101
|
Zhang Y, Zhang N, Wang S, Zan Q, Wang X, Yang Q, Yu X, Dong C, Fan L. A lipid droplet-targetable and biothiol-sensitive fluorescent probe for the diagnosis of cancer cells/tissues. Analyst 2022; 147:1695-1701. [PMID: 35332355 DOI: 10.1039/d2an00030j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipid droplets (LDs) have recently been reported as an attractive target for cancer diagnosis and treatment, owing to their special structure or microenvironment changes in cancer development and resistance. However, the relationship between the biothiol level of LDs and cancer is still poorly understood, partially owing to the absence of effective molecular tools. Herein, we developed a LD-targetable and biothiol-sensitive fluorescent probe, BTDA-RSS, by introducing 2,4-dinitrobenzenesulfonyl (DNBS) as the biothiol reaction group into a benzothiazolyl derivative. BTDA-RSS displayed a marked and rapid fluorescence turn-on response toward biothiols, due to the biothiol-triggered cleavage of DNBS to yield the highly fluorescent benzothiazolyl iminocoumarin BTDA. In addition, the probe shows significant LD-targetable ability, and has been applied for imaging endogenous/exogenous biothiol changes in LDs. Importantly, BTDA-RSS has successfully been utilized to distinguish cancerous cells/tissues from normal cells/tissues with excellent contrast. Surprisingly, we demonstrated for the first time the visualization of LD biothiols in surgical specimens from cancer patients, thereby holding great potential for the application of BTDA-RSS in the clinical diagnosis of human cancers.
Collapse
Affiliation(s)
- Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, P. R. China.
| | - Ning Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, P. R. China. .,College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuohang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, P. R. China.
| | - Qi Zan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Xiaodong Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Qianqian Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, P. R. China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China.
| |
Collapse
|
102
|
A ratiometric fluorescent probe for SO2 derivatives based on a new coumarin-hemicyanine dye in living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
103
|
Yang YP, Qi FJ, Zheng YL, Duan DC, Bao XZ, Dai F, Zhang S, Zhou B. Fast Imaging of Mitochondrial Thioredoxin Reductase Using a Styrylpyridinium-Based Two-Photon Ratiometric Fluorescent Probe. Anal Chem 2022; 94:4970-4978. [PMID: 35297621 DOI: 10.1021/acs.analchem.1c04637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thioredoxin reductase (TrxR) is a pivotal antioxidant enzyme, but there remains a challenge for its fast imaging. This work describes the combination of a hydroxyl styrylpyridinium scaffold as the push-pull fluorophore with a carbonate-bridged 1,2-dithiolane unit as the reaction site to develop a fast mitochondrial TrxR2 probe, DSMP. It manifested a plethora of excellent properties including a rapid specific response (12 min), large Stokes shift (170 nm), ratiometric two-photon imaging, favorable binding with TrxR (Km = 12.5 ± 0.2 μM), and the ability to cross the blood-brain barrier. With the aid of DSMP, we visualized the increased mitochondrial TrxR2 activity in cancer cells compared to normal cells. This offers the direct imaging evidence of the connection between the increased TrxR2 activity and the development of cancer. Additionally, the probe allowed the visualization of the loss in TrxR2 activity in a cellular Parkinson's disease model and, more importantly, in mouse brain tissues of a middle cerebral artery occlusion model for ischemic stroke.
Collapse
Affiliation(s)
- Yong-Peng Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fu-Jian Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
104
|
Guo T, Chen X, Qu W, Yang B, Tian R, Geng Z, Wang Z. Red and Near-Infrared Fluorescent Probe for Distinguishing Cysteine and Homocysteine through Single-Wavelength Excitation with Distinctly Dual Emissions. Anal Chem 2022; 94:5006-5013. [PMID: 35294170 DOI: 10.1021/acs.analchem.1c04895] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small-molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), participate in various pathological and physiological processes. It is still a challenge to simultaneously distinguish Cys and Hcy because of their similar structures and reactivities, as well as the interference from the high intramolecular concentration of GSH. Herein, a novel fluorescent probe, CySI, based on cyanine and thioester was developed to differentiate Cys and Hcy through a single-wavelength excitation and two distinctly separated emission channels. The probe exhibited a turn-on fluorescence response to Cys at both 625 nm (the red channel) and 740 nm (the near-infrared channel) but only showed fluorescence turn-on to Hcy at 740 nm (the near-infrared channel) and no fluorescent response to GSH. With the aid of built-in self-calibration of single excitation and dual emissions, simultaneous discriminative determinations of Cys and Hcy were realized through red and near-infrared channels. CySI exhibited excellent selectivity toward Cys and Hcy with a fast response. This probe was further exploited to visualize exogenous Cys and Hcy in cells through dual emission channels under one excitation. Moreover, it could efficiently target mitochondria and was applied to monitor the endogenous Cys fluctuations independently in mitochondria through the red emission channel.
Collapse
Affiliation(s)
- Taiyu Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyue Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Wangbo Qu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ruowei Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
105
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
106
|
Jia Q, Zhang R, Wang Y, Yan H, Li Z, Feng Y, Ji Y, Yang Z, Yang Y, Pu K, Wang Z. A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Sci Bull (Beijing) 2022; 67:288-298. [PMID: 36546078 DOI: 10.1016/j.scib.2021.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023]
Abstract
Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer. Tumor cells, which are characterized by abnormal glycolysis, exhibit a lower extracellular pH (6.5-7.0) than normal tissues (7.2-7.4), providing a promising target for tumor-specific imaging and therapy. However, most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range. In this study, we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate (CaP) fluorescent probe (termed MACaP9). Unlike traditional CaP-based biomedical nanomaterials, which only work within more acidic organelles, such as endosomes and lysosomes (pH 4.0-6.0), MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually distinguish tumor from normal tissues. The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors, as well as small tumor lesions.
Collapse
Affiliation(s)
- Qian Jia
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Ruili Zhang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yongdong Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Haohao Yan
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zheng Li
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yanbin Feng
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yu Ji
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zuo Yang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China; Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China.
| |
Collapse
|
107
|
A Practical and
High‐Affinity
Fluorescent Probe for Butyrylcholinesterase: A Good Strategy for Binding Affinity Characterization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
108
|
Peng L, Yang Q, Tan L, Zhou L. Double-site-based a smart fluorescent sensor for logical detecting of sulphides and its imaging evaluation of living organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127591. [PMID: 34736215 DOI: 10.1016/j.jhazmat.2021.127591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Thiophenol and hydrosulphite are a group of toxic environmental pollutants, which contaminate land, water and food exhibiting a serious risk to human health. Herein, we reported a xanthene dye-based sensor (DSF) with dual well-known response sites for visual detecting PhSH and HSO3-. Specifically, when DSF reacted with PhSH firstly, the color of the solution changed to blue with bright red fluorescence emission. After added with HSO3-, the color of the solution became yellow, and emitted yellow fluorescence signal. However, DSF was first added with HSO3-, the color of the solution changed to purple with no-fluorescence emission, and then PhSH was added, the color of the solution changed to yellow with a bright yellow fluorescence. Notably, DSF exhibited high sensitivity and selectivity for PhSH and HSO3- detection with a very low detection limits of 2.27 nM and 22.91 nM, respectively. More importantly, DSF could detect PhSH and HSO3- in water, real-food and biological systems. Therefore, the experimental results showed DSF as a robust new logical monitoring tool for the detection of PhSH and HSO3- in water, real-food samples and biological systems.
