CDAD.
Collapse
|
112
|
Sierra MA, Casarrubios L, de la Torre MC. Bio-Organometallic Derivatives of Antibacterial Drugs. Chemistry 2019; 25:7232-7242. [PMID: 30730065 DOI: 10.1002/chem.201805985] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Overuse and misuse of antibacterial drugs has resulted in bacteria resistance and in an increase in mortality rates due to bacterial infections. Therefore, there is an imperative necessity of new antibacterial drugs. Bio-organometallic derivatives of antibacterial agents offer an opportunity to discover new active antibacterial drugs. These compounds are well-characterized products and, in several examples, their antibacterial activities have been studied. Both inhibition of the antibacterial activity and strong increase in the antibiotic activity of the parent drug have been found. The synthesis of the main classes of bio-organometallic derivatives of these drugs, as well as examples of the use of structure-activity relation (SAR) studies to increase the activity and to understand the mode of action of bio-organometallic antimicrobial peptides (BOAMPs) and platensimicyn bio-organometallic mimics is presented in this article.
Collapse
Affiliation(s)
- Miguel A Sierra
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| | - María C de la Torre
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Orgánica General, Juan de la Cierva 3, 28006, Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| |
Collapse
|
113
|
Cavicchioli VQ, Todorov SD, Iliev I, Ivanova I, Drider D, Nero LA. Physiological and molecular insights of bacteriocin production by Enterococcus hirae ST57ACC from Brazilian artisanal cheese. Braz J Microbiol 2019; 50:369-377. [PMID: 30852798 DOI: 10.1007/s42770-019-00068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Abstract
The bacteriocinogenic Enterococcus hirae ST57ACC recently isolated from a Brazilian artisanal cheese was subjected here to additional analyses in order to evaluate its bacteriocin production and the potential influence of ABC transporter system in its expression. Besides these physiological and molecular aspects, the bacteriocin was evaluated for its cytotoxicity against HT-29. Differences in the inoculum size had no impact on the growth of E. hirae ST57ACC; however, the bacteriocin was only produced after 9 h of growth when the strain was inoculated at 5% or 10% (v/v), with similar levels of bacteriocin production obtained by both conventional growth and batch fermentation. Furthermore, potential expression of ABC transporters corresponding to the bacteriocin transport and sugar metabolism was identified. In terms of adverse effects, when a semi-purified fraction of the bacteriocin and the cell-free supernatant were tested against HT-29, total cell viability was similar to observed on untreated cells, indicating the absence of cytotoxic effect. Based on the obtained results, E. hirae ST57ACC can produce its bacteriocin at industrial level by using bioreactors, its bacteriocin expression is potentially influenced by the ABC transporter system, and no cytotoxic effects were observed on HT-29 cells, indicating its potential use as a bio-preservative.
Collapse
Affiliation(s)
| | - Svetoslav Dimitrov Todorov
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus UFV, Viçosa, MG, 36570-900, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4 Tzar Asen Str, 4000, Plovdiv, Bulgaria
| | - Iskra Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Djamel Drider
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus UFV, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
114
|
Mo T, Yuan H, Wang F, Ma S, Wang J, Li T, Liu G, Yu S, Tan X, Ding W, Zhang Q. Convergent evolution of the Cys decarboxylases involved in aminovinyl‐cysteine (AviCys) biosynthesis. FEBS Lett 2019; 593:573-580. [DOI: 10.1002/1873-3468.13341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Tianlu Mo
- Department of Chemistry Fudan University Shanghai China
| | - Hong Yuan
- Department of Chemistry Fudan University Shanghai China
| | - Fangting Wang
- Department of Chemistry Fudan University Shanghai China
| | - Suze Ma
- Department of Chemistry Fudan University Shanghai China
| | - Jinxiu Wang
- Department of Chemistry Fudan University Shanghai China
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University China
| | - Ting Li
- Department of Chemistry Fudan University Shanghai China
| | | | - Shaoning Yu
- Department of Chemistry Fudan University Shanghai China
| | - Xiangshi Tan
- Department of Chemistry Fudan University Shanghai China
| | - Wei Ding
- Department of Chemistry Fudan University Shanghai China
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
115
|
Greco I, Emborg AP, Jana B, Molchanova N, Oddo A, Damborg P, Guardabassi L, Hansen PR. Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections. Sci Rep 2019; 9:3679. [PMID: 30842436 PMCID: PMC6403271 DOI: 10.1038/s41598-019-39042-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023] Open
Abstract
Integumentary infections like pyoderma represent the main reason for antimicrobial prescription in dogs. Staphylococcus pseudintermedius and Pseudomonas aeruginosa are frequently identified in these infections, and both bacteria are challenging to combat due to resistance. To avoid use of important human antibiotics for treatment of animal infections there is a pressing need for novel narrow-spectrum antimicrobial agents in veterinary medicine. Herein, we characterize the in vitro activity of the novel peptide-peptoid hybrid B1 against canine isolates of S. pseudintermedius and P. aeruginosa. B1 showed potent minimum inhibitory concentrations (MICs) against canine S. pseudintermedius and P. aeruginosa isolates as well rapid killing kinetics. B1 was found to disrupt the membrane integrity and affect cell-wall synthesis in methicillin-resistant S. pseudintermedius (MRSP). We generated 28 analogues of B1, showing comparable haemolysis and MICs against MRSP and P. aeruginosa. The most active analogues (23, 26) and B1 were tested against a collection of clinical isolates from canine, of which only B1 showed potent activity. Our best compound 26, displayed activity against P. aeruginosa and S. pseudintermedius, but not the closely related S. aureus. This work shows that design of target-specific veterinary antimicrobial agents is possible, even species within a genus, and deserves further exploration.
