101
|
Abstract
For growth, survival, communication and homeostasis, cells transport a large number of proteins to the plasma membrane and the extracellular medium by using the secretory pathway. Consequently, to adapt to the surrounding environment and the different intracellular contexts, the secretory pathway needs to accommodate and respond to a plethora of endogenous and exogenous stimuli. It is now well established that several kinases, known to be activated by environmental stimuli, signal from the plasma membrane to the secretory pathway in order to remodel its architecture and modulate the cellular secretion capacity. By contrast, membranes of the early secretory pathway, similar to the endosomal system, can also initiate and modulate signalling cascades, thereby spatially organising cellular signalling and eliciting a different cellular outcome than when signalling is localised to the plasma membrane. This Commentary highlights recent contributions to our understanding of the mutual regulation of the secretory pathway and cellular signalling.
Collapse
Affiliation(s)
- Hesso Farhan
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, Switzerland.
| | | |
Collapse
|
102
|
Srinivasan R, Pantoja R, Moss FJ, Mackey EDW, Son CD, Miwa J, Lester HA. Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. ACTA ACUST UNITED AC 2011; 137:59-79. [PMID: 21187334 PMCID: PMC3010053 DOI: 10.1085/jgp.201010532] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person’s history of tobacco use and his or her susceptibility to Parkinson’s disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)2(β2)3 stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2enhanced-ER-export nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2enhanced-ER-export receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2enhanced-ER-export subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Division of Biology MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Lim YS, Hwang SB. Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J Biol Chem 2011; 286:11290-8. [PMID: 21297162 DOI: 10.1074/jbc.m110.194472] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) nonstructural 5A (NS5A) is a pleiotropic protein involved in viral RNA replication and modulation of the cellular physiology in HCV-infected cells. To elucidate the mechanisms of the HCV life cycle, we identified cellular factors interacting with the NS5A protein in HCV-infected cells. Huh7.5 cells were electroporated with HCV Jc1 RNA. Cellular factors associated with HCV NS5A were identified by immunoprecipitation with Dynabead-conjugated NS5A antibody and LC-MS/MS. Phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) was identified as a binding partner for the NS5A protein. NS5A derived from both genotypes 1b and 2a interacted with PI4KIIIα. NS5A interacted with PI4KIIIα through amino acids 401-600 of PI4KIIIα and domain I of NS5A. Interference of the protein interaction between NS5A and PI4KIIIα decreased HCV propagation. Knockdown of PI4KIIIα significantly reduced HCV replication in Huh7 cells harboring the subgenomic replicon and in Huh7.5 cells infected with cell culture grown virus (HCVcc). Silencing of PI4KIIIα further inhibited HCV release into the tissue culture medium. NS5A may recruit PI4KIIIα to the HCV RNA replication complex. These data suggest that PI4KIIIα is an essential host factor that supports HCV proliferation and therefore PI4KIIIα may be a legitimate target for anti-HCV therapy.
Collapse
Affiliation(s)
- Yun-Sook Lim
- National Research Laboratory of Hepatitis C Virus, Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | | |
Collapse
|
104
|
Routledge KE, Gupta V, Balch WE. Emergent properties of proteostasis-COPII coupled systems in human health and disease. Mol Membr Biol 2010; 27:385-97. [DOI: 10.3109/09687688.2010.524894] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
105
|
Kühnle J, Shillcock J, Mouritsen OG, Weiss M. A modeling approach to the self-assembly of the Golgi apparatus. Biophys J 2010; 98:2839-47. [PMID: 20550896 DOI: 10.1016/j.bpj.2010.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/02/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
The dynamic compartmentalization of eukaryotic cells is a fascinating phenomenon that is not yet understood. A prominent example of this challenge is the Golgi apparatus, the central hub for protein sorting and lipid metabolism in the secretory pathway. Despite major advances in elucidating its molecular biology, the fundamental question of how the morphogenesis of this organelle is organized on a system level has remained elusive. Here, we have formulated a coarse-grained computational model that captures key features of the dynamic morphogenesis of a Golgi apparatus. In particular, our model relates the experimentally observed Golgi phenotypes, the typical turnover times, and the size and number of cisternae to three basic, experimentally accessible quantities: the rates for material influx from the endoplasmic reticulum, and the anterograde and retrograde transport rates. Based on these results, we propose which molecular factors should be mutated to alter the organelle's phenotype and dynamics.
