101
|
Rho GTPases and exocytosis: what are the molecular links? Semin Cell Dev Biol 2010; 22:27-32. [PMID: 21145407 DOI: 10.1016/j.semcdb.2010.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 02/08/2023]
Abstract
Delivery of proteins or lipids to the plasma membrane or into the extracellular space occurs through exocytosis, a process that requires tethering, docking, priming and fusion of vesicles, as well as F-actin rearrangements in response to specific extracellular cues. GTPases of the Rho family have been implicated as important regulators of exocytosis, but how Rho proteins control this process is an open question. In this review, we focus on molecular connections that drive Rho-dependent exocytosis in polarized and regulated exocytosis. Specifically, we present data showing that Rho proteins interaction with the exocyst complex and IQGAP mediates polarized exocytosis, whereas interaction with actin-binding proteins like N-WASP mediates regulated exocytosis.
Collapse
|
102
|
Li S, van Os GM, Ren S, Yu D, Ketelaar T, Emons AMC, Liu CM. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. PLANT PHYSIOLOGY 2010; 154:1819-30. [PMID: 20943851 PMCID: PMC2996038 DOI: 10.1104/pp.110.164178] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/08/2010] [Indexed: 05/18/2023]
Abstract
During exocytosis, Golgi-derived vesicles are tethered to the target plasma membrane by a conserved octameric complex called the exocyst. In contrast to a single gene in yeast and most animals, plants have greatly increased number of EXO70 genes in their genomes, with functions very much unknown. Reverse transcription-polymerase chain reactions were performed on all 23 EXO70 genes in Arabidopsis (Arabidopsis thaliana) to examine their expression at the organ level. Cell-level expression analyses were performed using transgenic plants carrying β-glucuronidase reporter constructs, showing that EXO70 genes are primarily expressed in potential exocytosis-active cells such as tip-growing and elongating cells, developing xylem elements, and guard cells, whereas no expression was observed in cells of mature organs such as well-developed leaves, stems, sepals, and petals. Six EXO70 genes are expressed in distinct but partially overlapping stages during microspore development and pollen germination. A mutation in one of these genes, EXO70C1 (At5g13150), led to retarded pollen tube growth and compromised male transmission. This study implies that multiplications of EXO70 genes may allow plants to acquire cell type- and/or cargo-specific regulatory machinery for exocytosis.
Collapse
|
103
|
Yu IM, Hughson FM. Tethering Factors as Organizers of Intracellular Vesicular Traffic. Annu Rev Cell Dev Biol 2010; 26:137-56. [DOI: 10.1146/annurev.cellbio.042308.113327] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- I-Mei Yu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Frederick M. Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
104
|
Wu H, Brennwald P. The function of two Rho family GTPases is determined by distinct patterns of cell surface localization. Mol Cell Biol 2010; 30:5207-17. [PMID: 20823269 PMCID: PMC2953063 DOI: 10.1128/mcb.00366-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/24/2010] [Accepted: 08/25/2010] [Indexed: 11/20/2022] Open
Abstract
Rho family GTPases are critical regulators in determining and maintaining cell polarity. In Saccharomyces cerevisiae, Rho3 and Cdc42 play important but distinct roles in regulating polarized exocytosis and overall polarity. Cdc42 is highly polarized during bud emergence and is specifically required for exocytosis at this stage. In contrast, Rho3 appears to play an important role during the isotropic growth of larger buds. Using a novel monoclonal antibody against Rho3, we find that Rho3 localizes to the cell surface in a dispersed pattern which is clearly distinct from that of Cdc42. Using chimeric forms of these GTPases, we demonstrate that a small region at the N terminus is necessary and sufficient to confer Rho3 localization and function onto Cdc42. Analysis of this domain reveals two essential elements responsible for distinguishing function. First, palmitoylation of a cysteine residue by the Akr1 palmitoyltransferase is required both for the switch of function and the switch of localization properties of this domain. Second, two basic residues distal to the palmitoylation site are required for regulating binding affinity with the Exo70 and Sec3 effectors. This demonstrates the importance of localization and effector binding in determining how these GTPases evolved specific functions at distinct stages of polarized growth.