Collapse
Affiliation(s)
- Ines Greco
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Agnete Plahn Emborg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Novo Nordisk, Brennum Park 1, 3400, Hilleroed, Denmark
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Roskilde University, Department of Science and Environment, 4000, Roskilde, Denmark
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Novo Nordisk A/S, Krogshøjvej 44, 2820, Bagsværd, Denmark
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, Hatfield, Herts, United Kingdom
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
116
|
Lordan R, Walsh AM, Crispie F, Finnegan L, Cotter PD, Zabetakis I. The effect of ovine milk fermentation on the antithrombotic properties of polar lipids. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
117
|
Paenibacillus polymyxa bioactive compounds for agricultural and biotechnological applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
118
|
Helf MJ, Freeman MF, Piel J. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. ACTA ACUST UNITED AC 2019; 46:551-563. [DOI: 10.1007/s10295-018-02129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Polytheonamides are the most extensively modified ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) currently known. In RiPP biosynthesis, the processed peptide is usually released from a larger precursor by proteolytic cleavage to generate the bioactive terminal product of the pathway. For polytheonamides, which are members of a new RiPP family termed proteusins, we have recently shown that such cleavage is catalyzed by the cysteine protease PoyH acting on the precursor PoyA, both encoded in the polytheonamide biosynthetic gene cluster. We now report activity for PoyH under a variety of reaction conditions for different maturation states of PoyA and demonstrate a potential use of PoyH as a promiscuous protease to liberate and characterize RiPPs from other pathways. As a proof of concept, the identified recognition motif was introduced into precursors of the thiopeptide thiocillin and the lanthipeptide lichenicidin VK1, allowing for their site-specific cleavage with PoyH. Additionally, we show that PoyH cleavage is inhibited by PoyG, a previously uncharacterized chagasin-like protease inhibitor encoded in the polytheonamide gene cluster.
Collapse
Affiliation(s)
- Maximilian J Helf
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
- 000000041936877X grid.5386.8 Boyce Thompson Institute Cornell University 533 Tower Road 14853 Ithaca USA
| | - Michael F Freeman
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
- 0000000419368657 grid.17635.36 Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute University of Minnesota-Twin Cities 55108 St. Paul MN USA
| | - Jörn Piel
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
119
|
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front Microbiol 2019; 10:302. [PMID: 30873135 PMCID: PMC6401651 DOI: 10.3389/fmicb.2019.00302] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last seven decades, applications using members of the Bacillus subtilis group have emerged in both food processes and crop protection industries. Their ability to form survival endospores and the plethora of antimicrobial compounds they produce has generated an increased industrial interest as food preservatives, therapeutic agents and biopesticides. In the growing context of food biopreservation and biological crop protection, this review suggests a comprehensive way to visualize the antimicrobial spectrum described within the B. subtilis group, including volatile compounds. This classification distinguishes the bioactive metabolites based on their biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial activity are described and exemplified. This review aims at constituting a convenient and updated classification of antimicrobial metabolites from the B. subtilis group, whose complex phylogeny is prone to further development.
Collapse
Affiliation(s)
- Simon Caulier
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florent Licciardi
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
120
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
121
|
Sikandar A, Koehnke J. The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2019; 36:1576-1588. [DOI: 10.1039/c8np00064f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the role of protein–protein complexes in the biosynthesis of selected ribosomally synthesized and post-translationally modified peptide (RiPP) classes.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| |
Collapse
|
122
|
Efficacious Analogs of the Lantibiotic Mutacin 1140 against a Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antimicrob Agents Chemother 2018; 62:AAC.01626-18. [PMID: 30275083 DOI: 10.1128/aac.01626-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
Abstract
Mutacin 1140, a member of the epidermin family of type AI lantibiotics, has a broad spectrum of activity against Gram-positive bacteria. It blocks cell wall synthesis by binding to lipid II. Although it has rapid bactericidal effects and potent activity against Gram-positive pathogens, its rapid clearance and short half-life in vivo limit its development in the clinic. In this study, we evaluated the effect of charged and dehydrated residues on the pharmacokinetics of mutacin 1140. The dehydrated residues were determined to contribute to the stability of mutacin 1140, while alanine substitutions for the lysine or arginine residues improved the pharmacological properties of the antibiotic. Analogs K2A and R13A had significantly lower clearances, leading to higher plasma concentrations over time. They also had improved bioactivities against several pathogenic bacteria. In a murine systemic methicillin-resistant Staphylococcus aureus (MRSA) infection model, a 10-mg/kg single intravenous bolus injection of the K2A and R13A analogs (1:1 ratio) protected 100% of the infected mice, while a 2.5-mg/kg dose resulted in 50% survival. The 10-mg/kg treatment group had a significant reduction in bacteria load in the livers and kidneys compared to that in the vehicle control group. The study provides lead compounds for the future development of antibiotics used to treat systemic Gram-positive infections.
Collapse
|
123
|
De Luca S, Digilio G, Verdoliva V, Saviano M, Menchise V, Tovillas P, Jiménez-Osés G, Peregrina JM. A Late-Stage Synthetic Approach to Lanthionine-Containing Peptides via S-Alkylation on Cyclic Sulfamidates Promoted by Molecular Sieves. Org Lett 2018; 20:7478-7482. [DOI: 10.1021/acs.orglett.8b03254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy
| | - Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy
| | - Valeria Menchise
- Institute of Biostructures and Bioimaging, National Research Council, c/o Molecular
Biotechnology Center, 10126 Turin, Italy
| | - Pablo Tovillas
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesus M. Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
124
|
Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Mol Biotechnol 2018; 60:712-726. [PMID: 30073512 DOI: 10.1007/s12033-018-0108-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are "friendly" antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.