Collapse
Affiliation(s)
- Jens Kühnle
- Cellular Biophysics Group (BIOMS), German Cancer Research Center, c/o BIOQUANT, Heidelberg, Germany
| | | | | | | |
Collapse
|
106
|
Miller EA, Barlowe C. Regulation of coat assembly--sorting things out at the ER. Curr Opin Cell Biol 2010; 22:447-53. [PMID: 20439155 PMCID: PMC2910129 DOI: 10.1016/j.ceb.2010.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 11/25/2022]
Abstract
The small GTPase Sar1 resides at the core of a regulatory cycle that controls protein export from the ER in COPII vesicles. Recent advances in minimally reconstituted systems indicate continual flux of Sar1 through GTPase cycles facilitates cargo concentration into forming vesicles that ultimately bud from membranes. During export from ER membranes, this GTPase cycle is harnessed through the combinatorial power of multiple coat subunits and cargo adaptors to sort an expanding array of proteins into ER-derived vesicles. The COPII budding machinery is further organized into higher-order structures at transitional zones on the ER surface where the large multi-domain Sec16 protein appears to perform a central function.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
107
|
Farhan H, Wendeler MW, Mitrovic S, Fava E, Silberberg Y, Sharan R, Zerial M, Hauri HP. MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. ACTA ACUST UNITED AC 2010; 189:997-1011. [PMID: 20548102 PMCID: PMC2886346 DOI: 10.1083/jcb.200912082] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To what extent the secretory pathway is regulated by cellular signaling is unknown. In this study, we used RNA interference to explore the function of human kinases and phosphatases in controlling the organization of and trafficking within the secretory pathway. We identified 122 kinases/phosphatases that affect endoplasmic reticulum (ER) export, ER exit sites (ERESs), and/or the Golgi apparatus. Numerous kinases/phosphatases regulate the number of ERESs and ER to Golgi protein trafficking. Among the pathways identified, the Raf-MEK (MAPK/ERK [extracellular signal-regulated kinase] kinase)-ERK cascade, including its regulatory proteins CNK1 (connector enhancer of the kinase suppressor of Ras-1) and neurofibromin, controls the number of ERESs via ERK2, which targets Sec16, a key regulator of ERESs and COPII (coat protein II) vesicle biogenesis. Our analysis reveals an unanticipated complexity of kinase/phosphatase-mediated regulation of the secretory pathway, uncovering a link between growth factor signaling and ER export.
Collapse
Affiliation(s)
- Hesso Farhan
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
Estimates based on proteomic analyses indicate that a third of translated proteins in eukaryotic genomes enter the secretory pathway. After folding and assembly of nascent secretory proteins in the endoplasmic reticulum (ER), the coat protein complex II (COPII) selects folded cargo for export in membrane-bound vesicles. To accommodate the great diversity in secretory cargo, protein sorting receptors are required in a number of instances for efficient ER export. These transmembrane sorting receptors couple specific secretory cargo to COPII through interactions with both cargo and coat subunits. After incorporation into COPII transport vesicles, protein sorting receptors release bound cargo in pre-Golgi or Golgi compartments, and receptors are then recycled back to the ER for additional rounds of cargo export. Distinct types of protein sorting receptors that recognize carbohydrate and/or polypeptide signals in secretory cargo have been characterized. Our current understanding of the molecular mechanisms underlying cargo receptor function are described.