Collapse
Affiliation(s)
- Hao Wu
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090
| | - Patrick Brennwald
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090
| |
Collapse
|
105
|
Chen Z, Lin X, Zhang Z, Huang J, Fu S, Huang R. EXO70 protein influences dengue virus secretion. Microbes Infect 2010; 13:143-50. [PMID: 21034848 DOI: 10.1016/j.micinf.2010.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
The involvement of host proteins in assisting the exocytosis of flaviviruses is largely unknown. In this study, we aimed to investigate if dengue virus (DENV) utilizes the exocyst components to aid the exocytosis of virus particles. This study identified that EXO70 protein, a member of the exocyst complex influenced DENV infection. Dengue virus production was significantly attenuated in EXO70 knock-down cells. EXO70 did not influence viral transcription and translation. It influenced virus egression/secretion from DENV-infected cells. We also showed that EXO70 expression was up-regulated from 18 h post-infection following DENV infection. Although the envelope protein of DENV influenced EXO70 expression, the co-expression of pre-membrane and envelope proteins significantly increased the expression levels of EXO70 during DENV infection. When pre-membrane protein was expressed alone, there was no significant difference in the expression levels of EXO70. This indicated that the presence of pre-membrane protein might help in the proper folding of envelope protein. Increased expression levels of EXO70 might help in the exocytosis process of virus or subviral particles.
Collapse
Affiliation(s)
- Zhaoni Chen
- Department of Pharmacology, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | | | | | | | | | | |
Collapse
|
106
|
Mathieson EM, Suda Y, Nickas M, Snydsman B, Davis TN, Muller EGD, Neiman AM. Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:3693-707. [PMID: 20826607 PMCID: PMC2965686 DOI: 10.1091/mbc.e10-07-0563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The meiosis II outer plaque (MOP) acts a vesicle tethering complex that is a site for de novo membrane formation. Novel mutants in a MOP protein reveal that interaction of vesicles with the MOP surface is required to recruit a second tethering complex, the exocyst, to the vesicles, suggesting a mechanism by which the MOP promotes vesicle fusion. During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.
Collapse
Affiliation(s)
- Erin M Mathieson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
IQGAP1, an effector of CDC42p GTPase, is a widely conserved, multifunctional protein that bundles F-actin through its N-terminus and binds microtubules through its C-terminus to modulate the cell architecture. It has emerged as a potential oncogene associated with diverse human cancers. Therefore, IQGAP1 has been heavily investigated; regardless, its precise cellular function remains unclear. Work from yeast suggests that IQGAP1 plays an important role in directed cell growth, which is a conserved feature crucial to morphogenesis, division axis, and body plan determination. New evidence suggests a conserved role for IQGAP1 in protein synthesis and membrane traffic, which may help to explain the diversity of its cellular functions. Membrane traffic mediates infections by intracellular pathogens and a range of degenerative human diseases arise from dysfunctions in intracellular traffic; thus, elucidating the mechanisms of cellular traffic will be important in order to understand the basis of a wide range of inherited and acquired human diseases. Recent evidence suggests that IQGAP1 plays its role in cell growth through regulating the conserved mTOR pathway. The mTOR signaling cascade has been implicated in membrane traffic and is activated in nearly all human cancers, but clinical response to the mTOR-specific inhibitor rapamycin has been disappointing. Thus, understanding the regulators of this pathway will be crucial in order to identify predictors of rapamycin sensitivity. In this review, I discuss emerging evidence that supports a potential role of IQGAP1 in regulating membrane traffic via regulating the mTOR pathway.
Collapse
Affiliation(s)
- Mahasin Osman
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Alpert School of Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
108
|
Eklund DM, Svensson EM, Kost B. Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1917-37. [PMID: 20368308 DOI: 10.1093/jxb/erq080] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polarized cell expansion plays an important role in plant morphogenesis. Tip growth is a dramatic form of this process, which is widely used as a model to study its regulation by RAC/ROP GTPase signalling. During the dominant haploid phase of its life cycle, the moss Physcomitrella patens contains different types of cells that expand by tip growth. Physcomitrella is a highly attractive experimental system because its genome has been sequenced, and transgene integration by homologous recombination occurs in this plant at frequencies allowing effective gene targeting. Furthermore, together with the vascular spikemoss Selaginella moellendorffii, whose genome has also been sequenced, the non-vascular moss Physcomitrella provides an evolutionary link between green algae and angiosperms. BLAST searches established that the Physcomitrella and Selaginella genomes encode not only putative RAC/ROP GTPases, but also homologues of all known regulators of polarized RAC/ROP signalling, as well as of key effectors acting in signalling cascades downstream of RAC/ROP activity. Nucleotide sequence relationships within seven different families of Physcomitrella, Selaginella, Arabidopsis thaliana and Nicotiana tabacum (tobacco) genes with distinct functions in RAC/ROP signalling were characterized based on extensive maximum likelihood and Neighbor-Joining analyses. The results of these analyses are interpreted in the light of current knowledge concerning expression patterns and molecular functions of RAC/ROP signalling proteins in angiosperms. A key aim of this study is to facilitate the use of Physcomitrella as a model to investigate the molecular control of tip growth in plants.
