101
|
Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015; 7:137-148. [PMID: 25621113 PMCID: PMC4300924 DOI: 10.4252/wjsc.v7.i1.137] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.
Collapse
|
102
|
Fulda S. Targeting extrinsic apoptosis in cancer: Challenges and opportunities. Semin Cell Dev Biol 2015; 39:20-5. [PMID: 25617598 DOI: 10.1016/j.semcdb.2015.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 12/18/2022]
Abstract
Apoptosis is a form of programmed cell death that plays a critical role in the regulation of various physiological and pathophysiological processes. Since apoptosis is typically disturbed in human cancers, therapeutic targeting of apoptosis represents a promising avenue for the development of novel therapeutic approaches. This strategy is particularly relevant, since many currently used anticancer therapies utilize apoptosis signaling pathways to exert their antitumor activities. A better understanding of these signaling networks and their deregulation in human cancers is anticipated to open new perspectives for the development of apoptosis-targeted therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
103
|
Wang B, Ji K, Wang Y, Li Y, Tang Y, Gu J, Cai L. Exposure to low dose cadmium enhances FL83B cells proliferation through down-regulation of caspase-8 by DNA hypermethylation. Toxicol Res (Camb) 2015; 4:248-259. [DOI: 10.1039/c4tx00107a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Cadmium (Cd) is classified as a human carcinogen probably associated with epigenetic change.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology
- The Second Clinical Medical School of Inner Mongolia University for the Nationalities (Inner Mongolia Forestry General Hospital)
- Hulun Buir
- China
- Molecular Pathological Research Institute of Inner Mongolia University for Nationalities
| | - Kun Ji
- Department of Pathophysiology
- Shenyang Medical College
- Shenyang
- China
| | - Yue Wang
- Department of Pathophysiology
- Norman Bethune College of Medicine
- Jilin University
- Changchun
- China
| | - Yang Li
- Department of Pathophysiology
- Norman Bethune College of Medicine
- Jilin University
- Changchun
- China
| | - Yufeng Tang
- Department of Orthopedic trauma
- Shandong Provincial Qianfoshan Hospital
- Shandong University
- Jinan
- China
| | - Junlian Gu
- Department of Pathology
- Shandong Provincial Qianfoshan Hospital
- Shandong University
- Jinan
- China
| | - Lu Cai
- Departments of Pediatrics
- Radiation Oncology and Pharmacology & Toxicology
- University of Louisville
- Louisville
- USA
| |
Collapse
|
104
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 932] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
105
|
Kiyonari S, Kadomatsu K. Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opin Drug Discov 2014; 10:53-62. [DOI: 10.1517/17460441.2015.974544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
106
|
Morandi F, Corrias MV, Pistoia V. Evaluation of bone marrow as a metastatic site of human neuroblastoma. Ann N Y Acad Sci 2014; 1335:23-31. [PMID: 25315505 DOI: 10.1111/nyas.12554] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arising from neural crest cells, neuroblastoma (NB) is the most common extracranial pediatric solid tumor. The clinical presentation of NB is heterogeneous, ranging from patients with asymptomatic tumor masses, who require minimal treatment, to patients with metastatic disease who are treated with multimodal therapies. Clinical outcome is also variable, with overall survival ranging from 98% to 100% in infants with stage 1 NB, to less than 30% in patients with stage 4 MYCN-amplified NB. More than 50% of patients show metastasis at diagnosis, with the involvement of different vascularized tissues, including the bone marrow (BM). In this paper, we focus on BM infiltration by NB cells, which is considered an adverse prognostic factor. In particular, we discuss the role of different biological factors that may favor the dissemination of NB cells in the BM, such as chromosomic abnormalities, gene amplification, transcription factors, cell-surface receptors, products of oncogenes, and, more importantly, cytokines and chemokines. In addition, we analyze different techniques to evaluate BM infiltration by malignant cells (i.e., flow cytometry, immunocytochemistry, and quantitative reverse transcriptase polymerase chain reaction). Finally, we review recent data regarding phenotypic and genetic characterization of BM-infiltrating malignant cells and characterization of the BM microenvironment in NB patients compared to healthy subjects.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | | | | |
Collapse
|
107
|
Planells-Ferrer L, Urresti J, Soriano A, Reix S, Murphy DM, Ferreres JC, Borràs F, Gallego S, Stallings RL, Moubarak RS, Segura MF, Comella JX. MYCN repression of Lifeguard/FAIM2 enhances neuroblastoma aggressiveness. Cell Death Dis 2014; 5:e1401. [PMID: 25188511 PMCID: PMC4540192 DOI: 10.1038/cddis.2014.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 01/20/2023]
Abstract
Neuroblastoma (NBL) is the most common solid tumor in infants and accounts for 15% of all pediatric cancer deaths. Several risk factors predict NBL outcome: age at the time of diagnosis, stage, chromosome alterations and MYCN (V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma-Derived Homolog) amplification, which characterizes the subset of the most aggressive NBLs with an overall survival below 30%. MYCN-amplified tumors develop exceptional chemoresistance and metastatic capacity. These properties have been linked to defects in the apoptotic machinery, either by silencing components of the extrinsic apoptotic pathway (e.g. caspase-8) or by overexpression of antiapoptotic regulators (e.g. Bcl-2, Mcl-1 or FLIP). Very little is known on the implication of death receptors and their antagonists in NBL. In this work, the expression levels of several death receptor antagonists were analyzed in multiple human NBL data sets. We report that Lifeguard (LFG/FAIM2 (Fas apoptosis inhibitory molecule 2)/NMP35) is downregulated in the most aggressive and undifferentiated tumors. Intringuingly, although LFG has been initially characterized as an antiapoptotic protein, we have found a new association with NBL differentiation. Moreover, LFG repression resulted in reduced cell adhesion, increased sphere growth and enhanced migration, thus conferring a higher metastatic capacity to NBL cells. Furthermore, LFG expression was found to be directly repressed by MYCN at the transcriptional level. Our data, which support a new functional role for a hitherto undiscovered MYCN target, provide a new link between MYCN overexpression and increased NBL metastatic properties.
Collapse
Affiliation(s)
- L Planells-Ferrer
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Urresti
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Soriano
- Laboratory of Translational Research in Pediatric Cancer, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Reix
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D M Murphy
- Molecular and Cellular Therapeutics, Royal College of Surgeons and National Children's Research Centre Our Lady's Children's Hospital, Dublin, Ireland
| | - J C Ferreres
- Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F Borràs
- Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Gallego
- 1] Laboratory of Translational Research in Pediatric Cancer, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain [2] Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R L Stallings
- Molecular and Cellular Therapeutics, Royal College of Surgeons and National Children's Research Centre Our Lady's Children's Hospital, Dublin, Ireland
| | - R S Moubarak
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M F Segura
- Laboratory of Translational Research in Pediatric Cancer, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
108
|
Brownhill S, Cohen D, Burchill S. Proliferation index: a continuous model to predict prognosis in patients with tumours of the Ewing's sarcoma family. PLoS One 2014; 9:e104106. [PMID: 25157404 PMCID: PMC4144797 DOI: 10.1371/journal.pone.0104106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/09/2014] [Indexed: 01/03/2023] Open
Abstract
The prognostic value of proliferation index (PI) and apoptotic index (AI), caspase-8, -9 and -10 expression have been investigated in primary Ewing's sarcoma family of tumours (ESFT). Proliferating cells, detected by immunohistochemistry for Ki-67, were identified in 91% (91/100) of tumours with a median PI of 14 (range 0-87). Apoptotic cells, identified using the TUNEL assay, were detected in 96% (76/79) of ESFT; the median AI was 3 (range 0-33). Caspase-8 protein expression was negative (0) in 14% (11/79), low (1) in 33% (26/79), medium (2) in 38% (30/79) and high (3) in 15% (12/79) of tumours, caspase-9 expression was low (1) in 66% (39/59) and high (3) in 34% (20/59), and caspase-10 protein was low (1) in 37% (23/62) and negative (0) in 63% (39/62) of primary ESFT. There was no apparent relationship between caspase-8, -9 and -10 expression, PI and AI. PI was predictive of relapse-free survival (RFS; p = 0.011) and overall survival (OS; p = <0.001) in a continuous model, whereas AI did not predict outcome. Patients with tumours expressing low levels of caspase-9 protein had a trend towards a worse RFS than patients with tumours expressing higher levels of caspase-9 protein (p = 0.054, log rank test), although expression of caspases-8, -9 and/or -10 did not significantly predict RFS or OS. In a multivariate analysis model that included tumour site, tumour volume, the presence of metastatic disease at diagnosis, PI and AI, PI independently predicts OS (p = 0.003). Consistent with previous publications, patients with pelvic tumours had a significantly worse OS than patients with tumours at other sites (p = 0.028); patients with a pelvic tumour and a PI≥20 had a 6 fold-increased risk of death. These studies advocate the evaluation of PI in a risk model of outcome for patients with ESFT.