Collapse
Affiliation(s)
- Julia Dancourt
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
109
|
Pearse BR, Tamura T, Sunryd JC, Grabowski GA, Kaufman RJ, Hebert DN. The role of UDP-Glc:glycoprotein glucosyltransferase 1 in the maturation of an obligate substrate prosaposin. J Cell Biol 2010; 189:829-41. [PMID: 20498017 PMCID: PMC2878942 DOI: 10.1083/jcb.200912105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/28/2010] [Indexed: 01/02/2023] Open
Abstract
An endoplasmic reticulum (ER) quality control system assists in efficient folding and disposal of misfolded proteins. N-linked glycans are critical in these events because their composition dictates interactions with molecular chaperones. UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a key quality control factor of the ER. It adds glucoses to N-linked glycans of nonglucosylated substrates that fail a quality control test, supporting additional rounds of chaperone binding and ER retention. How UGT1 functions in its native environment is poorly understood. The role of UGT1 in the maturation of glycoproteins at basal expression levels was analyzed. Prosaposin was identified as a prominent endogenous UGT1 substrate. A dramatic decrease in the secretion of prosaposin was observed in ugt1(-/-) cells with prosaposin localized to large juxtanuclear aggresome-like inclusions, which is indicative of its misfolding and the essential role that UGT1 plays in its proper maturation. A model is proposed that explains how UGT1 may aid in the folding of sequential domain-containing proteins such as prosaposin.
Collapse
Affiliation(s)
- Bradley R. Pearse
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Taku Tamura
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Johan C. Sunryd
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Gregory A. Grabowski
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Randal J. Kaufman
- Howard Hughes Medical Institute, Department of Biological Chemistry, and Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
110
|
Shindiapina P, Barlowe C. Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:1530-45. [PMID: 20200224 PMCID: PMC2861612 DOI: 10.1091/mbc.e09-07-0605] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Secretory proteins are exported from the ER at specialized regions known as transitional ER (tER). COPII proteins are enriched at tER sites, but mechanisms underlying assembly and maintenance are unclear. This study characterizes tER sites in Saccharomyces cerevisiae and probes protein and lipid requirements for tER site structure and function. Secretory proteins are exported from the endoplasmic reticulum (ER) at specialized regions known as the transitional ER (tER). Coat protein complex II (COPII) proteins are enriched at tER sites, although the mechanisms underlying tER site assembly and maintenance are not understood. Here, we investigated the dynamic properties of tER sites in Saccharomyces cerevisiae and probed protein and lipid requirements for tER site structure and function. Thermosensitive sec12 and sec16 mutations caused a collapse of tER sites in a manner that depended on nascent secretory cargo. Continual fatty acid synthesis was required for ER export and for normal tER site structure, whereas inhibition of sterol and ceramide synthesis produced minor effects. An in vitro assay to monitor assembly of Sec23p-green fluorescent protein at tER sites was established to directly test requirements. tER sites remained active for ∼10 min in vitro and depended on Sec12p function. Bulk phospholipids were also required for tER site structure and function in vitro, whereas depletion of phophatidylinositol selectively inhibited coat protein complex II (COPII) budding but not assembly of tER site structures. These results indicate that tER sites persist through relatively stringent treatments in which COPII budding was strongly inhibited. We propose that tER site structures are stable elements that are assembled on an underlying protein and lipid scaffold.
Collapse
Affiliation(s)
- Polina Shindiapina
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
111
|
Joyce MA, Tyrrell DLJ. The cell biology of hepatitis C virus. Microbes Infect 2010; 12:263-71. [PMID: 20080204 DOI: 10.1016/j.micinf.2009.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 12/22/2009] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus infects 3% of the world's population and has a variable disease course with potentially sever outcomes, liver failure and hepatocellular carcinoma. The influence of HCV the biology of infected hepatocytes is now just becoming known. This review will focus on effect of HCV on host cells.