Collapse
Affiliation(s)
- D Magnus Eklund
- Uppsala BioCenter, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | | | | |
Collapse
|
109
|
Abstract
Eukaryotic cells display a wide range of morphologies important for cellular function and development. A particular cell shape is made via the generation of asymmetry in the organization of cytoskeletal elements, usually leading to actin localization at sites of growth. The Rho family of GTPases is present in all eukaryotic cells, from yeast to mammals, and their role as key regulators in the signalling pathways that control actin organization and morphogenetic processes is well known. In the present review we will discuss the role of Rho GTPases as regulators of yeasts' polarized growth, their mechanism of activation and signalling pathways in Saccharomyces cerevisiae and Schizosaccharomyces pombe. These two model yeasts have been very useful in the study of the molecular mechanisms responsible for cell polarity. As in other organisms with cell walls, yeast's polarized growth is closely related to cell-wall biosynthesis, and Rho GTPases are critical modulators of this process. They provide the co-ordinated regulation of cell-wall biosynthetic enzymes and actin organization required to maintain cell integrity during vegetative growth.
Collapse
|
110
|
Baek K, Knödler A, Lee SH, Zhang X, Orlando K, Zhang J, Foskett TJ, Guo W, Dominguez R. Structure-function study of the N-terminal domain of exocyst subunit Sec3. J Biol Chem 2010; 285:10424-33. [PMID: 20139078 DOI: 10.1074/jbc.m109.096966] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exocyst is an evolutionarily conserved octameric complex involved in polarized exocytosis from yeast to humans. The Sec3 subunit of the exocyst acts as a spatial landmark for exocytosis through its ability to bind phospholipids and small GTPases. The structure of the N-terminal domain of Sec3 (Sec3N) was determined ab initio and defines a new subclass of pleckstrin homology (PH) domains along with a new family of proteins carrying this domain. Respectively, N- and C-terminal to the PH domain Sec3N presents an additional alpha-helix and two beta-strands that mediate dimerization through domain swapping. The structure identifies residues responsible for phospholipid binding, which when mutated in cells impair the localization of exocyst components at the plasma membrane and lead to defects in exocytosis. Through its ability to bind the small GTPase Cdc42 and phospholipids, the PH domain of Sec3 functions as a coincidence detector at the plasma membrane.
Collapse
Affiliation(s)
- Kyuwon Baek
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Wu H, Turner C, Gardner J, Temple B, Brennwald P. The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol Biol Cell 2010; 21:430-42. [PMID: 19955214 PMCID: PMC2814788 DOI: 10.1091/mbc.e09-06-0501] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/11/2022] Open
Abstract
The Rho3 and Cdc42 members of the Rho GTPase family are important regulators of exocytosis in yeast. However, the precise mechanism by which they regulate this process is controversial. Here, we present evidence that the Exo70 component of the exocyst complex is a direct effector of both Rho3 and Cdc42. We identify gain-of-function mutants in EXO70 that potently suppress mutants in RHO3 and CDC42 defective for exocytic function. We show that Exo70 has the biochemical properties expected of a direct effector for both Rho3 and Cdc42. Surprisingly, we find that C-terminal prenylation of these GTPases both promotes the interaction and influences the sites of binding within Exo70. Finally, we demonstrate that the phenotypes associated with novel loss-of-function mutants in EXO70, are entirely consistent with Exo70 as an effector for both Rho3 and Cdc42 function in secretion. These data suggest that interaction with the Exo70 component of the exocyst is a key event in spatial regulation of exocytosis by Rho GTPases.
Collapse
Affiliation(s)
- Hao Wu
- Departments of *Cell and Developmental Biology and
| | | | | | - Brenda Temple
- Biochemistry and Biophysics and R. L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090
| | | |
Collapse
|
112
|
Abstract
The exocyst is an octameric vesicle tethering complex that functions upstream of SNARE mediated exocytotic vesicle fusion with the plasma membrane. All proteins in the complex have been conserved during evolution, and genes that encode the exocyst subunits are present in the genomes of all plants investigated to date. Although the plant exocyst has not been studied in great detail, it is likely that the basic function of the exocyst in vesicle tethering is conserved. Nevertheless, genomic and genetic studies suggest that the exocyst complex in plants may have more diversified roles than that in budding yeast. In this review, we compare the knowledge about the exocyst in plant cells to the well-studied exocyst in budding yeast, in order to explore similarities and differences in expression and function between these organisms, both of which have walled cells.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Plant Cell Biology, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
113
|
Yamashita M, Kurokawa K, Sato Y, Yamagata A, Mimura H, Yoshikawa A, Sato K, Nakano A, Fukai S. Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat Struct Mol Biol 2010; 17:180-6. [PMID: 20062059 DOI: 10.1038/nsmb.1722] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 10/20/2009] [Indexed: 11/09/2022]
Abstract
The exocyst complex is a hetero-octameric protein complex that functions during cell polarization by tethering the secretory vesicle to the target membrane. The yeast exocyst subunit Sec3 binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) and the small GTPases Rho1 and Cdc42 via its N-terminal domain (Sec3-N), and these interactions target Sec3 to the plasma membrane. Here we report the crystal structure of the Sec3-N in complex with Rho1 at 2.6-A resolution. Sec3-N adopts a pleckstrin homology (PH) fold, despite having no detectable sequence homology with other PH domains of known structure. Clusters of conserved basic residues constitute a positively charged cleft, which was identified as a binding site for PtdIns(4,5)P(2). Residues Phe77, Ile115 and Leu131 of Sec3 bind to an extended hydrophobic surface formed around switch regions I and II of Rho1. To our knowledge, these are the first structural insights into how an exocyst subunit might interact with both protein and phospholipid factors on the target membrane.