Collapse
Affiliation(s)
- Longpeng Peng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
109
|
Zhang X, Zhang L, Liu S, Zhu X, Zhou P, Cheng X, Zhang R, Zhang L, Chen L. Insight into sulfur dioxide and its derivatives metabolism in living system with visualized evidences via ultra-sensitive fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127179. [PMID: 34544003 DOI: 10.1016/j.jhazmat.2021.127179] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Sulfur dioxide (SO2) and its derivatives have long been considered as hazardous environmental pollutants but commonly used as food additives in safe dose range. They also could be produced from biological metabolism process of sulfur-containing amino acids. However, their physiological roles remain extremely obscure mainly due to lack of efficient tools for monitoring and imaging strategy establishment. Furthermore, most of current studies of this aspect focus on novel probe design or just imaging them rather than on the ins and outs. Therefore, there is a high significance of establishing highly sensitive detection strategy for monitoring SO2 derivatives in living systems, food and environment. Herein, we design a fluorescent probe MS-Bindol for sensitively detecting SO2 derivatives with a low detection limit (0.2 nM). We have established an imaging strategy for investigation of SO2 derivatives metabolism in living cells and zebrafish, providing visualize evidences and verified that SO2 derivatives could be synthetized from thiosulfate and glutathione(GSH) and be hardly consumed by using sulfite oxidase inhibitors (ferricyanide or arsenite). Moreover, the probe also exhibits excellent practicability in food as well as environmental samples. Our studies may help biologist for better understanding SO2 derivatives metabolism and deeply explore their physiological roles in biological systems.
Collapse
Affiliation(s)
- Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaozhen Zhu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinyan Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Renjie Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
110
|
Zhu H, Sheng W, Liu C, Zhang H, Liang C, Zhang X, Wang K, Li X, Yu Y, Fan D, Zhu B. Rational design of a fluorescent probe and its applications of imaging and distinguishing between exogenous and endogenous H 2S in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120407. [PMID: 34600323 DOI: 10.1016/j.saa.2021.120407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S), a recognized environmental pollutant, comes from a wide range of sources. For example, H2S will be produced in the process of plant protein corruption, the decomposition of domestic sewage and garbage, food processing (wine brewing), etc. and once the concentration is too high, it will cause significant damage of environment and human body. Besides H2S is an important gas signal molecule in vivo, which can be transferred through lipid membrane. Its existence level is closely related to many diseases. If we can "visually" trace the transmembrane transmission of hydrogen sulfide, it will be very helpful for the study of oxidative stress processes, cell protection, signal transduction and related diseases closely related to H2S. Although some probes can detect H2S in environment, cytoplasm and organelles, there are few reports on the release and internalization of H2S. In this work, we report a H2S fluorescence probe that can retain on the cell membrane, named PCM. The probe PCM can not only detect endogenous and exogenous H2S, but also distinguish them, this provides a general strategy for the construction of probes to detect other biomarkers. In addition, PCM has been successfully applied to the detection of endogenous and exogenous H2S in zebrafish, which has the potential to become a new chemical tool and provide help for the research of H2S-related diseases.
Collapse
Affiliation(s)
- Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Hanming Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Changxu Liang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yamin Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
111
|
Yang X, Zhang D, Ye Y, Zhao Y. Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214336] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
112
|
Li B, Lin J, Huang P, Chen X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 2022; 6:91-102. [PMID: 34976583 PMCID: PMC8671960 DOI: 10.7150/ntno.63124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomedical luminescence imaging in the near-infrared (NIR, 700-1700 nm) region has shown great potential in visualizing biological processes and pathological conditions at cellular and animal levels, owing to the reduced tissue absorption and scattering compared to light in the visible (400-700 nm) region. To overcome the background interference and signal attenuation during intensity-based luminescence imaging, lifetime imaging has demonstrated a reliable imaging modality complementary to intensity measurement. Several selective or environment-responsive probes have been successfully developed for luminescence lifetime imaging and multiplex detection. This review summarizes recent advances in the application of luminescence lifetime imaging at cellular and animal levels in NIR-I and NIR-II regions. Finally, the challenges and further directions of luminescence lifetime imaging are also discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
113
|
Yang QQ, Tian QQ, Ji N, Duan XH, Zhu XH, Zhang YL, He W. A novel fluorescent probe for the detection of sulfur dioxide derivatives and its application in biological imaging. NEW J CHEM 2022. [DOI: 10.1039/d1nj03184h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new probe CA-SO2 to efficiently and specifically detect SO2 was designed. The probe showed a fast response time (<50 s), low detection limit (LOD = 75 nM), large Stokes shift (129 nm) and was applied to detect SO2 in living cells and zebrafish.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032, China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032, China
| | - Nan Ji
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032, China
| | - Xiao-Hong Duan
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
| | - Xiao-Hong Zhu
- Shaanxi Institute for Food and Drug Control, Xi’an, 710065, China
| | - Yan-Li Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032, China
| |
Collapse
|
114
|
Jiang L, Chen T, Song E, Fan Y, Min D, Zeng L, Bao GM. High-performance near-infrared fluorescence probe for fast and specific visualization of harmful sulfite in food, living cells, and zebrafish. CHEMICAL ENGINEERING JOURNAL 2022; 427:131563. [DOI: 10.1016/j.cej.2021.131563] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
115
|
Rong X, Liu C, Li M, Zhu H, Zhang Y, Su M, Wang X, Li X, Wang K, Yu M, Sheng W, Zhu B. An Integrated Fluorescent Probe for Ratiometric Detection of Glutathione in the Golgi Apparatus and Activated Organelle-Targeted Therapy. Anal Chem 2021; 93:16105-16112. [PMID: 34797641 DOI: 10.1021/acs.analchem.1c03836] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a serious threat to human health, and there is an urgent need to develop new treatment methods to overcome it. Organelle targeting therapy, as a highly effective and less toxic side effect treatment strategy, has great research significance and development prospects. Being an essential organelle, the Golgi apparatus plays a particularly major role in the growth of cancer cells. Acting as an indispensable and highly expressed antioxidant in cancer cells, glutathione (GSH) also contributes greatly during the Golgi oxidative stress. Therefore, it counts for much to track the changes of GSH concentration in Golgi for monitoring the occurrence and development of tumor cells, and exploring Golgi-targeted therapy is also extremely important for effective treatment of cancer. In this work, we designed and synthesized a simple Golgi-targeting fluorescent probe GT-GSH for accurately detecting GSH. The probe GT-GSH reacting with GSH decomposes toxic substances to Golgi, thereby killing cancer cells. At the same time, the ratiometric fluorescent probe can detect the concentration changes of GSH in Golgi stress with high sensitivity and selectivity in living cells. Therefore, such a GSH-responsive fluorescent probe with a Golgi-targeted therapy effect gives a new method for accurate treatment of cancer.