Collapse
Affiliation(s)
- Samantha Brownhill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
- * E-mail:
| | - Dena Cohen
- Clinical Trials Research Unit, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
| | - Sue Burchill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
109
|
Lang WH, Sandoval JA. Detection of PI3K inhibition in human neuroblastoma using multiplex luminex bead immunoassay: a targeted approach for pathway analysis. ACTA ACUST UNITED AC 2014; 19:1235-45. [PMID: 25092063 DOI: 10.1177/1087057114545650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is a common solid tumor in children. Outcomes for advanced stage NB have not improved, at least in part because of multimodality therapy resistance. Better comprehension of novel molecular targets will likely lead to improved therapies with specific cytotoxic agents. For instance, the role of deregulated IGF-1R/AKT/PI3K/mTOR (PI3K) pathway activity has attracted much attention across several tumors, including NB. Thus, modulating this pathway via anti-PI3K drugs has taken center stage in many cancer clinical trials. However, varied clinical effects have hampered the precise application of these agents. Tumor PI3K pathway profiling may reveal a method to enhance the efficacy of these inhibitors. To this end, solid-phase antibody-based array platforms have emerged as a direct, rapid means of profiling intracellular signaling pathways. We tested the efficacy of four PI3K inhibitors against a panel of human NB cell lines using Luminex xMAP bead array technology to establish PI3K phosphoprotein profiles. We demonstrate the utility of the xMAP approach in following intracellular signaling signatures specific for PI3K targeted therapy. Further validation is required before xMAP is used routinely for clinical PI3K pathway evaluation, but this method may eventually be personalized by taking into account each child's basal NB pathway status.
Collapse
Affiliation(s)
- Walter H Lang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John A Sandoval
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
110
|
Lin Z, Guo Z, Xu Y, Zhao X. Identification of a secondary promoter of CASP8 and its related transcription factor PURα. Int J Oncol 2014; 45:57-66. [PMID: 24819879 PMCID: PMC4079158 DOI: 10.3892/ijo.2014.2436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 01/18/2023] Open
Abstract
Caspase-8 (CASP8) is an essential initiator of apoptosis and is associated with many diseases in humans including esophageal squamous cell carcinoma. CASP8 produces a variety of transcripts, which might perform distinct functions. However, the cis and trans transcriptional determinants that control CASP8 expression remain poorly defined. Using a series of luciferase reporter assays, we identified a novel secondary promoter of CASP8 within chr2: 202,122,236 to 202,123,227 and 25 kb downstream of the previously described CASP8 promoter. ENCODE ChIP-seq data for this novel promoter region revealed several epigenetic features, including high levels of histone H3 lysine 27 acetylation and lysine 4 methylation, as well as low levels of CpG island methylation. We developed a mass spectrometry based strategy to identify transcription factors that contribute to the function of the secondary promoter. We found that the transcription activator protein PURα is specifically involved in the transcriptional activation of the secondary promoter and may exert its function by forming a complex with E2F-1 and RNA polymerase II. PURα can bind to both DNA and RNA, and functions in the initiation of DNA replication, regulation of transcription. We observed that knockdown of PURα expression decreased the transcriptional activity of the secondary promoter and mRNA expression of CASP8 isoform G. Although the physiologic roles of this secondary promoter remain unclear, our data may help explain the complexity of CASP8 transcription and suggest that the various caspase 8 isoforms may have distinct regulations and functions.
Collapse
Affiliation(s)
- Zhengwei Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhimin Guo
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yang Xu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
111
|
Carter BZ, Mak PY, Mak DH, Shi Y, Qiu Y, Bogenberger JM, Mu H, Tibes R, Yao H, Coombes KR, Jacamo RO, McQueen T, Kornblau SM, Andreeff M. Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst 2014; 106:djt440. [PMID: 24526787 DOI: 10.1093/jnci/djt440] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) therapy has limited long-term efficacy because patients frequently develop disease relapse because of the inability of standard chemotherapeutic agents to target AML stem/progenitor cells. Here, we identify deregulated apoptotic components in AML stem/progenitor cells and investigate the individual and combinatorial effects of the novel inhibitor of apoptosis (IAP) protein antagonist and second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant and demethylating epigenetic modulators. METHODS Protein expression was measured by reversed-phase protein array in AML patient (n = 511) and normal (n = 21) samples and by western blot in drug-treated cells. The antileukemic activity of birinapant and demethylating agents was assessed in vitro and in an in vivo AML mouse xenograft model (n = 10 mice per group). All statistical tests were two-sided. RESULTS Compared with bulk AML cells, CD34(+)38(-) AML stem/progenitors expressed increased cIAP1 and caspase-8 levels and decreased SMAC levels (one-way analysis of variance followed by Tukey's multiple comparison test, P < .001). Birinapant induced death receptor-/caspase-8-mediated apoptosis in AML cells, including in AML stem/progenitor cells, but not in normal CD34(+) cells. Demethylating agents modulated extrinsic apoptosis pathway components and, when combined with birinapant, were highly synergistic in vitro (combination index < 1), and also more effective in vivo (P < .001, by Student t test, for the median survival of birinapant plus 5-azacytadine vs birinapant alone or vs controls). CONCLUSIONS cIAP1, SMAC, and caspase-8 appear to play a role in AML stem cell survival, and synergistic targeting of these cells with birinapant and demethylating agents shows potential utility in leukemia therapy.
Collapse
Affiliation(s)
- Bing Z Carter
- Affiliations of authors: Section of Molecular Hematology and Therapy, Department of Leukemia (BZC, PYM, DHM, YS, YQ, HM, ROJ, TM, SMK, MA) and Department of Bioinformatics and Computational Biology (HY, KRC), University of Texas M.D. Anderson Cancer Center, Houston, TX; Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ (JMB, RT)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Haruta M, Kamijo T, Nakagawara A, Kaneko Y. RASSF1A methylation may have two biological roles in neuroblastoma tumorigenesis depending on the ploidy status and age of patients. Cancer Lett 2014; 348:167-76. [PMID: 24680815 DOI: 10.1016/j.canlet.2014.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/27/2022]
Abstract
RASSF1A methylation was frequent in neuroblastomas found in infants by mass-screening or infants and children diagnosed clinically, whereas CASP8 and DCR2 methylation was only frequent in tumors in children. When classified according to the ploidy status, RASSF1A and PCDHB methylation was only associated with MYCN amplification and poor outcomes in infants with a clinically diagnosed diploid, not triploid tumor. RASSF1A and PCDHB methylation was associated with poor outcomes in children with triploid and diploid tumors, respectively, and with MYCN amplification in children with diploid tumor. RASSF1A methylation may have two biological roles based on the ploidy status and patient's age.
Collapse
Affiliation(s)
- Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | | | | | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan.
| |
Collapse
|
113
|
Hadji A, Ceppi P, Murmann AE, Brockway S, Pattanayak A, Bhinder B, Hau A, De Chant S, Parimi V, Kolesza P, Richards J, Chandel N, Djaballah H, Peter ME. Death induced by CD95 or CD95 ligand elimination. Cell Rep 2014; 7:208-22. [PMID: 24656822 DOI: 10.1016/j.celrep.2014.02.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 10/07/2013] [Accepted: 02/24/2014] [Indexed: 01/07/2023] Open
Abstract
CD95 (Fas/APO-1), when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue-specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE) is characterized by an increase in cell size, production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising way to kill cancer cells.