Collapse
|
125
|
Mitchell SA, Truscott F, Dickman R, Ward J, Tabor AB. Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorg Med Chem 2018; 26:5691-5700. [DOI: 10.1016/j.bmc.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|
126
|
Di Costanzo L, Dutta S, Burley SK. Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank. Biopolymers 2018; 109:e23230. [PMID: 30368772 DOI: 10.1002/bip.23230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Extensive efforts invested in understanding the rules of protein folding are now being applied, with good effect, in de novo design of proteins/peptides. For proteins containing standard α-amino acids alone, knowledge derived from experimentally determined three-dimensional (3D) structures of proteins and biologically active peptides are available from the Protein Data Bank (PDB), and the Cambridge Structural Database (CSD). These help predict and design protein structures, with reasonable confidence. However, our knowledge of 3D structures of biomolecules containing backbone modified amino acids is still evolving. A major challenge in de novo protein/peptide design concerns the engineering of conformationally constrained molecules with specific structural elements and chemical groups appropriately positioned for biological activity. This review explores four classes of amino acid modifications that constrain protein/peptide backbone structure. Systematic analysis of peptidic molecule structures (eg, bioactive peptides, inhibitors, antibiotics, and designed molecules), containing these backbone-modified amino acids, found in the PDB and CSD are discussed. The review aims to provide structure-function insights that will guide future design of proteins/peptides.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Shuchismita Dutta
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, U.S.A.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| |
Collapse
|
127
|
De Leon Rodriguez LM, Williams ET, Brimble MA. Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene‐Like Rigidifying Motifs. Chemistry 2018; 24:17869-17880. [DOI: 10.1002/chem.201802533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elyse T. Williams
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Biological SciencesThe University of Auckland 3 Symonds St. Auckland 1142 New Zealand
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| |
Collapse
|
128
|
Dzhavakhiya VV, Glagoleva EV, Savelyeva VV, Statsyuk NV, Kartashov MI, Voinova TM, Sergeeva AV. New bacitracin-resistant nisin-producing strain of Lactococcus lactis and its physiological characterization. AIMS Microbiol 2018; 4:608-621. [PMID: 31294237 PMCID: PMC6613330 DOI: 10.3934/microbiol.2018.4.608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022] Open
Abstract
Nisin A belonging to the class I bacteriocins and produced by Lactococcus lactis subsp. lactis is widely used in many countries as highly efficient and safe preservative preventing growth of undesirable bacteria in food products. Though this compound is efficient at very low concentrations, reduction of its manufacturing cost is still relevant problem. An increased nisin A production requires improved resistance of its producer to nisin. According to some studies, mechanisms of microbial resistance to nisin A and bacitracin have a similar basis, and the same transporters are used to export these antibiotics from cells. To obtain strains with improved growth rate and nisin A productivity, selection of spontaneous bacitracin-resistant L. lactis mutants followed by examination of their stability as well as physiological and fermentation characteristics was carried out. Spontaneous mutants were obtained by culturing of L. lactis VKPM B-2092 strain on selective bacitracin-containing agar medium. The obtained bacitracin-resistant strain FL-75 was characterized by accelerated growth rate, doubled biomass accumulation, and improved nisin A resistance. The nisin A productivity of FL-75 exceeded that of the parental strain by 25% reaching 8902 U/mL after 14-h cultivation. In addition, FL-75 was characterized by the improved resistance to oxidative stress that has never been reported earlier for bacitracin-resistant microorganisms. Based on the performed characterization of FL-75, we can consider it as a new independent strain promising for the industrial production of food and feed biopreservatives. Comparison of published data and the obtained results allowed us to suppose that the bacitracin resistance mutation in FL-75 is determined rather by an increased expression of a gene homologous to the bcrC gene of Bacillus sp. than by the activation of multidrug resistance mechanisms. The revealed resistance of FL-75 to bacitracin and oxidative stress can be regulated by a common transcription factor activating in response to various environmental stresses.
Collapse
Affiliation(s)
- Vakhtang V Dzhavakhiya
- Laboratory of Biotechnology of Physiologically Active Compounds, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 117312, Russia
| | - Elena V Glagoleva
- Laboratory of Biotechnology of Physiologically Active Compounds, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 117312, Russia
| | - Veronika V Savelyeva
- Laboratory of Biotechnology of Physiologically Active Compounds, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 117312, Russia
| | - Natalia V Statsyuk
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow region 143050, Russia
| | - Maksim I Kartashov
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow region 143050, Russia
| | - Tatiana M Voinova
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow region 143050, Russia
| | | |
Collapse
|
129
|
Kers JA, Sharp RE, Muley S, Mayo M, Colbeck J, Zhu Y, DeFusco AW, Park JH, Handfield M. Blueprints for the rational design of therapeutic mutacin 1140 variants. Chem Biol Drug Des 2018; 92:1940-1953. [DOI: 10.1111/cbdd.13365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Johan A. Kers
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - R. Eryl Sharp
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Sheela Muley
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Melissa Mayo
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Jeffrey Colbeck
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Yihui Zhu
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | | | | | | |
Collapse
|
130
|
Denoël T, Lemaire C, Luxen A. Progress in Lanthionine and Protected Lanthionine Synthesis. Chemistry 2018; 24:15421-15441. [PMID: 29714402 DOI: 10.1002/chem.201801115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Indexed: 01/01/2023]
Abstract
Lanthionine (Lan), a non-proteinogenic natural amino acid, is an essential component of peptidoglycan found in the cell wall of Fusobacterium species. Lan and β-methyllanthionine are also key constituents in lantibiotics, a prevalent class of peptide antibiotics. The development of those new antibacterial drugs with enhanced properties is the focus of recent research. Since multiple isomers of Lan are possible, a regio- and diastereoselective synthesis is challenging. This comprehensive review summarizes the known chemical syntheses of lanthionine from various precursors (e.g., β-chloroalanine, cystine, dehydroalanine, β-iodoalanine, aziridine, serine lactone, sulfamidate) since 1941. Methods for preparation of unprotected, protected, orthogonally protected, and mutually orthogonally protected lanthionine with relevant experimental details and perspectives on their usefulness are provided. The potential of these Lan derivatives is illustrated by one recent application.