Collapse
Affiliation(s)
- Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mingzhu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
116
|
Chen J, Wang N, Tong H, Song C, Ma H, Zhang Y, Gao F, Xu H, Wang W, Lou K. A compact fluorescence/circular dichroism dual-modality probe for detection, differentiation, and detoxification of multiple heavy metal ions via bond-cleavage cascade reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
117
|
Li S, Huo F, Yue Y, Ma K, Wen Y, Yin C. Distinguishable multi-substance detection based on three-channel NIR fluorescent probe in physiology and pathology of living cells and zebrafish. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
118
|
Zeng X, Chen W, Liu C, Yin J, Yang GF. Fluorescence Probes for Reactive Sulfur Species in Agricultural Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13700-13712. [PMID: 34752105 DOI: 10.1021/acs.jafc.1c05249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfur is an element that is indispensable throughout the growth of plants. In plant cells, reactive sulfur species (RSS) play a vital role in maintaining cellular redox homeostasis and signal transduction. There is demand accordingly for a simple, highly selective, and sensitive method of RSS detection and imaging for monitoring dynamic changes and clarifying the biological functions of RSS in plant systems. Fluorescent analysis based on organic small-molecule fluorescent probes is an effective and specific approach to tracking plant RSS characteristics. This perspective summarizes the recent progress regarding organic small-molecule fluorescent probes for RSS monitoring, including small-molecule biological thiols, hydrogen sulfide, and sulfane sulfurs, in plants; it also discusses their response mechanism toward RSS and their imaging applications in plants across the agricultural chemistry field.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
119
|
Li D, Tian X, Liu Z, Liu J, Han G, Liu B, Zhao J, Zhang R, Tian Y, Zhang Z. Revealing Sulfur Dioxide Regulation to Nucleophagy in Embryo Development by an Adaptive Coloration Probe. Anal Chem 2021; 93:13667-13672. [PMID: 34591458 DOI: 10.1021/acs.analchem.1c03109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding signaling molecules in regulating organelles dynamics and programmed cell death is critical for embryo development but is also challenging because current imaging probes are incapable of simultaneously imaging the signaling molecules and the intracellular organelles they interact with. Here, we report a chemically and environmentally dual-responsive imaging probe that can react with gasotransmitters and label cell nuclei in distinctive fluorescent colors, similar to the adaptive coloration of chameleons. Using this intracellular chameleon-like probe in three-dimensional (3D) super-resolution dynamic imaging of live cells, we discovered SO2 as a critical upstream signaling molecule that activates nucleophagy in programmed cell death. An elevated level of SO2 prompts kiss fusion between the lysosomal and nuclear membranes and nucleus shrinkage and rupture. Significantly, we revealed that the gasotransmitter SO2 is majorly generated in the yolk, induces autophagy there at the initial stage of embryo development, and is highly related to the development of the auditory nervous system.
Collapse
Affiliation(s)
- Dandan Li
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Jiejie Liu
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Bianhua Liu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Zhao
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Yupeng Tian
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| |
Collapse
|
120
|
Luo Y, Yan P, Li X, Hou J, Wang Y, Zhou S. pH-Sensitive Polymeric Vesicles for GOx/BSO Delivery and Synergetic Starvation-Ferroptosis Therapy of Tumor. Biomacromolecules 2021; 22:4383-4394. [PMID: 34533297 DOI: 10.1021/acs.biomac.1c00960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Typical glucose oxidase (GOx)-based starvation therapy is a promising strategy for tumor treatment; however, it is still difficult to achieve an effective therapeutic effect via a single starvation therapy. Herein, we designed a pH-sensitive polymeric vesicle (PV) self-assembled by histamine-modified chondroitin sulfate (CS-his) for codelivery of GOx and l-buthionine sulfoximine (BSO). GOx can consume glucose to induce the starvation therapy after the PVs reach cancer cell. Moreover, the product H2O2 will be reduced by a high concentration of glutathione (GSH) in the tumor cell, resulting in a reduction of the GSH content. The released BSO finally further reduced the GSH level. As a result, the signaling pathway of the ferroptosis will be activated. The in vivo results demonstrated that GOx/BSO@CS PVs exhibit a good inhibitory effect on the growth of 4T1 tumors in mice. Thus, this work provides a facile strategy to prepare pH-sensitive nanomedicine for synergistic starvation-ferroptosis therapy of tumor.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Peng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xinyang Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
121
|
Zhang Y, Wen L, Zhang W, Yue Y, Chao J, Huo F, Yin C. Sulphide activity-dependent multicolor emission dye and its applications in in vivo imaging. Analyst 2021; 146:5517-5527. [PMID: 34515714 DOI: 10.1039/d1an01345a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive sulfur species (RSS) play pivotal roles in various pathological and physiological processes. There exists an intricate relevance in generation and metabolism among these substances. Although they are nucleophilic, there are still some differences in their reactivity. There are many methods to detect them by using reactive fluorescent probes, but the systematic study of their reactivity is still lacking. In our study, we designed a multiple reaction site fluorescent probe based on benzene conjugated benzopyrylium and NBD. The study revealed that besides both biothiols and hydrogen sulfide, sulfur dioxide (SO2) can cleave the ether bond. There are two reaction forms for GSH with low reactivity: cutting the ether bond and adding the conjugated double bond of benzopyrylium. Nevertheless, Cys/Hcy with higher activity can further rearrange with NBD after cutting the ether bond. In addition, SO2 can not only cleave the ether bond, but also continue to add the conjugated double bond of benzopyrylium. The above processes lead to multicolor emission of the probe, thus realizing the characteristic analysis of different sulfides. Thus the probe can be used for the detection of sulfide in mitochondria, and further for the imaging of sulfide in cells and zebrafish. This effective analysis method will provide a broad application prospect for practical applications.