Collapse
Affiliation(s)
- Abbas Hadji
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paolo Ceppi
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea E Murmann
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sonia Brockway
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Abhinandan Pattanayak
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bhavneet Bhinder
- HTS Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Annika Hau
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shirley De Chant
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vamsi Parimi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Piotre Kolesza
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joanne Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Navdeep Chandel
- Division of Pulmonary and Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hakim Djaballah
- HTS Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marcus E Peter
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
114
|
Fröhlich LF, Mrakovcic M, Smole C, Lahiri P, Zatloukal K. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells. PLoS One 2014; 9:e91558. [PMID: 24618889 PMCID: PMC3950220 DOI: 10.1371/journal.pone.0091558] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3–7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) by combined treatment with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L). In addition, we investigated the uterine sarcoma cell lines, MES-SA and ESS-1, regarding the underlying molecular mechanisms of SAHA and TRAIL-induced apoptosis and their resistance towards TRAIL. Compared to single SAHA or TRAIL treatment, the combination of SAHA with TRAIL led to complete cell death of both tumor cell lines after 24 to 48 hours. In contrast to single SAHA treatment, apoptosis occured faster and was more pronounced in ESS-1 cells than in MES-SA cells. Induction of SAHA- and TRAIL-induced apoptosis was accompanied by upregulation of the intrinsic apoptotic pathway via reduction of mitochondrial membrane potential, caspase-3, -6, and -7 activation, and PARP cleavage, but was also found to be partially caspase-independent. Apoptosis resistance was caused by reduced expression of caspase-8 and DR 4/TRAIL-R1 in ESS-1 and MES-SA cells, respectively, due to epigenetic silencing by DNA hypermethylation of gene promoter sequences. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine or gene transfer therefore restored gene expression and increased the sensitivity of both cell lines against TRAIL-induced apoptosis. Our data provide evidence that deregulation of epigenetic silencing by histone acetylation and DNA hypermethylation might play a fundamental role in the origin of uterine sarcomas. Therefore, tumor growth might be efficiently overcome by a cytotoxic combinatorial treatment of HDAC inhibitors with TRAIL.
Collapse
Affiliation(s)
- Leopold F. Fröhlich
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Maria Mrakovcic
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Claudia Smole
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
| | - Pooja Lahiri
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
| |
Collapse
|
115
|
Graf RP, Keller N, Barbero S, Stupack D. Caspase-8 as a regulator of tumor cell motility. Curr Mol Med 2014; 14:246-54. [PMID: 24467204 PMCID: PMC4106798 DOI: 10.2174/1566524014666140128111951] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 01/31/2023]
Abstract
The caspases are a family of ubiquitously expressed cysteine proteases best known for their roles in programmed cell death. However, caspases play a number of other roles in vertebrates. In the case of caspase-8, loss of expression is an embryonic lethal phenotype, and caspase-8 plays roles in suppressing cellular necrosis, promoting differentiation and immune signaling, regulating autophagy, and promoting cellular migration. Apoptosis and migration require localization of caspase-8 in the periphery of the cells, where caspase-8 acts as part of distinct biosensory complexes that either promote migration in appropriate cellular microenvironments, or cell death in inappropriate settings. In the cellular periphery, caspase-8 interacts with components of the focal adhesion complex in a tyrosine-kinase dependent manner, promoting both cell migration in vitro and metastasis in vivo. Mechanistically, caspase-8 interacts with components of both focal adhesions and early endosomes, enhancing focal adhesion turnover and promoting rapid integrin recycling to the cell surface. Clinically, this suggests that the expression of caspase-8 may not always be a positive prognostic sign, and that the role of caspase-8 in cancer progression is likely context-dependent.
Collapse
Affiliation(s)
| | | | | | - D Stupack
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 0803, 3855 Health Sciences Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
116
|
Lennon JC, Bright SA, Carroll E, Butini S, Campiani G, O'Meara A, Williams DC, Zisterer DM. The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells. Biochem Pharmacol 2014; 87:611-24. [PMID: 24406249 DOI: 10.1016/j.bcp.2013.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/22/2023]
Abstract
Neuroblastoma, a malignancy of neuroectoderrmal origin, accounts for 15% of childhood cancer deaths. Despite advances in understanding the biology, it remains one of the most difficult paediatric cancers to treat. A major obstacle in the effective treatment of neuroblastoma is the development of multidrug resistance (MDR). There is thus a compelling demand for new treatment strategies for this cancer that can bypass such resistance mechanisms. The pyrrolo-1,5-benzoxazepine (PBOX) compounds are a series of novel microtubule-targeting agents that potently induce apoptosis in various cancer cell lines, ex vivo patient samples and in vivo cancer models. In this study we examined the ability of two members, PBOX-6 and -15, to exhibit anti-cancer effects in a panel of drug sensitive and MDR neuroblastoma cell lines. The PBOX compounds potently reduced the viability of all neuroblastoma cells examined and exhibited a lower fold resistance in MDR cells when compared to standard chemotherapeutics. In addition, the PBOX compounds synergistically enhanced apoptosis induced by etoposide, carboplatin and doxorubicin. Exposure of drug sensitive and resistant cell lines to PBOX-6/carboplatin induced cleavage of Bcl-2, a downregulation of Mcl-1 and a concomitant increase in Bak. Furthermore, activation of caspase-3, -8 and -9 was demonstrated. Finally, gene silencing of Mcl-1 by siRNA was shown to sensitise both drug sensitive and multidrug resistant cells to carboplatin-induced apoptosis demonstrating the importance of Mcl-1 downregulation in the apoptotic pathway mediated by the PBOX compounds in neuroblastoma. In conclusion, our findings indicate the potential of the PBOX compounds in enhancing chemosensitivity in neuroblastoma.
Collapse
Affiliation(s)
- Jennifer C Lennon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; The National Children's Research Centre, Crumlin, Dublin, Ireland.
| | - Sandra A Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Eilis Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Stefania Butini
- European Research Centre for Drug Discovery & Development, University of Siena, Siena, Italy.
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery & Development, University of Siena, Siena, Italy.
| | - Anne O'Meara
- Our Lady's Childrens Hospital, Crumlin, Dublin, Ireland.
| | - D Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
117
|
Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:167-80. [PMID: 25001536 DOI: 10.1007/978-1-4471-6458-6_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The concept to exploit death receptors for cancer therapy is very attractive, since these cell surface receptors have a direct connection to the intracellular cell death machinery. Among the death receptor superfamily, the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) receptor/ligand system is of special interest. TRAIL receptor agonists have recently entered the stage of clinical evaluation for the treatment of human cancers. Further insights into the regulatory mechanisms of TRAIL signaling will help to better understand the determinants of TRAIL sensitivity versus resistance of human cancers.
Collapse
|
118
|
Abstract
Apoptosis is a tightly regulated cell suicide process used by metazoans to eliminate unwanted or damaged cells that pose a threat to the organism. Caspases-specialized proteolytic enzymes that are responsible for apoptosis initiation and execution-can be activated through two signaling mechanisms: (1) the cell-intrinsic pathway, consisting of Bcl-2 family proteins and initiated by internal sensors for severe cell distress and (2) the cell-extrinsic pathway, triggered by extracellular ligands through cognate death receptors at the surface of target cells. Proapoptotic ligands are often expressed on the surface of cytotoxic cells, for example, certain types of activated immune cells. Alternatively, these ligands can function in shed, soluble form. The mode of ligand presentation can substantially alter the cell response to receptor stimulation. Once receptor ligation on the target cell occurs, a number of intracellular signaling cascades may be initiated. These can lead to a variety of cellular outcomes, including caspase-mediated apoptosis, a distinct type of regulated cell death called necroptosis, or antiapoptotic or inflammatory responses. Death receptor signaling is kept tightly in check and plays critical homeostatic roles during embryonic development and throughout life.
Collapse
|
119
|
DeNardo BD, Holloway MP, Ji Q, Nguyen KT, Cheng Y, Valentine MB, Salomon A, Altura RA. Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 2013; 8:e82513. [PMID: 24349301 PMCID: PMC3859635 DOI: 10.1371/journal.pone.0082513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is an embryonal tumor of childhood with a heterogenous clinical presentation that reflects differences in activation of complex biological signaling pathways. Protein phosphorylation is a key component of cellular signal transduction and plays a critical role in processes that control cancer cell growth and survival. We used shotgun LC/MS to compare phosphorylation between a human MYCN amplified neuroblastoma cell line (NB10), modeling a resistant tumor, and a human neural precursor cell line (NPC), modeling a normal baseline neural crest cell. 2181 unique phosphorylation sites representing 1171 proteins and 2598 phosphopeptides were found. Protein kinases accounted for 6% of the proteome, with a predominance of tyrosine kinases, supporting their prominent role in oncogenic signaling pathways. Highly abundant receptor tyrosine kinase (RTK) phosphopeptides in the NB10 cell line relative to the NPC cell line included RET, insulin-like growth factor 1 receptor/insulin receptor (IGF-1R/IR), and fibroblast growth factor receptor 1 (FGFR1). Multiple phosphorylated peptides from downstream mediators of the PI3K/AKT/mTOR and RAS pathways were also highly abundant in NB10 relative to NPC. Our analysis highlights the importance of RET, IGF-1R/IR and FGFR1 as RTKs in neuroblastoma and suggests a methodology that can be used to identify potential novel biological therapeutic targets. Furthermore, application of this previously unexploited technology in the clinic opens the possibility of providing a new wide-scale molecular signature to assess disease progression and prognosis.