Collapse
Affiliation(s)
- Thibaut Denoël
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - Christian Lemaire
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - André Luxen
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| |
Collapse
|
131
|
|
132
|
LanCL1 attenuates ischemia-induced oxidative stress by Sirt3-mediated preservation of mitochondrial function. Brain Res Bull 2018; 142:216-223. [PMID: 30075199 DOI: 10.1016/j.brainresbull.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022]
Abstract
Lanthionine synthetase C-like protein 1 (LanCL1) is homologous to prokaryotic lanthionine cyclases, and has been shown to have novel functions in neuronal redox homeostasis. A recent study showed that LanCL1 expression was developmental and activity-dependent regulated, and LanCL1 transgene protected neurons against oxidative stress. In the present study, the potential protective effects of LanCL1 against ischemia was investigated in an in vitro model mimicked by oxygen and glucose deprivation (OGD) in neuronal HT22 cells. We found that OGD exposure induced a temporal increase and persistent decreases in the expression of LanCL1 at both mRNA and protein levels. Overexpression of LanCL1 by lentivirus (LV-LanCL1) transfection preserved cell viability, reduced lactate dehydrogenase (LDH) release and attenuated apoptosis after OGD. These protective effects were accompanied by decreased protein radical formation, lipid peroxidation and mitochondrial dysfunction. In addition, LanCL1 significantly stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that LanCL1-induced activation of Sirt3 was dependent on Akt-PGC-1α pathway. Knockdown of PGC-1α expression using small interfering RNA (siRNA) or blocking Akt activation using specific antagonist partially prevented the protective effects of LanCL1 in HT22 cells. Taken together, our results show that LanCL1 protects against OGD through activating the Akt-PGC-1α-Sirt3 pathway, and may have potential therapeutic value for ischemic stroke.
Collapse
|
133
|
Ongey EL, Giessmann RT, Fons M, Rappsilber J, Adrian L, Neubauer P. Heterologous Biosynthesis, Modifications and Structural Characterization of Ruminococcin-A, a Lanthipeptide From the Gut Bacterium Ruminococcus gnavus E1, in Escherichia coli. Front Microbiol 2018; 9:1688. [PMID: 30093894 PMCID: PMC6071512 DOI: 10.3389/fmicb.2018.01688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
Ruminococcin A (RumA) is a lanthipeptide with high activity against pathogenic clostridia and is naturally produced by the strict anaerobic bacterium Ruminococcus gnavus E1, isolated from human intestine. Cultivating R. gnavus E1 is challenging, limiting high-quality production, further biotechnological development and therapeutic exploitation of RumA. To supply an alternative production system, the gene encoding RumA-modifying enzyme (RumM) and the gene encoding the unmodified precursor peptide (preRumA) were amplified from the chromosome of R. gnavus E1 and coexpressed in Escherichia coli. Our results show that the ruminococcin-A lanthionine synthetase RumM catalyzed dehydration of threonine and serine residues and subsequently installed thioether bridges into the core structure of a mutant version of preRumA (preRumA∗). These modifications were achieved when the peptide was expressed as a fusion protein together with green fluorescence protein (GFP), demonstrating that a larger attachment to the N-terminus of the leader peptide does not obstruct in vivo processivity of RumM in modifying the core peptide. The leader peptide serves as a docking sequence which the modifying enzyme recognizes and interacts with, enabling its catalytic role. We further investigated RumM catalysis in conjunction with the formation of complexes observed between RumM and the chimeric GFP fusion protein. Results obtained suggested some insights into the catalytic mechanisms of class II lanthipeptide synthetases. Our data further indicated the presence of three thioether bridges, contradicting a previous report whose findings ruled out the possibility of forming a third ring in RumA. Modified preRumA∗ was activated in vitro by removing the leader peptide using trypsin and biological activity was achieved against Bacillus subtilis ATCC 6633. A production yield of 6 mg of pure modified preRumA∗ per liter of E. coli culture was attained and considering the size ratio of the leader-to-core segments of preRumA∗, this amount would generate a final yield of approximately 1-2 mg of active RumA when the leader peptide is removed. The yield of our system exceeds that attainable in the natural producer by several 1000-fold. The system developed herein supplies useful tools for product optimization and for performing in vivo peptide engineering to generate new analogs with superior anti-infective properties.