Collapse
Affiliation(s)
- Yongbin Zhang
- Shanxi Key Laboratory of Functional Molecules, Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Le Wen
- Shanxi Key Laboratory of Functional Molecules, Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Shanxi Key Laboratory of Functional Molecules, Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China. .,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
122
|
Mukherjee T, Kanvah S, Klymchenko AS, Collot M. Probing Variations of Reduction Activity at the Plasma Membrane Using a Targeted Ratiometric FRET Probe. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40315-40324. [PMID: 34424677 DOI: 10.1021/acsami.1c11069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasma membrane (PM) is the turntable of various reactions that regulate essential functionalities of cells. Among these reactions, the thiol disulfide exchange (TDE) reaction plays an important role in cellular processes. We herein designed a selective probe, called membrane reduction probe (MRP), that is able to report TDE activity at the PM. MRP is based on a green emitting BODIPY PM probe connected to rhodamine through a disulfide bond. MRP is fluorogenic as it is turned off in aqueous media due to aggregation-caused quenching, and once inserted in the PM, it displays a bright red signal due to an efficient fluorescence energy resonance transfer (FRET) between the BODIPY donor and the rhodamine acceptor. In the PM model, the MRP can undergo TDE reaction with external reductive agents as well as with thiolated lipids embedded in the bilayer. Upon TDE reaction, the FRET is turned off and a bright green signal appears allowing a ratiometric readout of this reaction. In cells, the MRP quickly labeled the PM and was able to probe variations of TDE activity using ratiometric imaging. With this tool in hand, we were able to monitor variations of TDE activity at the PM under stress conditions, and we showed that cancer cell lines presented a reduced TDE activity at the PM compared to noncancer cells.
Collapse
Affiliation(s)
- Tarushyam Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sriram Kanvah
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
123
|
Zhang Q, Hu X, Dai X, Sun J, Gao F. A photostable reaction-based A-A-A type two-photon fluorescent probe for rapid detection and imaging of sulfur dioxide. J Mater Chem B 2021; 9:3554-3562. [PMID: 33909752 DOI: 10.1039/d1tb00433f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel reaction-based A-A-A (acceptor-acceptor-acceptor) type two-photon fluorescent probe, BTC, is prepared using the benzothiadiazole (BTD) scaffold as the two-photon fluorophore and electron-accepting centre. Two β-chlorovinyl aldehyde moieties are symmetrically connected to both ends of the BTD scaffold and act as reaction groups to recognize SO2 and quenching groups to make the dis-activated probe stay at off-state due to their weak electron-withdrawing effect. In the presence of SO2 derivatives, the aldehyde groups are consumed through aldehyde addition, resulting in the activation of intramolecular charge transfer (ICT) processes and therefore recovering the fluorescence of the probe. The designed probe shows excellent two-photon properties including large two-photon absorption cross-sections (TPA) of 91 GM and photostability. Beyond these, the BTC probe exhibits a fast response to SO2 within 30 s, high specificity without foreign interference and a broad detection range from 500 nM to 120 μM with a detection limit of 190 nM. The designed fluorescent probe is further applied to the two-photon imaging of exogenous and endogenous SO2 derivatives under different physiological processes in HeLa cells and zebrafish with satisfactory results. We believe that the proposed design strategy can be extended to fabricate versatile BTD-based two-photon fluorescent probes through molecular engineering for further applications in bioassays and two-photon imaging.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
124
|
Xu M, Yim W, Zhou J, Zhou J, Jin Z, Moore C, Borum R, Jorns A, Jokerst JV. The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
125
|
Chen Y, Zhong X, Yang X, Zhu S, Jiang Y, Jin C. A mitochondria-targeted fluorescent probe for monitoring endogenous cysteine in living cells and zebrafish. Chem Commun (Camb) 2021; 57:8198-8201. [PMID: 34304258 DOI: 10.1039/d1cc03307g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At the organelle level, pathogenesis due to abnormal concentrations of cysteine (Cys) is of great significance for the early diagnosis and treatment of related diseases. Generally speaking, organelle localization requires the participation of specific target groups, which increases the difficulty of synthesis. Herein, through simple synthesis, a novel biflavone derivative (BFD) that exhibits excited-state intramolecular proton transfer (ESIPT) was obtained and successfully located in mitochondria without target groups. The probe BFD can distinguish Cys from Hcy and GSH with a rapid response (< 5 s) and showed visual detection for Cys with a large Stokes shift (about 260 nm). Because of its nanomorphology in solution and surface functional groups, the probe BFD can enter the cell smoothly and achieve mitochondrial localization. Owing to its excellent optical performance, the probe BFD was successfully applied to the imaging of endogenous Cys in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Yingshuang Chen
- Nanjing Normal Univ., Jiangsu Collaborat. Innovat. Ctr Biomed. Funct. Mat., Jiangsu Key Lab. Biofunct Mat., Sch. Chem. & Mat. Sci., Nanjing 210023, Jiangsu, P. R. China.
| | | | | | | | | | | |
Collapse
|
126
|
Moses JC, Adibi S, Shariful Islam SM, Wickramasinghe N, Nguyen L. Application of Smartphone Technologies in Disease Monitoring: A Systematic Review. Healthcare (Basel) 2021; 9:889. [PMID: 34356267 PMCID: PMC8303662 DOI: 10.3390/healthcare9070889] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Technologies play an essential role in monitoring, managing, and self-management of chronic diseases. Since chronic patients rely on life-long healthcare systems and the current COVID-19 pandemic has placed limits on hospital care, there is a need to explore disease monitoring and management technologies and examine their acceptance by chronic patients. We systematically examined the use of smartphone applications (apps) in chronic disease monitoring and management in databases, namely, Medline, Web of Science, Embase, and Proquest, published from 2010 to 2020. Results showed that app-based weight management programs had a significant effect on healthy eating and physical activity (p = 0.002), eating behaviours (p < 0.001) and dietary intake pattern (p < 0.001), decreased mean body weight (p = 0.008), mean Body Mass Index (BMI) (p = 0.002) and mean waist circumference (p < 0.001). App intervention assisted in decreasing the stress levels (paired t-test = 3.18; p < 0.05). Among cancer patients, we observed a high acceptance of technology (76%) and a moderately positive correlation between non-invasive electronic monitoring data and questionnaire (r = 0.6, p < 0.0001). We found a significant relationship between app use and standard clinical evaluation and high acceptance of the use of apps to monitor the disease. Our findings provide insights into critical issues, including technology acceptance along with regulatory guidelines to be considered when designing, developing, and deploying smartphone solutions targeted for chronic patients.