Collapse
Affiliation(s)
- Bradley D. DeNardo
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Michael P. Holloway
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Qinqin Ji
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Kevin T. Nguyen
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Yan Cheng
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Marcus B. Valentine
- St. Jude Comprehensive Cancer Center Cytogenetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Arthur Salomon
- Department of Molecular and Cellular Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Rachel A. Altura
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
120
|
Membrane-bound TRAIL supplements natural killer cell cytotoxicity against neuroblastoma cells. J Immunother 2013; 36:319-29. [PMID: 23719242 DOI: 10.1097/cji.0b013e31829b4493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroblastoma cells have been reported to be resistant to death induced by soluble, recombinant forms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (CD253/TNFSF10) because of low or absent expression of caspase-8 and/or TRAIL-receptor 2 (TRAIL-R2/DR5/CD262/TNFRSF10b). However, their sensitivity to membrane-bound TRAIL on natural killer (NK) cells is not known. Comparing microarray gene expression and response to NK cell-mediated cytotoxicity, we observed a correlation between TRAIL-R2 expression and the sensitivity of 14 neuroblastoma cell lines to the cytotoxicity of NK cells activated with interleukin (IL)-2 plus IL-15. Even though most NK cytotoxicity was dependent upon perforin, the cytotoxicity was supplemented by TRAIL in 14 of 17 (82%) neuroblastoma cell lines as demonstrated using an anti-TRAIL neutralizing antibody. Similarly, a recently developed NK cell expansion system employing IL-2 plus lethally irradiated K562 feeder cells constitutively expressing membrane-bound IL-21 (K562 clone 9.mbIL21) resulted in activated NK cells derived from normal healthy donors and neuroblastoma patients that also utilized TRAIL to supplement cytotoxicity. Exogenous interferon-γ upregulated expression of caspase-8 in 3 of 4 neuroblastoma cell lines and increased the contribution of TRAIL to NK cytotoxicity against 2 of the 3 lines; however, relatively little inhibition of cytotoxicity was observed when activated NK cells were treated with an anti-interferon-γ neutralizing antibody. Constraining the binding of anti-TRAIL neutralizing antibody to membrane-bound TRAIL but not soluble TRAIL indicated that membrane-bound TRAIL alone was responsible for essentially all of the supplemental cytotoxicity. Together, these findings support a role for membrane-bound TRAIL in the cytotoxicity of NK cells against neuroblastoma cells.
Collapse
|
121
|
Hensley P, Mishra M, Kyprianou N. Targeting caspases in cancer therapeutics. Biol Chem 2013; 394:831-43. [PMID: 23509217 DOI: 10.1515/hsz-2013-0128] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/15/2013] [Indexed: 02/01/2023]
Abstract
The identification of the fundamental role of apoptosis in the growth balance and normal homeostasis against cell proliferation led to the recognition of its loss contributing to tumorigenesis. The mechanistic significance of reinstating apoptosis signaling towards selective targeting of malignant cells heavily exploits the caspase family of death-inducing molecules as a powerful therapeutic platform for the development of potent anticancer strategies. Some apoptosis inhibitors induce caspase expression and activity in preclinical models and clinical trials by targeting both the intrinsic and extrinsic apoptotic pathways and restoring the apoptotic capacity in human tumors. Furthermore, up-regulation of caspases emerges as a sensitizing mechanism for tumors exhibiting therapeutic resistance to radiation and adjuvant chemotherapy. This review provides a comprehensive discussion of the functional involvement of caspases in apoptosis control and the current understanding of reactivating caspase-mediated apoptosis signaling towards effective therapeutic modalities in cancer treatment.
Collapse
Affiliation(s)
- Patrick Hensley
- Department of Urology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
122
|
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed.
Collapse
Affiliation(s)
- Miller Huang
- Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, California 94158-9001
| | | |
Collapse
|
123
|
miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene 2013; 33:3717-29. [PMID: 23934188 DOI: 10.1038/onc.2013.330] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022]
Abstract
Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug-metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here, we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is downregulated in resistant cells. miR-137 overexpression resulted in downregulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 downregulates CAR expression and CAR downregulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance.
Collapse
|
124
|
Epigenetic drug combination induces genome-wide demethylation and altered gene expression in neuro-ectodermal tumor-derived cell lines. Cell Oncol (Dordr) 2013; 36:351-62. [PMID: 23864224 DOI: 10.1007/s13402-013-0140-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Epigenetic alterations are inherent to cancer cells, and epigenetic drugs are currently primarily used to treat hematological malignancies. Pediatric neuro-ectodermal tumors originate from neural crest cells and also exhibit epigenetic alterations involving e.g. apoptotic pathways, which suggests that these tumors may also be sensitive to epigenetic drugs. This notion prompted us to assess molecular and functional effects of low dosage epigenetic drugs in neuro-ectodermal tumor-derived cell lines of pediatric origin. RESULTS In 17 neuroblastoma (NBL) and 5 peripheral primitive neuro-ectodermal tumor (PNET) cell lines a combination treatment of 5-aza-2'-deoxycytidine (DAC) and Trichostatin A (TSA) at nanomolar dosages was found to reduce proliferation and to induce wide-spread DNA demethylation, accompanied by major changes in gene expression profiles. Approximately half of the genes that were significantly up-regulated upon treatment exhibited a significant demethylation in their promoter regions. In the NBL cell lines, almost every cellular pathway (193/200) investigated showed expression alterations after treatment, especially a marked up-regulation of genes in the p53 pathway. The combination treatment also resulted in up-regulation of known epigenetically regulated genes such as X-chromosomal genes, tissue-specific genes and a limited number of imprinted genes, as well as known tumor suppressor genes and oncogenes. CONCLUSIONS Nanomolar dosages of epigenetic drugs have a dramatic impact on the genomes of neuro-ectodermal tumor-derived cell lines, including alterations in DNA methylation and concomitant alterations in gene expression.
Collapse
|
125
|
DNA methylation and apoptosis resistance in cancer cells. Cells 2013; 2:545-73. [PMID: 24709797 PMCID: PMC3972670 DOI: 10.3390/cells2030545] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 01/13/2023] Open
Abstract
Apoptosis is a cell death programme primordial to cellular homeostasis efficiency. This normal cell suicide program is the result of the activation of a cascade of events in response to death stimuli. Apoptosis occurs in normal cells to maintain a balance between cell proliferation and cell death. A deregulation of this balance due to modifications in the apoptosic pathway leads to different human diseases including cancers. Apoptosis resistance is one of the most important hallmarks of cancer and some new therapeutical strategies focus on inducing cell death in cancer cells. Nevertheless, cancer cells are resistant to treatment inducing cell death because of different mechanisms, such as DNA mutations in gene coding for pro-apoptotic proteins, increased expression of anti-apoptotic proteins and/or pro-survival signals, or pro-apoptic gene silencing mediated by DNA hypermethylation. In this context, aberrant DNA methylation patterns, hypermethylation and hypomethylation of gene coding for proteins implicated in apoptotic pathways are possible causes of cancer cell resistance. This review highlights the role of DNA methylation of apoptosis-related genes in cancer cell resistance.
Collapse
|
126
|
Puccini J, Dorstyn L, Kumar S. Caspase-2 as a tumour suppressor. Cell Death Differ 2013; 20:1133-9. [PMID: 23811850 DOI: 10.1038/cdd.2013.87] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 01/02/2023] Open
Abstract
Ever since its discovery 20 years ago, caspase-2 has been enigmatic and its function somewhat controversial. Although many in vitro studies suggested that caspase-2 was important for apoptosis, demonstrating an in vivo cell death role for this caspase has been more problematic, with caspase-2-deficient mice showing limited, tissue-specific cell death defects. Recent results from different laboratories suggest that at least one of its physiological roles in animals is to protect against cellular stress and transformation. As such, loss of caspase-2 augments tumorigenesis in some mouse models of cancer, assigning a tumour suppressor function to this enigmatic caspase. This review focuses on this seemingly non-apoptotic function of caspase-2 as a tumour suppressor and reconciles some of the recent findings in the field.
