101
|
Maity R, Birenheide BS, Breher F, Sarkar B. Cooperative Effects in Multimetallic Complexes Applied in Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001951] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ramananda Maity
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata 700009 India
| | - Bernhard S. Birenheide
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Frank Breher
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D 70569 Stuttgart Germany
| |
Collapse
|
102
|
Yang GW, Xu CK, Xie R, Zhang YY, Zhu XF, Wu GP. Pinwheel-Shaped Tetranuclear Organoboron Catalysts for Perfectly Alternating Copolymerization of CO 2 and Epichlorohydrin. J Am Chem Soc 2021; 143:3455-3465. [PMID: 33591738 DOI: 10.1021/jacs.0c12425] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The copolymerization of carbon dioxide (CO2) and epoxides to produce aliphatic polycarbonates is a burgeoning technology for the large-scale utilization of CO2 and degradable polymeric materials. Even with the wealth of advancements achieved over the past 50 years on this green technology, many challenges remain, including the use of metal-containing catalysts for polymerization, the removal of the chromatic metal residue after polymerization, and the limited practicable epoxides, especially for those containing electron-withdrawing groups. Herein, we provide kinds of pinwheel-shaped tetranuclear organoboron catalysts for epichlorohydrin/CO2 copolymerization with >99% polymer selectivity and quantitative CO2 uptake (>99% carbonate linkages) under mild conditions (25-40 °C, 25 bar of CO2). The produced poly(chloropropylene carbonate) has the highest molecular weight of 36.5 kg/mol and glass transition temperature of 45.4 °C reported to date. The energy difference (ΔEa = 60.7 kJ/mol) between the cyclic carbonate and polycarbonate sheds light on the robust performance of our metal-free catalyst. Control experiments and density functional theory (DFT) calculations revealed a cyclically sequential copolymerization mechanism. The metal-free feature, high catalytic performance under mild conditions, and no trouble with chromaticity for the produced polymers imply that our catalysts are practical candidates to advance the CO2-based polycarbonates.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
103
|
Gaston AJ, Greindl Z, Morrison CA, Garden JA. Cooperative Heterometallic Catalysts for Lactide Ring-Opening Polymerization: Combining Aluminum with Divalent Metals. Inorg Chem 2021; 60:2294-2303. [PMID: 33512999 DOI: 10.1021/acs.inorgchem.0c03145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While homometallic (salen)Al catalysts display excellent performance in lactide ring-opening polymerization (ROP), heterometallic (salen)Al complexes have yet to be reported. Herein, we describe four heterobimetallic (salen)Al catalysts and show that the choice of the heterometal is key. Cooperative Al/Mg and Al/Zn combinations improved the catalyst activity by a factor of up to 11 compared to the mono-Al analogue, whereas the mono-Mg and mono-Zn analogues were completely inactive. In contrast, Al/Li and Al/Ca heterocombinations stunted the polymerization rate. Kinetic and computational studies suggest that Al/Mg and Al/Zn cooperativity arises from the close intermetallic proximity facilitating chloride bridging (thus enhancing initiation), which promotes a rigid square pyramidal geometry around the Al center and further increases the available monomer coordination sites. This work also translates the use of ab initio molecular dynamics calculations to ROP, introducing a useful method of investigating catalyst flexibility and revealing that ligand strain and molecular rigidity can enhance heterometallic catalyst performance.
Collapse
Affiliation(s)
- Anand J Gaston
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Zoe Greindl
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Jennifer A Garden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
104
|
Wang Y, Zhang JY, Yang JL, Zhang HK, Kiriratnikom J, Zhang CJ, Chen KL, Cao XH, Hu LF, Zhang XH, Tang BZ. Highly Selective and Productive Synthesis of a Carbon Dioxide-Based Copolymer upon Zwitterionic Growth. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian-Yu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jia-Liang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao-Ke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jiraya Kiriratnikom
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai-Luo Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lan-Fang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
105
|
Deacy AC, Durr CB, Kerr RWF, Williams CK. Heterodinuclear catalysts Zn(ii)/M and Mg(ii)/M, where M = Na(i), Ca(ii) or Cd(ii), for phthalic anhydride/cyclohexene oxide ring opening copolymerisation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00238d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of heterodinuclear catalysts, coordinated by a Schiff base ligand, for ring opening copolymerisation of phthalic anhydride/cyclohexene oxide, highlight the best metal combinations for fast and selective catalysis.
Collapse
Affiliation(s)
- Arron C. Deacy
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford OX1 3TA
- UK
| | | | - Ryan W. F. Kerr
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford OX1 3TA
- UK
| | | |
Collapse
|