Collapse
Affiliation(s)
- Jeban Chandir Moses
- School of Information Technology, Deakin University, 1 Gheringhap St, Geelong, VIC 3220, Australia;
| | - Sasan Adibi
- School of Information Technology, Deakin University, 1 Gheringhap St, Geelong, VIC 3220, Australia;
| | | | - Nilmini Wickramasinghe
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Lemai Nguyen
- Department of Information Systems and Business Analytics, Deakin Business School, 221 Burwood Highway, Burwood, VIC 3125, Australia;
| |
Collapse
|
127
|
A simple fluorescent probe for glutathione detection and its bioimaging application in living cells. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
128
|
Liu J, Li J, Tang J, Yang X, Zhang D, Ye Y, Zhao Y. Mitochondria-targeted NIR fluorescent probe for sensing Hg 2+/HSO 3- and its intracellular applications. Talanta 2021; 234:122606. [PMID: 34364419 DOI: 10.1016/j.talanta.2021.122606] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
Mercury and sulfur dioxide (SO2) are common pollutants in the ecological environment, which are important factors causing many diseases of organisms. The lack of appropriate analytical tools has limited the further understanding of the relationship between ionic mercury (Hg2+) and SO2. Herein, a bifunctional fluorescent probe LJ was designed and explored to simultaneously detect Hg2+ and SO2 via desulfurization reaction and Michael addition reaction, respectively. Probe LJ showed distinct fluorescence responses which a large near-infrared fluorescence enhancement towards Hg2+ at λem = 713 nm and a blue shift at λem = 450 nm towards SO2 without any spectral cross interferences. To the best of our knowledge, this is the first fluorescent probe with dual fluorescent emission channels to detect Hg2+ and SO2 with the detection limit of 187 nM and 354 nM, respectively. Moreover, cell fluorescent imaging experiments indicated that the probe was mitochondria targetable and provided evidence that SO2 could be used as an antidote to attenuate the toxicity of Hg2+ in living cells.
Collapse
Affiliation(s)
- Jianfei Liu
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Li
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Tang
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaopeng Yang
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Yong Ye
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yufen Zhao
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 450052, China
| |
Collapse
|
129
|
Rodrigues SD, Ueda RM, Barreto AC, Zanini RR, Souza AM. How atmospheric pollutants impact the development of chronic obstructive pulmonary disease and lung cancer: A var-based model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116622. [PMID: 33578319 DOI: 10.1016/j.envpol.2021.116622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The impact of air pollution on humans is a worrisome factor that has gained prominence over the years due to the importance of the topic to society. Lung cancer and chronic obstructive pulmonary disease are among the diseases associated with pollution that increase the mortality rate in Brazil and worldwide. Therefore, this study aimed to determine the impacts of air pollutants on mortality rates from chronic obstructive pulmonary disease (COPD) and lung cancer (LC) using vector autoregressive (VAR) modeling. The adjusted model was a VAR(1) and, according to the Granger causality test, the air pollutants selected were PM10, O3, CO, NO2, and SO2. The shocks applied to the variables O3, using the impulse response function, negatively impacted COPD; in the eighth period, which is stabilized. The LC variable suffered more significant variations from O3 and after a shock in this variable, an initially negative response in LC occurred and the series stabilized in period nine. After one year, 20.19% of COPD variance was explained by O3. After twelve months, the atmospheric pollutant O3 represented 5.00% and NO2 represented 4.02% of LC variance. Moreover, the variables that caused the highest impact on COPD and LC mortality rates were O3 and NO2, indicating that air pollution influences the clinical state of people who have these diseases and even contributes to their development. The VAR model was able to identify the air pollutants that have the most significant impact on the diseases analyzed and explained the interrelationship between them.
Collapse
Affiliation(s)
- Stéfane Dias Rodrigues
- Federal University of Santa Maria -UFSM, Department of Statistics and Modeling, Av. Roraima, 1000, Bairro Camobi, Santa Maria, RS, 97.105-900, Brazil.
| | - Renan Mitsuo Ueda
- Federal University of Santa Maria -UFSM, Department of Statistics and Modeling, Av. Roraima, 1000, Bairro Camobi, Santa Maria, RS, 97.105-900, Brazil
| | - Alisson Castro Barreto
- Federal University of Santa Maria -UFSM, Department of Statistics and Modeling, Av. Roraima, 1000, Bairro Camobi, Santa Maria, RS, 97.105-900, Brazil
| | - Roselaine Ruviaro Zanini
- Federal University of Santa Maria -UFSM, Department of Statistics and Modeling, Av. Roraima, 1000, Bairro Camobi, Santa Maria, RS, 97.105-900, Brazil
| | - Adriano Mendonça Souza
- Federal University of Santa Maria -UFSM, Department of Statistics and Modeling, Av. Roraima, 1000, Bairro Camobi, Santa Maria, RS, 97.105-900, Brazil
| |
Collapse
|
130
|
Chen J, Huang D, She M, Wang Z, Chen X, Liu P, Zhang S, Li J. Recent Progress in Fluorescent Sensors for Drug-Induced Liver Injury Assessment. ACS Sens 2021; 6:628-640. [PMID: 33475340 DOI: 10.1021/acssensors.0c02343] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a persistent concern in drug discovery and clinical medicine. The current clinical methods to assay DILI by analyzing the enzymes in serum are still not optimal. Recent studies showed that fluorescent sensors would be efficient tools for detecting the concentration and distribution of DILI indicators with high sensitivity and specificity, in real-time, in situ, and with low damage to biosamples, as well as diagnosing DILI. This review focuses on the assessment of DILI, introduces the current mechanisms of DILI, and summarizes the design strategies of fluorescent sensors for DILI indicators, including ions, small molecules, and related enzymes. Some challenges for developing DILI diagnostic fluorescent sensors are put forward. We believe that these design strategies and challenges to evaluate DILI will inspire chemists and give them opportunities to further develop other fluorescent sensors for accurate diagnoses and therapies for other diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Dongyu Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province; Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi province 710069, P. R. China
| | - Zesi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| |
Collapse
|
131
|