Collapse
Affiliation(s)
- J Puccini
- Department of Haematology, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
127
|
Li Y, Nakagawara A. Apoptotic cell death in neuroblastoma. Cells 2013; 2:432-59. [PMID: 24709709 PMCID: PMC3972687 DOI: 10.3390/cells2020432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/30/2013] [Accepted: 06/08/2013] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common malignant solid tumors in childhood, which derives from the sympathoadrenal lineage of the neural crest and exhibits extremely heterogeneous biological and clinical behaviors. The infant patients frequently undergo spontaneous regression even with metastatic disease, whereas the patients of more than one year of age who suffer from disseminated disease have a poor outcome despite intensive multimodal treatment. Spontaneous regression in favorable NBs has been proposed to be triggered by nerve growth factor (NGF) deficiency in the tumor with NGF dependency for survival, while aggressive NBs have defective apoptotic machinery which enables the tumor cells to evade apoptosis and confers the resistance to treatment. This paper reviews the molecules and pathways that have been recently identified to be involved in apoptotic cell death in NB and discusses their potential prospects for developing more effective therapeutic strategies against aggressive NB.
Collapse
Affiliation(s)
- Yuanyuan Li
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan.
| | - Akira Nakagawara
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan.
| |
Collapse
|
128
|
Xiao J, Broz P, Puri AW, Deu E, Morell M, Monack DM, Bogyo M. A coupled protein and probe engineering approach for selective inhibition and activity-based probe labeling of the caspases. J Am Chem Soc 2013; 135:9130-8. [PMID: 23701470 DOI: 10.1021/ja403521u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caspases are cysteine proteases that play essential roles in apoptosis and inflammation. Unfortunately, their highly conserved active sites and overlapping substrate specificities make it difficult to use inhibitors or activity-based probes to study the function, activation, localization, and regulation of individual members of this family. Here we describe a strategy to engineer a caspase to contain a latent nucleophile that can be targeted by a probe containing a suitably placed electrophile, thereby allowing specific, irreversible inhibition and labeling of only the engineered protease. To accomplish this, we have identified a non-conserved residue on the small subunit of all caspases that is near the substrate-binding pocket and that can be mutated to a non-catalytic cysteine residue. We demonstrate that an active-site probe containing an irreversible binding acrylamide electrophile can specifically target this cysteine residue. Here we validate the approach using the apoptotic mediator, caspase-8, and the inflammasome effector, caspase-1. We show that the engineered enzymes are functionally identical to the wild-type enzymes and that the approach allows specific inhibition and direct imaging of the engineered targets in cells. Therefore, this method can be used to image localization and activation as well as the functional contributions of individual caspase proteases to the process of cell death or inflammation.
Collapse
Affiliation(s)
- Junpeng Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Asada K, Watanabe N, Nakamura Y, Ohira M, Westermann F, Schwab M, Nakagawara A, Ushijima T. Stronger prognostic power of the CpG island methylator phenotype than methylation of individual genes in neuroblastomas. Jpn J Clin Oncol 2013; 43:641-5. [PMID: 23619990 DOI: 10.1093/jjco/hyt058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The CpG island methylator phenotype is strongly associated with poor survival in neuroblastomas. Neuroblastomas with the CpG island methylator phenotype include almost all neuroblastomas with MYCN amplification, and, even among neuroblastomas without MYCN amplification, have worse prognosis. At the same time, methylation of individual tumor-suppressor genes is also reported to be associated with poor survival. The purpose of this study was to compare the prognostic power of the CpG island methylator phenotype with that of methylation of individual genes. METHODS Methylation-specific polymerase chain reaction was performed for five individual genes (CASP8, EMP3, HOXA9, NR1I2 and CD44) in 140 Japanese and 152 German neuroblastomas. Kaplan-Meier analysis and log-rank tests were conducted to compare the survival between groups defined by methylation status. RESULTS Among the five individual genes, only CASP8 methylation had a significant association with poor overall survival both in Japanese (hazard ratio = 3.1; 95% confidence interval = 1.5-6.4; P = 0.002) and German (hazard ratio = 4.8; 95% confidence interval = 2.1-11; P = 0.0002) neuroblastomas. HOXA9 and NR1I2 methylation were associated with poor survival only in German neuroblastomas. On the other hand, the CpG island methylator phenotype had a strong and consistent association in Japanese (hazard ratio = 22; 95% confidence interval = 5.3-93; P = 1.5 × 10(-5)) and German (hazard ratio = 9.5; 95% confidence interval = 3.2-28; P = 4.7 × 10(-5)) neuroblastomas. CONCLUSION The CpG island methylator phenotype is likely to have stronger prognostic power than methylation of individual genes in neuroblastomas.
Collapse
Affiliation(s)
- Kiyoshi Asada
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.
Collapse
Affiliation(s)
- David R McIlwain
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | | | | |
Collapse
|
131
|
Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma. Anticancer Drugs 2013; 23:1054-66. [PMID: 22863973 DOI: 10.1097/cad.0b013e32835739dd] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epigenetic aberrations and a CpG island methylator phenotype are associated with poor outcome in children with neuroblastoma (NB). Previously, we have shown that valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, exerts antitumor effects in an NB xenograft model. However, the underlying antitumor molecular mechanisms are largely unknown. In this study, we examined the role of HDAC in cell proliferation, cell cycle progression, gene expression patterns, and epigenome in NB. Cell proliferation, cell cycle progression, caspase activity, RNA and protein expression, quantitative methylation, and global DNA methylation were examined in NBL-W-N and LA1-55n NB cell lines. Our studies showed that inhibition of HDAC decreased NB proliferation, and induced caspase activity and G1 growth arrest. Expression patterns of cancer-related genes were modulated by VPA. The expression of THBS1, CASP8, SPARC, CDKN1A, HIC1, CDKN1B, and HIN1 was upregulated, and that of MYCN and TIG1 was downregulated. HDAC inhibition decreased methylation levels of THBS1 and RASSF1A promoters. Inhibition of HDAC increased acetylation of histone 4 and overall DNA methylation levels. Our studies showed that inhibition of HDAC blocked cell proliferation and cell cycle progression in relation to alteration in cancer-related genes, increased overall DNA methylation, and decreased methylation of tumor suppressor genes. Further studies examining the antitumor effects of VPA in NB are warranted.
Collapse
|
132
|
Shin SW, Park JW. Ursolic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:723-30. [PMID: 23247106 DOI: 10.1016/j.bbamcr.2012.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 01/26/2023]
Abstract
Prostate cancer is one of the most commonly occurring malignancies in men, and because existing treatments are not able to manage this neoplasm adequately, novel approaches are needed. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has strong antitumor activity via the induction of apoptotic cell death in a wide range of tumor cell types and has negligible toxicity to most normal cells, some prostate carcinoma cells are resistant to the apoptotic effects of TRAIL. Therefore, combinatorial approaches with TRAIL and different chemotherapeutic agents have been developed to overcome the resistance of cancer cells to TRAIL. Here, we investigated the sensitizing effects of ursolic acid (UA), a pentacyclic triterpenoid found in many plants, on TRAIL-induced prostate cancer cell apoptosis. We found TRAIL-induced prostate cancer cells apoptosis was significantly enhanced by UA, and that UA induced CHOP-dependent DR5 up-regulation. This study shows the use of UA as a sensitizer for TRAIL-induced apoptotic cell death offers a promising means of enhancing the efficacy of TRAIL-based prostate cancer treatments.