Collapse
Affiliation(s)
- Elvis L Ongey
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robert T Giessmann
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Michel Fons
- Aix Marseille Univ, CNRS, BIP UMR 7281, Marseille, France
| | - Juri Rappsilber
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
134
|
Modifying the Lantibiotic Mutacin 1140 for Increased Yield, Activity, and Stability. Appl Environ Microbiol 2018; 84:AEM.00830-18. [PMID: 29776930 DOI: 10.1128/aem.00830-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
Abstract
Mutacin 1140 belongs to the epidermin family of type AI lantibiotics. This family has a broad spectrum of activity against Gram-positive bacteria. The binding of mutacin 1140 to lipid II leads to the inhibition of cell wall synthesis. Pharmacokinetic experiments with type AI lantibiotics are generally discouraging for clinical applications due to the short half-life of these compounds. The unprotected dehydrated and protease-susceptible residues outside the lanthionine rings may play a role in the short half-life in physiological settings. Previous mutagenesis work on mutacin 1140 has been limited to the lanthionine-forming residues, the C-terminally decarboxylated residue, and single amino acid substitutions at residues Phe1, Trp4, Dha5, and Arg13. To study the importance of the dehydrated (Dha5 and Dhb14) and protease-susceptible (Lys2 and Arg13) residues within mutacin 1140 for stability and bioactivity, each of these residues was evaluated for its impact on production and inhibitory activity. More than 15 analogs were purified, enabling direct comparison of the activities against a select panel of Gram-positive bacteria. The efficiency of the posttranslational modification (PTM) machinery of mutacin 1140 is highly restricted on its substrate. Analogs in the various intermediate stages of PTMs were observed as minor products following single point mutations at the 2nd, 5th, 13th, and 14th positions. The combination of alanine substitutions at the Dha5 and Dhb14 positions abolished mutacin 1140 production, while the production was restored by substitution of a Gly residue at one of these positions. Analogs with improved activity, productivity, and proteolytic stability were identified.IMPORTANCE Our findings show that the efficiency of mutacin 1140 PTMs is highly dependent on the core peptide sequence. Analogs in various intermediate stages of PTMs can be transported by the bacterium, which indicates that PTMs and transport are finely tuned for the native mutacin 1140 core peptide. Only certain combinations of amino acid substitutions at the Dha5 and Dhb14 dehydrated residue positions were tolerated. Observation of glutamylated core peptide analogs shows that dehydrations occur in a glutamate-dependent manner. Interestingly, mutations at positions outside rings A and B, the lipid II binding domain, would interfere with lipid II binding. Purified mutacin 1140 analogs have various activities and selectivities against different genera of bacteria, supporting the effort to generate analogs with higher specificity against pathogenic bacteria. The discovery of analogs with improved inhibitory activity against pathogenic bacteria, increased stability in the presence of protease, and higher product yields may promote the clinical development of this unique antimicrobial compound.
Collapse
|
135
|
Gherghisan-Filip C, Saalbach G, Hatziioanou D, Narbad A, Mayer MJ. Processing and Structure of the Lantibiotic Peptide Nso From the Human Gut Bacterium Blautia obeum A2-162 analysed by Mass Spectrometry. Sci Rep 2018; 8:10077. [PMID: 29973605 PMCID: PMC6031655 DOI: 10.1038/s41598-018-28248-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
A previously reported gene cluster encoding four nisin-like peptides, three with the same sequence (NsoA1-3) and the unique NsoA4, produced antimicrobial activity in the presence of trypsin after heterologous expression in Lactococcus lactis. Protein extracts were separated by SDS gel electrophoresis or immunoprecipitation using an antibody to the NsoA2 leader. Tryptic peptides observed by LC-MS/MS covered the complete sequence of preNsoA1-3 and part of the leader sequence of preNsoA4 and confirmed the expression and the predicted sequences of the preNsoA peptides. Further, the data revealed that the preNsoA1-3 peptides were partly modified with dehydrations and formation of lanthionine rings. A certain amount of fully modified preNsoA1-3 was observed. Details of modifications of the core peptide and the C-terminal tryptic peptide TATCGCHITGK covering rings D and E indicated that 22% of these preNsoA1-3 peptides were completely modified. A lower amount of ring formation is estimated for rings A-C. Intact masses of immunoprecipitation-derived peptides determined by LC-MS accurately matched the expected preNsoA precursor peptides. The most abundant peptides detected were preNsoA2-3-8H2O followed by preNsoA1-8H2O and other states of dehydration. The results confirm incomplete processing of preNsoA peptides in the heterologous system, with the formation of a certain amount of fully modified peptides.
Collapse
Affiliation(s)
- Cristina Gherghisan-Filip
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK.,University of East Anglia, UEA, Norwich Medical School, Norwich, NR4 7TJ, UK
| | - Gerhard Saalbach
- John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Diane Hatziioanou
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Arjan Narbad
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Melinda J Mayer
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK.
| |
Collapse
|
136
|
Chen H, Zhang Y, Li QQ, Zhao YF, Chen YX, Li YM. De Novo Design To Synthesize Lanthipeptides Involving Cascade Cysteine Reactions: SapB Synthesis as an Example. J Org Chem 2018; 83:7528-7533. [PMID: 29893565 DOI: 10.1021/acs.joc.8b00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized peptides that have crucial biological functions. However, due to their complicated structures, the total synthesis of lanthipeptides is challenging. Here, a novel strategy to construct lanthipeptides is described, which involves cascade reactions of cysteine, including Cys disalkylation elimination, Michael reaction, and native chemical ligation. We utilized this strategy to synthesize lanthipeptide SapB as an example. This methodology has the potential to obtain lanthipeptides and their analogues for biological research and drug discovery.