Han J, Yang S, Wang B, Song X. Tackling the Selectivity Dilemma of Benzopyrylium-Coumarin Dyes in Fluorescence Sensing of HClO and SO 2. Anal Chem 2021; 93:5194-5200. [PMID: 33739079 DOI: 10.1021/acs.analchem.0c05266] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Benzopyrylium-coumarin fluorescent probes for sensing hypochlorous acid (HClO) or sulfur dioxide (SO2) are unable to distinguish between HClO and SO2 because the two compounds can react with the 4-position of benzopyrylium-coumarin dyes through the nucleophilic attack. In the current work, we introduced a phenoxazine moiety to the benzopyrylium-coumarin dye to synthesize a new fluorescent probe PBC1, which can dually sense HClO and SO2 and generate distinct fluorescence signals with rapid response time and high sensitivity and selectivity. Moreover, probe PBC1 was also successfully utilized to detect intracellular HClO and SO2 in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Jinliang Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Sheng Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, Hunan 410083, China
| |
Collapse
|
132
|
Yuan J, Peng R, Cheng D, Zou LH, Yuan L. Revealing Minor pH Changes of Mitochondria by a Highly Sensitive Molecular Fluorescent Probe. Chem Asian J 2021; 16:342-347. [PMID: 33427391 DOI: 10.1002/asia.202001350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial pH is an important factor associated with cellular metabolism and pathological states. Thus, sensitively monitoring its minor change was essential. However, it was challengeable due to the lack of suitable probes. Here, a mitochondria-targeted probe (NIR-OH-1) was synthesized. Based on the protonation/deprotonation of the hydroxy group and the assistance of carboxyl group on NIR-OH-1 molecular structure, a dramatic NIR activated signal was generated for sensing pH. Probe NIR-OH-1 displayed a good photo-stability and reversibility and could detect pH change without interference by other biologically active species. Importantly, NIR-OH-1 had an appropriate pKa value (7.77) and tiny acid-base transition range, which was allowed to map the small pH changes of cellular mitochondrial. Moreover, NIR-OH-1 was also successfully applied in real-time monitoring mitochondrial pH-related pathological events in living cells under different stimulation, demonstrating the prospect of its clinical application in accurate mitochondrial pH detection under related physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Liang-Hua Zou
- School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
133
|
Tian X, Murfin LC, Wu L, Lewis SE, James TD. Fluorescent small organic probes for biosensing. Chem Sci 2021; 12:3406-3426. [PMID: 34163615 PMCID: PMC8179477 DOI: 10.1039/d0sc06928k] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/16/2021] [Indexed: 12/26/2022] Open
Abstract
Small-molecule based fluorescent probes are increasingly important for the detection and imaging of biological signaling molecules due to their simplicity, high selectivity and sensitivity, whilst being non-invasive, and suitable for real-time analysis of living systems. With this perspective we highlight sensing mechanisms including Förster resonance energy transfer (FRET), intramolecular charge transfer (ICT), photoinduced electron transfer (PeT), excited state intramolecular proton transfer (ESIPT), aggregation induced emission (AIE) and multiple modality fluorescence approaches including dual/triple sensing mechanisms (DSM or TSM). Throughout the perspective we highlight the remaining challenges and suggest potential directions for development towards improved small-molecule fluorescent probes suitable for biosensing.
Collapse
Affiliation(s)
- Xue Tian
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Lloyd C Murfin
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Luling Wu
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Simon E Lewis
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 P. R. China
| |
Collapse
|
134
|
Yu X, Xiang L, Yang S, Qu S, Zeng X, Zhou Y, Yang R. A near-infrared fluorogenic probe with fast response for detecting sodium dithionite in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118887. [PMID: 32927301 DOI: 10.1016/j.saa.2020.118887] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Developing a reliable fluorescence probe is crucial for accurately monitoring sodium dithionite (Na2S2O4, SDT) in biosystems, but the current reported azo-based ones suffers from short excitation/emission wavelengths and relative slow response speed. To address this issue, we herein present a novel near-infrared emissive fluorescence probe for SDT, namely DCM-MQ, consisting of a dicyanomethylene-benzopyran fluorogenic reporter and a 1-methylquinolinium as recognition moiety. On the basis of the specific reduction mechanism, DCM-MQ exhibited a rapid colorimetric and fluorescent recognition for SDT (less than 3 s) with large Stokes shift (112 nm) and high sensitivity (detection limit was 19 nM). The fluorescence imaging results demonstrate that DCM-MQ is competent for monitoring SDT in living systems.
Collapse
Affiliation(s)
- Xizi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lie Xiang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xianqing Zeng
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
135
|
Wang Z, Liu Y, Wang W, Zhao C, Lin W. A single small molecule fluorescent probe for imaging RNA distribution and detecting endogenous SO 2 through distinct fluorescence channels. NEW J CHEM 2021. [DOI: 10.1039/d1nj03588f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein, we developed a novel small molecule fluorescent probe for imaging the distribution of RNA and detecting endogenous SO2 through distinct fluorescence channels in cells.
Collapse
Affiliation(s)
- Zhaomin Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Weishan Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Chang Zhao
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
136
|
Yang J, Huo F, Yue Y, Zhang Y, Yin C. ESIPT silent and mitochondrial-targeted rapid response for SO 2 regulated by pyridinium and its real-time detection in living cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj04077d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ESIPT has been widely used in fluorescence recognition because of its advantages such as large Stokes shift.
Collapse
Affiliation(s)
- Jialu Yang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
137
|
Fu G, Yin G, Niu T, Wu W, Han H, Chen H, Yin P. A novel ratiometric fluorescent probe for the detection of mitochondrial pH dynamics during cell damage. Analyst 2021; 146:620-627. [DOI: 10.1039/d0an01240h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A sensitive fluorescent probe (E)-4-(3-(benzo[d]thiazol-2-yl)-4-hydroxy-5-methylstyryl)-1-methylpyridin-1-ium iodide (HBTMP) for the monitoring of pH in mitochondria was rationally exploited.