Collapse
Affiliation(s)
- Seoung Woo Shin
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | |
Collapse
|
133
|
Sugito K, Kawashima H, Uekusa S, Yoshizawa S, Hoshi R, Furuya T, Kaneda H, Hosoda T, Masuko T, Ohashi K, Ikeda T, Koshinaga T, Fujiwara K, Igarashi J, Ghosh S, Held WA, Nagase H. Identification of aberrant methylation regions in neuroblastoma by screening of tissue-specific differentially methylated regions. Pediatr Blood Cancer 2013; 60:383-9. [PMID: 22911660 DOI: 10.1002/pbc.24282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/12/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of tissue-specific differentially methylated regions (tDMRs) is key to our understanding of mammalian development. Research has indicated that tDMRs are aberrantly methylated in cancer and may affect the oncogenic process. PROCEDURE We used the MassARRAY EpiTYPER system to determine the quantitative methylation levels of seven neuroblastomas (NBs) and two control adrenal medullas at 12 conserved tDMRs. A second sample set of 19 NBs was also analyzed. Statistical analysis was carried out to determine the relationship of the quantitative methylation levels to other prognostic factors in these sample sets. RESULTS Screening of 12 tDMRs revealed 2 genomic regions (SLC16A5 and ZNF206) with frequent aberrant methylation patterns in NB. The methylation levels of SLC16A5 and ZNF206 were low compared to the control adrenal medullas. The SLC16A5 methylation level (cut-off point, 13.25%) was associated with age at diagnosis, disease stage, and Shimada classification but not with MYCN amplification. The ZNF206 methylation level (cut-off point, 68.80%) was associated with all of the prognostic factors analyzed. Although the methylation levels at these regions did not reach statistical significance in their association with prognosis in mono-variant analysis, patients with both hypomethylation of SLC16A5 and hypermethylation of ZNF206 had a significantly prolonged event-free survival, when these two variables were analyzed together. CONCLUSIONS We demonstrated that two tDMRs frequently displayed altered methylation patterns in the NB genome, suggesting their distinct involvement in NB development/differentiation. The combined analysis of these two regions could serve as a diagnostic biomarker for poor clinical outcome.
Collapse
Affiliation(s)
- Kiminobu Sugito
- Department of Pediatric Surgery, Nihon University School of Medicine, Nihon, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Fulda S. Regulation of cell death in cancer-possible implications for immunotherapy. Front Oncol 2013; 3:29. [PMID: 23441073 PMCID: PMC3578186 DOI: 10.3389/fonc.2013.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/04/2013] [Indexed: 01/30/2023] Open
Abstract
Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is expected to open new perspectives for the development of novel experimental treatment strategies to enhance the efficacy of cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt Frankfurt, Germany
| |
Collapse
|
135
|
Krishnadas DK, Shapiro T, Lucas K. Complete remission following decitabine/dendritic cell vaccine for relapsed neuroblastoma. Pediatrics 2013; 131:e336-41. [PMID: 23266925 DOI: 10.1542/peds.2012-0376] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with relapsed stage 4 neuroblastoma have an extremely poor long-term prognosis, making the investigation of new agents of interest. We report the outcome of the first patient treated in a phase 1 study for relapsed neuroblastoma, using the chemotherapy agent decitabine to upregulate cancer testis antigen expression, followed by a dendritic cell vaccine targeting the cancer testis antigens MAGE-A1, MAGE-A3, and NY-ESO-1. Our patient had persistent tumor in his bone marrow after completion of standard therapy for neuroblastoma, including multiagent chemotherapy, tumor resection, stem cell transplantation, radiation therapy, and anti-GD2 monoclonal antibodies. His marrow disease persisted despite chemotherapy, which was given while the vaccine was being produced. After 3 cycles of decitabine and vaccine, this patient achieved a complete remission and is now 1 year from his last treatment, with no evidence of tumor in his bone marrow or other sites. This patient was noted to have an increase in MAGE-A3-specific T cells. This is the first report combining demethylating chemotherapy to enhance tumor antigen expression followed by a cancer antigen vaccine.
Collapse
Affiliation(s)
- Deepa Kolaseri Krishnadas
- Division of Hematology/Oncology, Department of Pediatrics, Stem Cell Transplantation Program, Penn State Children’s Hospital, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
136
|
Hong S, Kim HY, Kim J, Ha HT, Kim YM, Bae E, Kim TH, Lee KC, Kim SJ. Smad7 protein induces interferon regulatory factor 1-dependent transcriptional activation of caspase 8 to restore tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. J Biol Chem 2012; 288:3560-70. [PMID: 23255602 DOI: 10.1074/jbc.m112.400408] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway.
Collapse
Affiliation(s)
- Suntaek Hong
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Epigenetic deregulation of microRNAs in rhabdomyosarcoma and neuroblastoma and translational perspectives. Int J Mol Sci 2012; 13:16554-79. [PMID: 23443118 PMCID: PMC3546707 DOI: 10.3390/ijms131216554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.
Collapse
|
138
|
Ayers D, Nasti A. Utilisation of nanoparticle technology in cancer chemoresistance. JOURNAL OF DRUG DELIVERY 2012; 2012:265691. [PMID: 23213536 PMCID: PMC3505656 DOI: 10.1155/2012/265691] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 01/08/2023]
Abstract
The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting.
Collapse
Affiliation(s)
- Duncan Ayers
- Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Msida MSD 2060, Malta
| | - Alessandro Nasti
- School of Medicine, Kanazawa University Hospital, University of Kanazawa, Kanazawa 920-1192, Japan
| |
Collapse
|
139
|
Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X, Mayes PA, Wise DR, Thompson CB, Maris JM, Hogarty MD, Simon MC. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 2012; 22:631-44. [PMID: 23153536 PMCID: PMC3510660 DOI: 10.1016/j.ccr.2012.09.021] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 12/15/2022]
Abstract
Oncogenic Myc alters mitochondrial metabolism, making it dependent on exogenous glutamine (Gln) for cell survival. Accordingly, Gln deprivation selectively induces apoptosis in MYC-overexpressing cells via unknown mechanisms. Using MYCN-amplified neuroblastoma as a model, we identify PUMA, NOXA, and TRB3 as executors of Gln-starved cells. Gln depletion in MYC-transformed cells induces apoptosis through ATF4-dependent, but p53-independent, PUMA and NOXA induction. MYC-transformed cells depend on both glutamate-oxaloacetate transaminase and glutamate dehydrogenase to maintain Gln homeostasis and suppress apoptosis. Consequently, either ATF4 agonists or glutaminolysis inhibitors potently induce apoptosis in vitro and inhibit tumor growth in vivo. These results reveal mechanisms whereby Myc sensitizes cells to apoptosis, and validate ATF4 agonists and inhibitors of Gln metabolism as potential Myc-selective cancer therapeutics.
Collapse
Affiliation(s)
- Guoliang Qing
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Bo Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Vu
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Zandra E. Walton
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xueyuan Liu
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick A. Mayes
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R. Wise
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig B. Thompson
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Hogarty
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, 421 Curie Blvd., Philadelphia, PA 19104, USA
- corresponding author: M. Celeste Simon, Ph.D., 456 BRB II/III, Abramson Family Cancer Research Institute, 421 Curie Blvd., Philadelphia, PA 19104, Phone: 215-746-5532, Fax: 215-746-5511,
| |
Collapse
|
140
|
Lawlor ER, Thiele CJ. Epigenetic changes in pediatric solid tumors: promising new targets. Clin Cancer Res 2012; 18:2768-79. [PMID: 22589485 DOI: 10.1158/1078-0432.ccr-11-1921] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer is being reinterpreted in the light of recent discoveries related to the histone code and the dynamic nature of epigenetic regulation and control of gene programs during development, as well as insights gained from whole cancer genome sequencing. Somatic mutations in or deregulated expression of genes that encode chromatin-modifying enzymes are being identified with high frequency. Nowhere is this more relevant than in pediatric embryonal solid tumors. A picture is emerging that shows that classic genetic alterations associated with these tumors ultimately converge on the epigenome to dysregulate developmental programs. In this review, we relate how alterations in components of the transcriptional machinery and chromatin modifier genes contribute to the initiation and progression of pediatric solid tumors. We also discuss how dramatic progress in our understanding of the fundamental mechanisms that contribute to epigenetic deregulation in cancer is providing novel avenues for targeted cancer therapy.
Collapse
Affiliation(s)
- Elizabeth R Lawlor
- Department of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
141
|
Decock A, Ongenaert M, Hoebeeck J, De Preter K, Van Peer G, Van Criekinge W, Ladenstein R, Schulte JH, Noguera R, Stallings RL, Van Damme A, Laureys G, Vermeulen J, Van Maerken T, Speleman F, Vandesompele J. Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers. Genome Biol 2012; 13:R95. [PMID: 23034519 PMCID: PMC3491423 DOI: 10.1186/gb-2012-13-10-r95] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/03/2012] [Indexed: 01/06/2023] Open
Abstract
Background Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study aimed to identify prognostic tumor DNA methylation biomarkers. Results To identify genes silenced by promoter methylation, we first applied two independent genome-wide methylation screening methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression profiling upon 5-aza-2'-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a methyl-CpG-binding domain (MBD-seq). Putative methylation markers were selected from DAC-upregulated genes through a literature search and an upfront methylation-specific PCR on 20 primary neuroblastoma tumors, as well as through MBD- seq in combination with publicly available neuroblastoma tumor gene expression data. This yielded 43 candidate biomarkers that were subsequently tested by high-throughput methylation-specific PCR on an independent cohort of 89 primary neuroblastoma tumors that had been selected for risk classification and survival. Based on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 and GRB10 was found to be associated with at least one of the classical risk factors, namely age, stage or MYCN status. Importantly, HIST1H3C and GNAS methylation was associated with overall and/or event-free survival. Conclusions This study combines two genome-wide methylation discovery methodologies and is the most extensive validation study in neuroblastoma performed thus far. We identified several novel prognostic DNA methylation markers and provide a basis for the development of a DNA methylation-based prognostic classifier in neuroblastoma.