Collapse
Affiliation(s)
- Huai Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yuan Zhang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Qian-Qian Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China.,Beijing Institute for Brain Disorders , Beijing 100069 , P.R. China
| |
Collapse
|
137
|
OG716: Designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections. PLoS One 2018; 13:e0197467. [PMID: 29894469 PMCID: PMC5997364 DOI: 10.1371/journal.pone.0197467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
Lantibiotics continue to offer an untapped pipeline for the development of novel antibiotics. We report here the discovery of a novel lantibiotic for the treatment of C. difficile infection (CDI). The leads were selected from a library of over 300 multiple substitution variants of the lantibiotic Mutacin 1140 (MU1140). Top performers were selected based on testing for superior potency, solubility, manufacturability, and physicochemical and/or metabolic stability in biologically-relevant systems. The best performers in vitro were further evaluated orally in the Golden Syrian hamster model of CDAD. In vivo testing ultimately identified OG716 as the lead compound, which conferred 100% survival and no relapse at 3 weeks post infection. MU1140-derived variants are particularly attractive for further clinical development considering their novel mechanism of action.
Collapse
|
138
|
Abstract
Over the past two decades, developing medical applications for peptides has, and continues to be a highly active area of research. At present there are over 60 peptide-based drugs on the market and more than 140 in various stages of clinical trials. The interest in peptide-based therapeutics arises from their biocompatibility and their ability to form defined secondary and tertiary structures, resulting in a high selectivity for complex targets. However, there are significant challenges associated with the development of peptide-based therapeutics, namely peptides are readily metabolised in vivo. Peptoids are an emerging class of peptidomimetic and they offer an alternative to peptides. Peptoids are comprised of N-substituted glycines where side-chains are located on the nitrogen atom of the amide backbone rather than the α-carbon as is the case in peptides. This change in structure confers a high degree of resistance to proteolytic degradation but the absence of any backbone hydrogen bonding means that peptoids exhibit a high degree of conformational flexibility. Cyclisation has been explored as one possible route to rigidify peptoid structures, making them more selective, and, therefore more desirable as potential therapeutics. This review outlines the various strategies that have been developed over the last decade to access new types of macrocyclic peptoids.
Collapse
Affiliation(s)
| | - Steven L. Cobb
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
139
|
Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018; 4:9. [PMID: 29707229 PMCID: PMC5908865 DOI: 10.1038/s41522-018-0053-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Biofilms are sessile communities of bacteria typically embedded in an extracellular polymeric matrix. Bacterial cells embedded in biofilms are inherently recalcitrant to antimicrobials, compared to cells existing in a planktonic state, and are notoriously difficult to eradicate once formed. Avenues to tackle biofilms thus far have largely focussed on attempting to disrupt the initial stages of biofilm formation, including adhesion and maturation of the biofilm. Such an approach is advantageous as the concentrations required to inhibit formation of biofilms are generally much lower than removing a fully established biofilm. The crisis of antibiotic resistance in clinical settings worldwide has been further exacerbated by the ability of certain pathogenic bacteria to form biofilms. Perhaps the most notorious biofilm formers described from a clinical viewpoint have been methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Gardnerella vaginalis and Streptococcus mutans, the latter of which is found in oral biofilms. Due to the dearth of novel antibiotics in recent decades, compounded by the increasing rate of emergence of resistance amongst pathogens with a propensity for biofilm formation, solutions are urgently required to mitigate these crises. Bacteriocins are a class of antimicrobial peptides, which are ribosomally synthesised and often are more potent than their antibiotic counterparts. Here, we review a selection of studies conducted with bacteriocins with the ultimate objective of inhibiting biofilms. Overall, a deeper understanding of the precise means by which a biofilm forms on a substrate as well as insights into the mechanisms by which bacteriocins inhibit biofilms is warranted.
Collapse
|
140
|
Kers JA, Sharp RE, Defusco AW, Park JH, Xu J, Pulse ME, Weiss WJ, Handfield M. Mutacin 1140 Lantibiotic Variants Are Efficacious Against Clostridium difficile Infection. Front Microbiol 2018; 9:415. [PMID: 29615987 PMCID: PMC5864910 DOI: 10.3389/fmicb.2018.00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
Lantibiotics offer an untapped pipeline for the development of novel antibiotics to treat serious Gram-positive (+) infections including Clostridium difficile. Mutacin 1140 (MU1140) is a lantibiotic produced by Streptococcus mutans and acts via a novel mechanism of action, which may limit the development of resistance. This study sought to identify a lead compound for the treatment of C. difficile associated diarrhea (CDAD). Compounds were selected from a saturation mutagenesis library of 418 single amino acid variants of MU1140. Compounds were produced by small scale fermentation, purified, characterized and then subjected to a panel of assays aimed at identifying the best performers. The screening assays included: in vitro susceptibility testing [MIC against Micrococcus luteus, Clostridium difficile, vancomycin-resistant enterococci (VRE), Staphylococcus aureus, Streptococcus pneumonia, Mycobacterium phlei, and Pseudomonas aeruginosa; cytotoxicity screening on HepG2 hepatocytes; in vitro pharmacological profiling with the Safety Screen 44TM, metabolic and chemical stability in biologically relevant fluids (FaSSGF, FaSSIF and serum); and efficacy in vivo]. Several lantibiotic compounds had better MIC against C. difficile, compared to vancomycin, but not against other bacterial species tested. The Safety Screen 44TMin vitro pharmacological profiling assay suggested that this class of compounds has relatively low overall toxicity and that compound OG253 (MU1140, Phe1Ile) is not likely to present inadvertent off-target effects, as evidenced by a low promiscuity score. The in vitro cytotoxicity assay also indicated that this class of compounds was characterized by low toxicity; the EC50 of OG253 was 636 mg/mL on HepG2 cells. The half-life in simulated gastric fluid was >240 min. for all compound tested. The stability in simulated intestinal fluid ranged between a half-life of 5 min to >240 min, and paralleled the half-life in serum. OG253 ultimately emerged as the lead compound based on superior in vivo efficacy along with an apparent lack of relapse in a hamster model of infection. The lessons learned from this report are applicable to therapeutic lanthipeptides in general and may assist in the design of novel molecules with improved pharmacological, therapeutic and physicochemical profiles. The data presented also support the continued clinical development of OG253 as a novel antibiotic against CDAD that could prevent recurrence of the infection.