Collapse
Affiliation(s)
- Gaoqing Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
| | - Guoxing Yin
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
- China
| | - Tingting Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
| | - Hui Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
| | - Peng Yin
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
- China
| |
Collapse
|
138
|
Jia PP, Xu L, Hu YX, Li WJ, Wang XQ, Ling QH, Shi X, Yin GQ, Li X, Sun H, Jiang Y, Yang HB. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. J Am Chem Soc 2020; 143:399-408. [DOI: 10.1021/jacs.0c11370] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
139
|
Shi Y, Huo F, Yin C. Malononitrile as the 'double-edged sword' of passivation-activation regulating two ICT to highly sensitive and accurate ratiometric fluorescent detection for hypochlorous acid in biological system. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128793. [PMID: 32863585 PMCID: PMC7446621 DOI: 10.1016/j.snb.2020.128793] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 05/09/2023]
Abstract
Hypochlorous acid (HOCl) as one of the most important reactive oxygen species in the organism, its role is more and more recognized. In fact, in recent years, various HOCl fluorescent probes have been developed unprecedentively based on various mechanisms. However, because most of the mechanisms are based on the oxidation characteristics of HOCl, the excellent detection performance of probes depends on the activation ability of some functional groups to reaction sites. The C[bond, double bond]C bond in the probe is often oxidized by HOCl to realize HOCl detection. However, due to the break of conjugated structure, the probe often present as a quenchable or turning on fluorescence emission. In this work, malononitrile was introduced as the "double-edged sword" of passivation-activation when in HOCl fluorescent probe was designed. Passivation-activation regulated two ICT (Intermolecular Charge Transfer, ICT) processes to ratiometric fluorescent detection for HOCl. Highly sensitive and accurate detection realized efficient application in biological imaging.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
- College of Food Sciences, Shanxi Normal University, Linfen, Shanxi, 041004, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
140
|
Yue Y, Huo F, Yin C. The chronological evolution of small organic molecular fluorescent probes for thiols. Chem Sci 2020; 12:1220-1226. [PMID: 34163883 PMCID: PMC8179126 DOI: 10.1039/d0sc04960c] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abnormal concentrations of biothiols such as cysteine, homocysteine and glutathione are associated with various major diseases. In biological systems, the structural similarity and functional distinction of these three small molecular thiols has not only required rigorous molecular design of the fluorescent probes used to detect each thiol specifically, but it has also inspired scientists to uncover the ambiguous biological relationships between these bio-thiols. In this minireview, we will discuss the evolution of small organic molecular fluorescent probes for the detection of thiols over the past 60 years, highlighting the potent methodologies used in the design of thiol probes and their particular applications in the semi-quantification of cellular thiols and real-time labelling. At the same time, the present challenges that limit their further application will be discussed. We hope that this minireview will promote future research to enable deeper insight into the crucial role of thiols in biological systems. The chronological evolution of small organic molecular fluorescent probes for thiols: from separation dependency analysis to cellular specific analysis, what's next?![]()
Collapse
Affiliation(s)
- Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| |
Collapse
|
141
|
Zhang Y, Zhang J, Su M, Li C. Rational molecular design of a reversible BODIPY-Based fluorescent probe for real-time imaging of GSH dynamics in living cells. Biosens Bioelectron 2020; 175:112866. [PMID: 33272867 DOI: 10.1016/j.bios.2020.112866] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Marring the reversible covalent chemistry with BODIPY dye, which is a superfamily of fluorophores with striking photophysical performances, would enable a panel of diverse dynamic fluorescent probes for biomedical applications. Herein we show that structural manipulation of BODIPY allows rational tuning of α-site or meso-site activation as well as the spectral response toward nucleophiles. By rational molecular design, we have obtained a highly specific and reversible GSH probe, αBD-GSH, which exhibits a tremendously fast and dynamic fluorescence response within the wide physiological GSH concentration range of 0-8 mM. We successfully applied αBD-GSH to real-time imaging of intracellular GSH dynamics in different cell lines. In light of the remarkable photophysical properties and synthesis flexibility of BODIPY dyes, the current findings will help to design more reversible BODIPY-based fluorescent probes targeting various bio-species.
Collapse
Affiliation(s)
- Yushi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Junqing Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Meihui Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
142
|
He X, Zheng Z, Zhang F, Xu C, Xu W, Ye L, Sun X, Zhou Z, Shen J. Mitochondria-Targeted Chemosensor to Discriminately and Continuously Visualize HClO and H 2S with Multiresponse Fluorescence Signals for In Vitro and In Vivo Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:7886-7897. [PMID: 35019529 DOI: 10.1021/acsabm.0c01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive molecules play a vital role in the process of regulating the redox balance in the intracellular environment, especially in maintaining the function of organelles. To explore the association and function of bioactive molecules in organelles, it is essential to develop a chemosensor tool that uses multiresponse fluorescence signals to distinguish between and track two related bioactive molecules in organelles. However, the development of sensors with multiresponse functions is still a challenging task. Herein, we present a unique and practical single chemosensor (Mito-CTC) that can monitor HClO (as an oxidative substance) and H2S (as a reductive substance) in mitochondria (organelle targeting) with multiresponse fluorescence signals. The response of the sensor to HClO and H2S changes from red to green and blue channel emission simultaneously, respectively, thereby providing a specific signal response to reductive/oxidative substances in the mitochondria. Using a single chemosensor, we have realized multichannel bioimaging of the exogenous and endogenous HClO and H2S in cellular mitochondria. Additionally, the excellent properties of the sensor Mito-CTC can be used to reveal the relationship between HClO and H2S in mitochondria. Meanwhile, Mito-CTC has been endowed with the ability to image in bacteria and zebrafish attributed to the good permeability and low cytotoxicity. Expectantly, drug-induced liver injury (DILI) caused by fluoxetine (an antidepressant drug) and the degree of drug-induced toxicity to the liver were evaluated using Mito-CTC through discriminating and imaging HClO, indicating that Mito-CTC has the potential function of evaluating the toxicity of the drug to the liver.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziman Zheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Feifan Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Chuchu Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lisong Ye
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoshuai Sun
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhan Zhou
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
143
|
|
144
|
Zhao J, Huang L, Yan M, Qu Y, Feng H, Sun Y. A lysosome specific ratiometric fluorescent probe for detection of bisulfite ion based on hybrid coumarin-benzimidazolium compounds. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1835904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiangdong Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Meiling Yan
- Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China
- Laboratory of Physical Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Qu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Yanhong Sun
- Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China
| |
Collapse
|
145
|
|
146
|
Huang Y, Zhang Y, Huo F, Chao J, Cheng F, Yin C. A New Strategy: Distinguishable Multi-substance Detection, Multiple Pathway Tracing Based on a New Site Constructed by the Reaction Process and Its Tumor Targeting. J Am Chem Soc 2020; 142:18706-18714. [PMID: 33048527 DOI: 10.1021/jacs.0c10210] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, it has become a trend to employ organic molecular fluorescent probes with multireaction sites for the distinguishable detection and biological imaging of similar substances. However, the introduction of multireaction sites brought great challenges to organic synthesis, and at the same time, often destroyed the conjugated structure of the molecules, leading to an unsatisfactory fluorescence emission wavelength not conducive to practical application. As the eternal theme of life, metabolism goes on all the time. Metabolism is a series of ordered chemical reactions that occurs in the organism to maintain life. Chemical reactions in metabolism can be summarized as metabolic pathways. Simultaneous monitoring of different metabolic pathways of the same substance poses a lofty challenge to the probe. Here, we developed a new strategy: to construct new sites through the preliminary reactions between probes and some targets, which can be used to further distinguish among targets or detect their metabolites, so as to realize the simultaneous visualization tracer of multiple metabolic pathways. By intravenous injection, it revealed that the probe containing benzopyrylium ion can target tumors efficiently, and thiols are highly expressed in tumors compared to other tissues (heart, lung, kidney, liver, etc.). The consumption of thiols by the probe could not prevent tumor growth, suggesting that the tumor cure was not correlated with thiol concentration. The construction of new sites in the reaction process is a novel idea in the pursuit of multiple reaction sites, which will provide more effective tools for solving practical problems.