Collapse
|
142
|
Kiss NB, Kogner P, Johnsen JI, Martinsson T, Larsson C, Geli J. Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas. BMC MEDICAL GENETICS 2012; 13:83. [PMID: 22984959 PMCID: PMC3495052 DOI: 10.1186/1471-2350-13-83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/10/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND In this study we aimed to quantify tumor suppressor gene (TSG) promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP) in other tumor types. METHODS The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels. RESULTS Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2) was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region. CONCLUSIONS/SIGNIFICANCE The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment.
Collapse
Affiliation(s)
- Nimrod B Kiss
- Departments of Molecular Medicine and Surgery, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
143
|
Ostler KR, Yang Q, Looney TJ, Zhang L, Vasanthakumar A, Tian Y, Kocherginsky M, Raimondi SL, DeMaio JG, Salwen HR, Gu S, Chlenski A, Naranjo A, Gill A, Peddinti R, Lahn BT, Cohn SL, Godley LA. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res 2012; 72:4714-23. [PMID: 22815530 PMCID: PMC3445765 DOI: 10.1158/0008-5472.can-12-0886] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7, which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tumors. Higher levels of DNMT3B7 were detected in differentiated ganglioneuroblastomas compared to undifferentiated neuroblastomas, suggesting that expression of DNMT3B7 may induce a less aggressive clinical phenotype. To test this hypothesis, we investigated the effects of enforced DNMT3B7 expression in neuroblastoma cells, finding a significant inhibition of cell proliferation in vitro and angiogenesis and tumor growth in vivo. DNMT3B7-positive cells had higher levels of total genomic methylation and a dramatic decrease in expression of the FOS and JUN family members that comprise AP1 transcription factors. Consistent with an established antagonistic relationship between AP1 expression and retinoic acid receptor activity, increased differentiation was seen in the DNMT3B7-expressing neuroblastoma cells following treatment with all-trans retinoic acid (ATRA) compared to controls. Our results indicate that DNMT3B7 modifies the epigenome in neuroblastoma cells to induce changes in gene expression, inhibit tumor growth, and increase sensitivity to ATRA.
Collapse
Affiliation(s)
- Kelly R. Ostler
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Qiwei Yang
- Department of Pediatrics, The University of Chicago, Chicago, IL
- Department of Pediatrics, The University of Illinois at Chicago, Chicago, IL
| | - Timothy J. Looney
- Department of Human Genetics and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL
| | - Li Zhang
- Department of Human Genetics and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL
| | | | - Yufeng Tian
- Department of Pediatrics, The University of Chicago, Chicago, IL
| | | | - Stacey L. Raimondi
- Department of Medicine, The University of Chicago, Chicago, IL
- Department of Biology, Elmhurst College, Elmhurst, IL
| | - Jessica G. DeMaio
- Department of Medicine, The University of Chicago, Chicago, IL
- Department of Biology, Elmhurst College, Elmhurst, IL
| | - Helen R. Salwen
- Department of Pediatrics, The University of Chicago, Chicago, IL
| | - Song Gu
- Department of Pediatrics, The University of Chicago, Chicago, IL
- Department of Pediatric Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University
| | | | - Arlene Naranjo
- Children’s Oncology Group (COG), University of Florida, Gainesville, FL
| | - Amy Gill
- Department of Pediatrics, The University of Chicago, Chicago, IL
| | - Radhika Peddinti
- Department of Pediatrics, The University of Chicago, Chicago, IL
| | - Bruce T. Lahn
- Department of Human Genetics and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL
| | - Susan L. Cohn
- Department of Pediatrics, The University of Chicago, Chicago, IL
| | - Lucy A. Godley
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
144
|
Samy M, Gattolliat CH, Pendino F, Hillion J, Nguyen E, Bombard S, Douc-Rasy S, Bénard J, Ségal-Bendirdjian E. Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant. Mol Cancer Ther 2012; 11:2384-93. [PMID: 22933702 DOI: 10.1158/1535-7163.mct-12-0281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telomerase, a ribonucleoprotein complex mainly composed of the reverse transcriptase catalytic subunit (human telomerase reverse transcriptase, hTERT) and the RNA component (hTR), is a key enzyme of cancer progression. That aggressive stage 4-neuroblastoma expressed high levels of telomerase activity, whereas favorable tumors had no or little telomerase expression and activity, prompted us to investigate the role of this enzyme in this tumor model of altered proliferation, neuronal differentiation, and apoptosis. A human MYCN-amplified neuroblastoma cell line (IGR-N-91) was engineered to stably express either the normal hTERT protein (WT-hTERT) or a catalytically inactive dominant-negative mutant of this protein (DN-hTERT). We showed that DN-hTERT expression inhibited the endogenous hTERT in the malignant neuroblasts without telomere shortening nor loss of in vitro proliferative capacity. Importantly, DN-hTERT expression induced major changes in cell morphology of neuroblasts that switched them from a neuronal to a substrate adherent phenotype, which was more prone to apoptosis and lost their tumorigenic properties in nude mice. These biologic effects arose from modifications in the expression of genes involved in both apoptosis and neuroblastoma biology. Taken together these results highlighted the functional relevance of noncanonical functions of hTERT in the determination of neuroblast cell fate. Therefore, our results envision new therapeutic strategies for metastatic neuroblastoma therapeutic management.
Collapse
Affiliation(s)
- Mona Samy
- INSERM UMR-S 1007, Université Paris-Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
The neural adhesion molecule L1CAM confers chemoresistance in human glioblastomas. Neurochem Int 2012; 61:1183-91. [PMID: 22948185 DOI: 10.1016/j.neuint.2012.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/31/2012] [Accepted: 08/18/2012] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) represents the most common and malignant brain tumor. GBM tissues exhibit elevated expression of the transforming growth factor-beta1 (TGF-β1) and the adhesion molecule L1CAM. This study investigated the mechanism of L1CAM regulation in GBM cells and its role in the mediation of chemoresistance. L1CAM expression levels varied in GBM cells being highest in A172 cells and low in T98G cells. Inhibition of TGF-β1 signaling in A172 cells reduced L1CAM expression and vice versa stimulation with exogenous TGF-β1 led to upregulation of L1CAM in T98G cells. Additionally, TGF-β1 and L1CAM expression increased during differentiation of glioma stem-like cells. L1CAM expressing GBM cells and differentiated glioma stem-like cells showed a reduced apoptotic response after treatment with the chemotherapeutic drug temozolomide. Accordingly, siRNA-mediated knock-down of L1CAM in A172 cells and differentiated glioma stem-like cells increased chemosensitivity, whereas overexpression of L1CAM in T98G cells and glioma spheroids diminished the apoptotic response. Elevated L1CAM expression caused a diminished expression of caspase-8 in GBM and differentiated glioma stem-like cells. These data show that TGF-β1 dependent upregulation of L1CAM expression in GBM cells leads to the downregulation of caspase-8 and apoptosis resistance pointing to L1CAM as potential target for improved therapy of GBM patients.
Collapse
|
146
|
Ryan J, Tivnan A, Fay J, Bryan K, Meehan M, Creevey L, Lynch J, Bray IM, O'Meara A, Tracey L, Davidoff AM, Stallings RL. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer 2012; 107:967-76. [PMID: 22892391 PMCID: PMC3464768 DOI: 10.1038/bjc.2012.356] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Neuroblastoma remains a major cause of cancer-linked mortality in children. miR-204 has been used in microRNA expression signatures predictive of neuroblastoma patient survival. The aim of this study was to explore the independent association of miR-204 with survival in a neuroblastoma cohort, and to investigate the phenotypic effects mediated by miR-204 expression in neuroblastoma. Methods: Neuroblastoma cell lines were transiently transfected with miR-204 mimics and assessed for cell viability using MTS assays. Apoptosis levels in cell lines were evaluated by FACS analysis of Annexin V-/propidium iodide-stained cells transfected with miR-204 mimics and treated with chemotherapy drug or vehicle control. Potential targets of miR-204 were validated using luciferase reporter assays. Results: miR-204 expression in primary neuroblastoma tumours was predictive of patient event-free and overall survival, independent of established known risk factors. Ectopic miR-204 expression significantly increased sensitivity to cisplatin and etoposide in vitro. miR-204 direct targeting of the 3′ UTR of BCL2 and NTRK2 (TrkB) was confirmed. Conclusion: miR-204 is a novel predictor of outcome in neuroblastoma, functioning, at least in part, through increasing sensitivity to cisplatin by direct targeting and downregulation of anti-apoptotic BCL2. miR-204 also targets full-length NTRK2, a potent oncogene involved with chemotherapy drug resistance in neuroblastoma.