Collapse
Affiliation(s)
- Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
112
|
Budnik A, Stephens DJ. ER exit sites--localization and control of COPII vesicle formation. FEBS Lett 2009; 583:3796-803. [PMID: 19850039 DOI: 10.1016/j.febslet.2009.10.038] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
The first membrane trafficking step in the biosynthetic secretory pathway, the export of proteins and lipids from the endoplasmic reticulum (ER), is mediated by COPII-coated vesicles. In mammalian cells, COPII vesicle budding occurs at specialized sites on the ER, the so-called transitional ER (tER). Here, we discuss aspects of the formation and maintenance of these sites, the mechanisms by which cargo becomes segregated within them, and the propagation of ER exit sites (ERES) during cell division. All of these features are inherently linked to the formation, maintenance and function of the Golgi apparatus underlining the importance of ERES to Golgi function and more widely in terms of intracellular organization and cellular function.
Collapse
Affiliation(s)
- Annika Budnik
- Cell Biology Laboratories, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
113
|
Abstract
During neuron development, the biosynthetic needs of the axon initially outweigh those of dendrites. However, although a localized role for the early secretory pathway in dendrite development has been observed, such a role in axon growth remains undefined. We therefore studied the localization of Sar1, a small GTPase that controls ER export, during early stages of neuronal development that are characterized by selective and robust axon growth. At these early stages, Sar1 was selectively targeted to the axon where it gradually concentrated within varicosities in which additional proteins that function in the early secretory pathway were detected. Sar1 targeting to the axon followed axon specification and was dependent on localized actin instability. Changes in Sar1 expression levels at these early development stages modulated axon growth. Specifically, reduced expression of Sar1, which was initially only detectable in the axon, correlated with reduced axon growth, where as overexpression of Sar1 supported the growth of longer axons. In support of the former finding, expression of dominant negative Sar1 inhibited axon growth. Thus, as observed in lower organisms, mammalian cells use temporal and spatial regulation of endoplasmic reticulum exit site (ERES) to address developmental biosynthetic demands. Furthermore, axons, such as dendrites, rely on ERES targeting and assembly for growth.
Collapse
Affiliation(s)
- Meir Aridor
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace St, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
114
|
On vesicle formation and tethering in the ER–Golgi shuttle. Curr Opin Cell Biol 2009; 21:531-6. [DOI: 10.1016/j.ceb.2009.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 03/24/2009] [Accepted: 03/24/2009] [Indexed: 01/13/2023]
|
115
|
Hanton SL, Matheson LA, Chatre L, Brandizzi F. Dynamic organization of COPII coat proteins at endoplasmic reticulum export sites in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:963-74. [PMID: 19000162 DOI: 10.1111/j.1365-313x.2008.03740.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Protein export from the endoplasmic reticulum (ER) is mediated by the accumulation of COPII proteins such as Sar1, Sec23/24 and Sec13/31 at specialized ER export sites (ERES). Although the distribution of COPII components in mammalian and yeast systems is established, a unified model of ERES dynamics has yet to be presented in plants. To investigate this, we have followed the dynamics of fluorescent fusions to inner and outer components of the coat, AtSec24 and AtSec13, in three different plant model systems: tobacco and Arabidopsis leaf epidermis, as well as tobacco BY-2 suspension cells. In leaves, AtSec24 accumulated at Golgi-associated ERES, whereas AtSec13 showed higher levels of cytosolic staining compared with AtSec24. However, in BY-2 cells, both AtSec13 and AtSec24 labelled Golgi-associated ERES, along with AtSec24. To correlate the distribution of the COPII coat with the dynamics of organelle movement, quantitative live-cell imaging analyses demonstrated that AtSec24 and AtSec13 maintained a constant association with Golgi-associated ERES, irrespective of their velocity. However, recruitment of AtSec24 and AtSec13 to ERES, as well as the number of ERES marked by these proteins, was influenced by export of membrane cargo proteins from the ER to the Golgi. Additionally, the increased availability of AtSec24 affected the distribution of AtSec13, inducing recruitment of this outer COPII coat component to ERES. These results provide a model that, in plants, protein export from the ER occurs via sequential recruitment of inner and outer COPII components to form transport intermediates at mobile, Golgi-associated ERES.
Collapse
Affiliation(s)
- Sally L Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|