Collapse
Affiliation(s)
- Yongfei Huang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
147
|
Yang X, Tang J, Zhang D, Han X, Liu J, Li J, Zhao Y, Ye Y. An AIE probe for imaging mitochondrial SO 2-induced stress and SO 2 levels during heat stroke. Chem Commun (Camb) 2020; 56:13217-13220. [PMID: 33026369 DOI: 10.1039/d0cc05803c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A probe, MITO-TPE, was developed for imaging mitochondrial SO2 with good selectivity, high sensitivity, and a fast response time. Cell imaging indicated that SO2-induced oxidative stress may cause damage to cells through O2˙- bursting. MITO-TPE has here been used to image the misregulation of SO2 levels in mitochondria during heat stroke for the first time.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Zhang JH, Zhang ZT, Ou YJ, Zhang F, Meng J, Wang G, Fang ZL, Li Y. Red-emitting GSH-Cu NCs as a triplet induced quenched fluorescent probe for fast detection of thiol pollutants. NANOSCALE 2020; 12:19429-19437. [PMID: 32959864 DOI: 10.1039/d0nr04645k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thiol compounds exist widely on the Earth and have certain significance in the fields of the circulation of the sulfur element and industrial production. However, the odor and biological toxicity of thiol compounds make them pollutants that seriously threaten the environmental safety and the living quality of human. In this study, a novel triplet induced fluorescence "turn-off" strategy was designed for the detection of thiol pollutants via a glutathione-stabilized copper nanocluster (GSH-Cu NC) probe. The as-prepared GSH-Cu NCs not only have small size and good water-solubility, but also exhibit strong red-emitting fluorescence at 630 nm, which could be quenched quantitatively with the increase of the concentration of thiol pollutants. So they were employed to detect thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), 2-mercaptoethanol (ME) and 2-(diethylamino)ethanethiol (2-AT) in a wide linear range of 1-100 μM with detection limits of 0.73 μM, 0.43 μM, 0.37 μM, and 0.69 μM, respectively. This method was successfully applied to detect the above thiol pollutants in lake water with good recoveries. Moreover, their further application was also expanded as luminous test strips based on the excellent fluorescence characteristics of GSH-Cu NCs for fast real-time detection of thiol pollutants.
Collapse
Affiliation(s)
- Jun-Hua Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zi-Tong Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yang-Jing Ou
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Fei Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Jie Meng
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zhao-Lin Fang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yan Li
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
149
|
Zhang XX, Qi H, Liu YL, Yang SQ, Li P, Qiao Y, Zhang PY, Wen SH, Piao HL, Han KL. A fluorophore's electron-deficiency does matter in designing high-performance near-infrared fluorescent probes. Chem Sci 2020; 11:11205-11213. [PMID: 34094361 PMCID: PMC8162715 DOI: 10.1039/d0sc04411c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The applications of most fluorescent probes available for Glutathione S-Transferases (GSTs), including NI3 which we developed recently based on 1,8-naphthalimide (NI), are limited by their short emission wavelengths due to insufficient penetration. To realize imaging at a deeper depth, near-infrared (NIR) fluorescent probes are required. Here we report for the first time the designing of NIR fluorescent probes for GSTs by employing the NIR fluorophore HCy which possesses a higher brightness, hydrophilicity and electron-deficiency relative to NI. Intriguingly, with the same receptor unit, the HCy-based probe is always more reactive towards glutathione than the NI-based one, regardless of the specific chemical structure of the receptor unit. This was proved to result from the higher electron-deficiency of HCy instead of its higher hydrophilicity based on a comprehensive analysis. Further, with caging of the autofluorescence being crucial and more difficult to achieve via photoinduced electron transfer (PET) for a NIR probe, the quenching mechanism of HCy-based probes was proved to be PET for the first time with femtosecond transient absorption and theoretical calculations. Thus, HCy2 and HCy9, which employ receptor units less reactive than the one adopted in NI3, turned out to be the most appropriate NIR probes with high-sensitivity and little nonenzymatic background noise. They were then successfully applied to detecting GST in cells, tissues and tumor xenografts in vivo. Additionally, unlike HCy2 with a broad isoenzyme selectivity, HCy9 is specific for GSTA1-1, which is attributed to its lower reactivity and the higher effectiveness of GSTA1-1 in stabilizing the active intermediate via H-bonds based on docking simulations. An abnormal and intriguing phenomenon that the fluorophore's electron-deficiency could affect a probe's performance is now revealed for the first time.![]()
Collapse
Affiliation(s)
- Xue-Xiang Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ya-Lan Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Song-Qiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University Qingdao 266237 P. R. China
| | - Yan Qiao
- Department of Pathophysiology, Basic Medical College of Zhengzhou University Zhengzhou 450001 P. R. China
| | - Pei-Yu Zhang
- Shenzhen Jingtai Technology Co., Ltd Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District Shenzhen P. R. China
| | - Shu-Hao Wen
- Shenzhen Jingtai Technology Co., Ltd Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District Shenzhen P. R. China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China .,Institute of Molecular Sciences and Engineering, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
150
|
Zhao L, He X, Li D, Xu S, Huang Y, Li X, Wang X, Sun Y, Ma P, Song D. A novel fluorescent probe for the localization of nucleoli developed via a chain reaction of endogenous cysteine in cells. J Mater Chem B 2020; 8:7652-7658. [PMID: 32779685 DOI: 10.1039/d0tb01366h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nucleolus imaging is important for the understanding of gene expression, proliferation, and growth of cells. Traditional nucleoli localization mainly relies on the use of RNA fluorescent probes which are required in large amounts. These probes also have low selectivity, thus causing the generated images to have high background noise and the localization of nucleoli to become vague. In the present paper, a novel probe for nucleoli localization, BEB-A, which can specifically bind to RNA via the chain reaction of endogenous cysteine (Cys), was designed and developed. In addition to its mitochondria-targeting ability, the BEB-A probe could be used in the imaging of Cys in the cytoplasm, and its product, BEB-OH, could quickly penetrate into the cell nucleus to combine with nucleolar RNA to generate strong red fluorescence signals. The luminescence property and RNA-binding capability of the probe were also investigated via theoretical calculations and molecular docking simulations. This work presents a tool that can be applied to analyze the variation of Cys in mitochondria and RNA in cells.
Collapse
Affiliation(s)
- Lihe Zhao
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|