Collapse
Affiliation(s)
- Johan A Kers
- Industrial Products Division, Intrexon Corp., South San Francisco, CA, United States
| | - Robert E Sharp
- Industrial Products Division, Intrexon Corp., South San Francisco, CA, United States
| | | | - Jae H Park
- Oragenics, Inc., Tampa, FL, United States
| | - Jin Xu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, United States
| | - Mark E Pulse
- PreClinical Services, UNT System College of Pharmacy, Fort Worth, TX, United States
| | - William J Weiss
- PreClinical Services, UNT System College of Pharmacy, Fort Worth, TX, United States
| | | |
Collapse
|
141
|
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides containing thioether cross-links formed through addition of a cysteine to a dehydroalanine (to form lanthionine) or to a dehydrobutyrine (to form 3-methyllanthionine). Genome sequencing of marine cyanobacteria lead to the discovery of 1.6 million open reading frames encoding lanthipeptides. In many cases, a genome encodes a single lanthipeptide synthetase, but a large number of substrates. The enzymatic modification process in Prochlorococcus MIT9313 has been reconstituted in vitro, and a variety of experimental approaches have been used to try and understand how one enzyme is capable of modifying 30 different substrates. The methods used to characterize this system will be described along with a brief genomic description of the lanthipeptide landscape found in Prochlorococcus and Synechococcus.
Collapse
|
142
|
Affiliation(s)
- Varsha J. Thombare
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| | - Craig A. Hutton
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| |
Collapse
|
143
|
Hasim S, Allison DP, Mendez B, Farmer AT, Pelletier DA, Retterer ST, Campagna SR, Reynolds TB, Doktycz MJ. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope. Front Microbiol 2018; 9:219. [PMID: 29491859 PMCID: PMC5817074 DOI: 10.3389/fmicb.2018.00219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.
Collapse
Affiliation(s)
- Sahar Hasim
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David P Allison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Berlin Mendez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Abigail T Farmer
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
144
|
Covalent Structure and Bioactivity of the Type AII Lantibiotic Salivaricin A2. Appl Environ Microbiol 2018; 84:AEM.02528-17. [PMID: 29269497 DOI: 10.1128/aem.02528-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/18/2017] [Indexed: 01/31/2023] Open
Abstract
Lantibiotics are a class of lanthionine-containing, ribosomally synthesized, and posttranslationally modified peptides (RiPPs) produced by Gram-positive bacteria. Salivaricin A2 belongs to the type AII lantibiotics, which are generally considered to kill Gram-positive bacteria by binding to the cell wall precursor lipid II via a conserved ring A structure. Salivaricin A2 was first reported to be isolated from a probiotic strain, Streptococcus salivarius K12, but the structural and bioactivity characterizations of the antibiotic have remained limited. In this study, salivaricin A2 was purified and its covalent structure was characterized. N-terminal analogues of salivaricin A2 were generated to study the importance for bioactivity of the length and charge of the N-terminal amino acids. Analogue salivaricin A2(3-22) has no antibacterial activity and does not have an antagonistic effect on the native compound. The truncated analogue also lost its ability to bind to lipid II in a thin-layer chromatography (TLC) assay, suggesting that the N-terminal amino acids are important for binding to lipid II. The creation of N-terminal analogues of salivaricin A2 promoted a better understanding of the bioactivity of this antibiotic and further elucidated the structural importance of the N-terminal leader peptide. The antibacterial activity of salivaricin A2 is due not only to the presence of the positively charged N-terminal amino acid residues, but to the length of the N-terminal linear peptide.IMPORTANCE The amino acid composition of the N-terminal linear peptide of salivaricin A2 is crucial for function. Our study shows that the length of the amino acid residues in the linear peptide is crucial for salivaricin A2 antimicrobial activity. Very few type AII lantibiotic covalent structures have been confirmed. The characterization of the covalent structure of salivaricin A2 provides additional support for the predicted lanthionine and methyl-lanthionine ring formations present in this structural class of lantibiotics. Removal of the N-terminal Lys1 and Arg2 residues from the peptide causes a dramatic shift in the chemical shift values of amino acid residues 7 through 9, suggesting that the N-terminal amino acids contribute to a distinct structural conformer for the linear peptide region. The demonstration that the bioactivity could be partially restored with the substitution of N-terminal alanine residues supports further studies aimed at determining whether new analogues of salivaricin A2 for novel applications can be synthesized.