Collapse
Affiliation(s)
- Masami Yamashita
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Andersen NJ, Yeaman C. Sec3-containing exocyst complex is required for desmosome assembly in mammalian epithelial cells. Mol Biol Cell 2009; 21:152-64. [PMID: 19889837 PMCID: PMC2801709 DOI: 10.1091/mbc.e09-06-0459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In epithelial cells, Sec3 associates with Exocyst complexes enriched at desmosomes and centrosomes, distinct from Sec6/8 complexes at the apical junctional complex. RNAi-mediated suppression of Sec3 alters trafficking of desmosomal cadherins and impairs desmosome morphology and function, without noticeable effect on adherens junctions. The Exocyst is a conserved multisubunit complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. In mammalian epithelial cells, Exocyst complexes are recruited to nascent sites of cell–cell contact in response to E-cadherin–mediated adhesive interactions, and this event is an important early step in the assembly of intercellular junctions. Sec3 has been hypothesized to function as a spatial landmark for the development of polarity in budding yeast, but its role in epithelial cells has not been investigated. Here, we provide evidence in support of a function for a Sec3-containing Exocyst complex in the assembly or maintenance of desmosomes, adhesive junctions that link intermediate filament networks to sites of strong intercellular adhesion. We show that Sec3 associates with a subset of Exocyst complexes that are enriched at desmosomes. Moreover, we found that membrane recruitment of Sec3 is dependent on cadherin-mediated adhesion but occurs later than that of the known Exocyst components Sec6 and Sec8 that are recruited to adherens junctions. RNA interference-mediated suppression of Sec3 expression led to specific impairment of both the morphology and function of desmosomes, without noticeable effect on adherens junctions. These results suggest that two different exocyst complexes may function in basal–lateral membrane trafficking and will enable us to better understand how exocytosis is spatially organized during development of epithelial plasma membrane domains.
Collapse
|
115
|
Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009; 583:3770-83. [PMID: 19887069 DOI: 10.1016/j.febslet.2009.10.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
116
|
Abstract
The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking contributes to cell polarization through delivery of polarity determinants and regulators to the plasma membrane.
Collapse
Affiliation(s)
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
117
|
Yakir-Tamang L, Gerst JE. Phosphoinositides, exocytosis and polarity in yeast: all about actin? Trends Cell Biol 2009; 19:677-84. [PMID: 19818626 DOI: 10.1016/j.tcb.2009.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/21/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
Cell polarity is necessary for cell division, morphogenesis and motility in eukaryotes, and is determined by dynamic control of the cytoskeleton and secretory pathway to promote directional growth. In yeast, three essential and tightly-regulated processes orchestrate polarization and facilitate bud growth. These processes include phosphoinositide (PI) signaling, Rho GTPase regulation of the actin cytoskeleton, and exocytosis. As yet, the interplay between these different processes is unclear, and two main models (Spatial Landmark and Allosteric Local Activation) have been proposed for Rho GTPase control of polarization in yeast. Here, we summarize the inter-relationship between these growth processes and present a more unified model, the Exocytic Signal model, which proposes that exocytosis and actin regulation are fully integrated events mediated by PI signaling.
Collapse
Affiliation(s)
- Liat Yakir-Tamang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
118
|
Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 5410=5410-- pmza] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
119
|
|
120
|
|
121
|
|
122
|
|
123
|
|
124
|
|
125
|
|
126
|
|
127
|
|
128
|
|
129
|
|
130
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 6285=8708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
131
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1-- gjxv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
132
|
|
133
|
|
134
|
|
135
|
|
136
|
|
137
|
|
138
|
|
139
|
|
140
|
|
141
|
|
142
|
Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
143
|
|
144
|
|
145
|
|
146
|
|
147
|
|
148
|
|
149
|
|
150
|
|