Collapse
Affiliation(s)
- J Ryan
- Department of Molecular and Cellular Therapeutics, Cancer Genetics Research Group, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene 2012; 32:3263-73. [PMID: 22890322 DOI: 10.1038/onc.2012.337] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 01/09/2023]
Abstract
Inhibitor of apoptosis (IAP) proteins represent promising therapeutic targets due to their high expression in many cancers. Here, we report that small-molecule IAP inhibitors at subtoxic concentrations cooperate with monoclonal antibodies against TRAIL receptor 1 (Mapatumumab) or TRAIL-R2 (Lexatumumab) to induce apoptosis in neuroblastoma cells in a highly synergistic manner (combination index <0.1). Importantly, we identify receptor-activating protein 1 (RIP1) as a critical mediator of this synergism. RIP1 is required for the formation of a RIP1/FADD/caspase-8 complex that drives caspase-8 activation, cleavage of Bid into tBid, mitochondrial outer membrane permeabilization, full activation of caspase-3 and caspase-dependent apoptosis. Indeed, knockdown of RIP1 abolishes formation of the RIP1/FADD/caspase-8 complex, caspase activation and apoptosis upon combination treatment. Similarly, inhibition of RIP1 kinase activity by Necrostatin-1 inhibits IAP inhibitor- and TRAIL receptor-triggered apoptosis. In contrast, overexpression of the dominant-negative superrepressor IκBα-SR or addition of the tumor necrosis factor (TNF)α-blocking antibody Enbrel do not interfere with cotreatment-induced apoptosis, pointing to a nuclear factor-κB- and TNFα-independent mechanism. Of note, IAP inhibitor also sensitizes primary cultured neuroblastoma cells for TRAIL receptor-mediated loss of viability, underscoring the clinical relevance. By identifying RIP1 as a critical mediator of IAP inhibitor-mediated sensitization for Mapatumumab- or Lexatumumab-induced apoptosis, our findings provide new insights into the synergistic interaction of IAP inhibitors together with TRAIL receptor agonists.
Collapse
|
148
|
Etoposide sensitizes neuroblastoma cells expressing caspase 8 to TRAIL. CELL BIOLOGY INTERNATIONAL REPORTS 2012; 19:e00017. [PMID: 23124518 PMCID: PMC3475444 DOI: 10.1042/cbr20110008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/23/2022]
Abstract
TRAIL [TNF (tumour necrosis factor)-related apoptosis-inducing ligand] is a promising agent for clinical use since it kills a wide range of tumour cells without affecting normal cells. We provide evidence that pretreatment with etoposide significantly enhanced TRAIL-mediated apoptosis via up-regulation of DR5 (death receptor 5 or TRAIL-R2) expression in the caspase 8 expressing neuroblastoma cell line, SK-N-MC. In addition, sequential treatment with etoposide and TRAIL increased caspases 8, 9 and 3 activation, Mcl-1 cleavage and Bid truncation, which suggests that the ability of etoposide and TRAIL to induce apoptosis is mediated through activation of an intrinsic signalling pathway. Although TRAIL-R2 expression increased in IMR-32 cells in response to etoposide treatment, cell death was not increased by concurrent treatment with TRAIL compared with etoposide alone, because the cells lacked caspase 8 expression. Restoration of caspase 8 expression by exposure to IFNγ (interferon γ) sensitizes IMR-32 cells to TRAIL. Moreover, pretreatment with etoposide increased TRAIL-induced apoptosis in caspase 8 restored IMR-32 cells through activation of a caspase cascade that included caspases 8, 9 and 3. These results indicate that the etoposide-mediated sensitization of neuroblastoma cells to TRAIL is associated with an increase in TRAIL-R2 expression and requires caspase 8 expression. These observations support the potential use of a combination of etoposide and TRAIL in future clinical trials.
Collapse
Key Words
- AzaC, 5-aza-2′ deoxycytidine
- BCA, bicinchoninic acid
- DD, death domain
- DR5, death receptor 5
- DcR, decoy receptor
- FADD, Fas-associated death domain
- FBS, fetal bovine serum
- IFNγ, interferon γ
- NF-κB, nuclear factor κB
- PARP, poly(ADP-ribose) polymerase
- TNF, tumour necrosis factor
- TRAIL
- TRAIL, TNF-related apoptosis-inducing ligand
- caspase 8
- death receptor
- etoposide
- inferferon γ
- mitochondrial cascade
Collapse
|
149
|
Beyond Genetics in Glioma Pathways: The Ever-Increasing Crosstalk between Epigenomic and Genomic Events. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:519807. [PMID: 22778947 PMCID: PMC3385669 DOI: 10.1155/2012/519807] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/10/2012] [Indexed: 12/12/2022]
Abstract
Diffuse gliomas are the most frequent brain tumor in adults. This group of brain neoplasms, ranging from histologically benign to aggressive malignant forms, represents a challenge in modern neurooncology because of the diffuse infiltrative growth pattern and the inherent tendency to relapse as a more malignant tumor. Once the disease achieves the stage of glioblastoma multiforme (GBM), the prognosis of patients is dismal and the median survival time is 15 months. Exhaustive genetic analyses have revealed a variety of deregulated genetic pathways involved in DNA repair, apoptosis, cell migration/adhesion, and cell cycle. Recently, investigation of epigenetic alterations in gliomas has contributed to depict the complexity of the molecular lesions leading to these malignancies. Even though, the efficacy of the state-of-the-art form of chemotherapy in malignant gliomas with temozolomide is based on the methylation-associated silencing of the DNA repair gene MGMT. Nevertheless, the whole scenario including global DNA hypomethylation, aberrant promoter hypermethylation, histone modification, chromatin states, and the role of noncoding RNAs in gliomas has only been partially revealed. We discuss the repercussion of epigenetic alterations underlying deregulated molecular pathways in the pathogenesis and evolution of gliomas and their impact on management of patients.
Collapse
|
150
|
Djos A, Martinsson T, Kogner P, Carén H. The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol Cancer 2012; 11:40. [PMID: 22695170 PMCID: PMC3493266 DOI: 10.1186/1476-4598-11-40] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/30/2012] [Indexed: 12/11/2022] Open
Abstract
Background Hypermethylation of promotor CpG islands is a common mechanism that inactivates tumor suppressor genes in cancer. Genes belonging to the RASSF gene family have frequently been reported as epigenetically silenced by promotor methylation in human cancers. Two members of this gene family, RASSF1A and RASSF5A have been reported as methylated in neuroblastoma. Data from our previously performed genome-wide DNA methylation array analysis indicated that other members of the RASSF gene family are targeted by DNA methylation in neuroblastoma. Results In the current study, we found that several of the RASSF family genes (RASSF2, RASSF4, RASSF5, RASSF6, RASSF7, and RASSF10) to various degrees were methylated in neuroblastoma cell lines and primary tumors. In addition, several of the RASSF family genes showed low or absent mRNA expression in neuroblastoma cell lines. RASSF5 and RASSF6 were to various degrees methylated in a large portion of neuroblastoma tumors and RASSF7 was heavily methylated in most tumors. Further, CpG methylation sites in the CpG islands of some RASSF family members could be used to significantly discriminate between biological subgroups of neuroblastoma tumors. For example, RASSF5 methylation highly correlated to MYCN amplification and INRG stage M. Furthermore, high methylation of RASSF6 was correlated to unfavorable outcome, 1p deletion and MYCN amplification in our tumor material. In conclusion This study shows that several genes belonging to the RASSF gene family are methylated in neuroblastoma. The genes RASSF5, RASSF6 and RASSF7 stand out as the most promising candidate genes for further investigations in neuroblastoma.
Collapse
Affiliation(s)
- Anna Djos
- Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | | | | | | |
Collapse
|