Collapse
|
145
|
CerR, a Single-Domain Regulatory Protein of the LuxR Family, Promotes Cerecidin Production and Immunity in Bacillus cereus. Appl Environ Microbiol 2018; 84:AEM.02245-17. [PMID: 29247062 DOI: 10.1128/aem.02245-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Cerecidins are small lantibiotics from Bacillus cereus that were obtained using a semi-in vitro biosynthesis strategy and showed prominent antimicrobial activities against certain Gram-positive bacteria. However, the parental strain B. cereus As 1.1846 is incapable of producing cerecidins, most probably due to the transcriptional repression of the cerecidin gene cluster. Located in the cerecidin gene cluster, cerR encodes a putative response regulator protein that belongs to the LuxR family transcriptional regulators. CerR (84 amino acids) contains only a conserved DNA binding domain and lacks a conventional phosphorylation domain, which is rarely found in lantibiotic gene clusters. To investigate its function in cerecidin biosynthesis, cerR was constitutively expressed in B. cereus As 1.1846. Surprisingly, Constitutive expression of cerR enabled the production of cerecidins and enhanced self-immunity of B. cereus toward cerecidins. Reverse transcription-PCR analysis and electrophoresis mobility shift assays indicated, respectively, that the cer cluster was transcribed in two transcripts (cerAM and cerRTPFE) and that CerR regulated the cerecidin gene cluster directly by binding to the two predicted promoter regions of cerA and cerR DNase I footprinting experiments further confirmed that CerR specifically bound to the two promoter regions at a conserved inverted repeat sequence that was designated a CerR binding motif (cerR box). The present study demonstrated that CerR, as the first single-domain LuxR family transcriptional regulator, serves as a transcriptional activator in cerecidin biosynthesis and activates the cerecidin gene cluster, which was otherwise cryptic in B. cereusIMPORTANCE Lantibiotics with intriguing and prominent bioactivities are potential peptide antibiotics that could be applied in many areas, including food and pharmaceutical industries. The biosynthesis of lantibiotics is generally controlled by two-component regulatory systems consisting of histidine kinases and response regulators, while some unique and interesting regulatory systems are also revealed with the ever-increasing discovery of lantibiotic gene clusters among diverse microorganisms. Dissection of diverse lantibiotic regulation machineries would permit deep understanding of the biological functions of lantibiotics in different niches and even enable genetic activation of lantibiotic gene clusters that are otherwise cryptic. The significance of our study is to illuminate the regulatory mechanism of a special single-domain protein, CerR, in regulating cerecidin biosynthesis in Bacillus cereus, providing a possible novel approach to activate cryptic lantibiotic clusters.
Collapse
|
146
|
Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:22-29. [PMID: 29628998 PMCID: PMC5884221 DOI: 10.1016/j.jdsr.2017.08.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022] Open
Abstract
Streptococcus mutans has been implicated as a primary causative agent of dental caries in humans. An important virulence property of the bacterium is its ability to form biofilm known as dental plaque on tooth surfaces. In addition, this organism also produces glucosyltransferases, multiple glucan-binding proteins, protein antigen c, and collagen-binding protein, surface proteins that coordinate to produce dental plaque, thus inducing dental caries. Bacteria utilize quorum-sensing systems to modulate environmental stress responses. A major mechanism of response to signals is represented by the so called two-component signal transduction system, which enables bacteria to regulate their gene expression and coordinate activities in response to environmental stress. As for S. mutans, a signal peptide-mediated quorum-sensing system encoded by comCDE has been found to be a regulatory system that responds to cell density and certain environmental stresses by excreting a peptide signal molecule termed CSP (competence-stimulating peptide). One of its principal virulence factors is production of bacteriocins (peptide antibiotics) referred to as mutacins. Two-component signal transduction systems are commonly utilized by bacteria to regulate bacteriocin gene expression and are also related to biofilm formation by S. mutans.
Collapse
Affiliation(s)
- Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| |
Collapse
|
147
|
Mohammed SSD, Wartu JR, Aminu AH, David AAD, Musa BJ. Bio-preservation of Nigerian soft-white cheese in submerged consortium of bacteriocinogenic lactic acid bacteria culture. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajb2016.15619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
148
|
Clemens R, Zaschke-Kriesche J, Khosa S, Smits SHJ. Insight into Two ABC Transporter Families Involved in Lantibiotic Resistance. Front Mol Biosci 2018; 4:91. [PMID: 29404338 PMCID: PMC5786555 DOI: 10.3389/fmolb.2017.00091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides, which contain (methyl)-lanthionine-rings are called lantibiotics. They are produced by several Gram-positive bacteria and are mainly active against these bacteria. Although these are highly potent antimicrobials, some human pathogenic bacteria express specific ABC transporters that confer resistance and counteract their antimicrobial activity. Two distinct ABC transporter families are known to be involved in this process. These are the Cpr- and Bce-type ABC transporter families, named after their involvement in cationic peptide resistance in Clostridium difficile, and bacitracin efflux in Bacillus subtilis, respectively. Both resistance systems differentiate to each other in terms of the proteins involved. Here, we summarize the current knowledge and describe the divergence as well as the common features present in both the systems to confer lantibiotic resistance.
Collapse
Affiliation(s)
- Rebecca Clemens
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | | | - Sakshi Khosa
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
149
|
Saavedra CJ, Hernández D, Boto A. Metal-Free, Site-Selective Peptide Modification by Conversion of “Customizable” Units into β-Substituted Dehydroamino Acids. Chemistry 2017; 24:599-607. [DOI: 10.1002/chem.201703758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología, CSIC (Spanish Research Council); Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Tenerife SPAIN
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología, CSIC (Spanish Research Council); Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Tenerife SPAIN
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología, CSIC (Spanish Research Council); Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Tenerife SPAIN
| |
Collapse
|
150
|
Yang X, Beroske LP, Kemmink J, Rijkers DT, Liskamp RM. Synthesis of bicyclic tripeptides inspired by the ABC-ring system of vancomycin through ruthenium-based cyclization chemistries. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|