101
|
Yermakovich D, Pankratov V, Võsa U, Yunusbayev B, Dannemann M. Long-range regulatory effects of Neandertal DNA in modern humans. Genetics 2023; 223:6957427. [PMID: 36560850 PMCID: PMC9991505 DOI: 10.1093/genetics/iyac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The admixture between modern humans and Neandertals has resulted in ∼2% of the genomes of present-day non-Africans being composed of Neandertal DNA. Introgressed Neandertal DNA has been demonstrated to significantly affect the transcriptomic landscape in people today and via this molecular mechanism influence phenotype variation as well. However, little is known about how much of that regulatory impact is mediated through long-range regulatory effects that have been shown to explain ∼20% of expression variation. Here we identified 60 transcription factors (TFs) with their top cis-eQTL SNP in GTEx being of Neandertal ancestry and predicted long-range Neandertal DNA-induced regulatory effects by screening for the predicted target genes of those TFs. We show that the TFs form a significantly connected protein-protein interaction network. Among them are JUN and PRDM5, two brain-expressed TFs that have their predicted target genes enriched in regions devoid of Neandertal DNA. Archaic cis-eQTLs for the 60 TFs include multiple candidates for local adaptation, some of which show significant allele frequency increases over the last ∼10,000 years. A large proportion of the cis-eQTL-associated archaic SNPs have additional associations with various immune traits, schizophrenia, blood cell type composition and anthropometric measures. Finally, we demonstrate that our results are consistent with those of Neandertal DNA-associated empirical trans-eQTLs. Our results suggest that Neandertal DNA significantly influences regulatory networks, that its regulatory reach goes beyond the 40% of genomic sequence it still covers in present-day non-Africans and that via the investigated mechanism Neandertal DNA influences the phenotypic variation in people today.
Collapse
Affiliation(s)
- Danat Yermakovich
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Vasili Pankratov
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Bayazit Yunusbayev
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | - Michael Dannemann
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| |
Collapse
|
102
|
Santos MJ, Correia E, Vilela A. Exploring the Impact of α-Amylase Enzyme Activity and pH on Flavor Perception of Alcoholic Drinks. Foods 2023; 12:foods12051018. [PMID: 36900535 PMCID: PMC10000705 DOI: 10.3390/foods12051018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
The introduction of a drink in the mouth and the action of saliva and enzymes cause the perception of basic tastes and some aromas perceived in a retro-nasal way. Thus, this study aimed to evaluate the influence of the type of alcoholic beverage (beer, wine, and brandy) on lingual lipase and α-amylase activity and in-mouth pH. It was possible to see that the pH values (drink and saliva) differed significantly from the pH values of the initial drinks. Moreover, the α-amylase activity was significantly higher when the panel members tasted a colorless brandy, namely Grappa. Red wine and wood-aged brandy also induced greater α-amylase activity than white wine and blonde beer. Additionally, tawny port wine induced greater α-amylase activity than red wine. The flavor characteristics of red wines due to skin maceration and the contact of the brandy with the wood can cause a synergistic effect between beverages considered "tastier" and the activity of human α-amylase. We can conclude that saliva-beverage chemical interactions may depend on the saliva composition but also on the chemical composition of the beverage, namely its constitution in acids, alcohol concentration, and tannin content. This work is an important contribution to the e-flavor project, the development of a sensor system capable of mimicking the human perception of flavor. Furthermore, a better understanding of saliva-drink interactions allow us to comprehend which and how salivary parameters can contribute to taste and flavor perception.
Collapse
Affiliation(s)
- Maria João Santos
- Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre (CQ-VR), Department of Agronomy (DAgro), School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
103
|
Chong LS, Lin B, Gordis E. Racial differences in sympathetic nervous system indicators: Implications and challenges for research. Biol Psychol 2023; 177:108496. [PMID: 36641137 DOI: 10.1016/j.biopsycho.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Growing evidence indicates the presence of racial differences in sympathetic nervous system (SNS) functioning, yet the nature of these differences is unclear and appears to vary across different indices of SNS activity. Moreover, racial differences among commonly used indices of SNS activity are under-investigated. This systematic review examines racial differences among widely used resting SNS indices, such as electrodermal activity (EDA), pre-ejection period (PEP), and salivary alpha-amylase (sAA). Our review reveals that Black participants have consistently been found to display lower resting EDA compared to White participants. The few studies that have investigated or reported racial differences in PEP and sAA yield mixed findings about whether racial differences exist. We discuss potential reasons for racial differences in SNS activity, such as index-specific factors, lab confounds, psychosocial environmental factors, and their interactions. We outline a framework characterizing possible contributors to racial differences in SNS functioning. Lastly, we highlight the implications of several definitional, analytic, and interpretive issues concerning the treatment of group differences in psychophysiological activity and provide future recommendations.
Collapse
Affiliation(s)
- Li Shen Chong
- Department of Psychology, University at Albany, State University of New York, Albany, NY 12222, United States.
| | - Betty Lin
- Department of Psychology, University at Albany, State University of New York, Albany, NY 12222, United States.
| | - Elana Gordis
- Department of Psychology, University at Albany, State University of New York, Albany, NY 12222, United States.
| |
Collapse
|
104
|
Abdullah U, Saleh N, Shaw P, Jalal N. COVID-19: The Ethno-Geographic Perspective of Differential Immunity. Vaccines (Basel) 2023; 11:319. [PMID: 36851197 PMCID: PMC9966855 DOI: 10.3390/vaccines11020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the agent behind the worst global pandemic of the 21st century (COVID-19), is primarily a respiratory-disease-causing virus called SARS-CoV-2 that is responsible for millions of new cases (incidence) and deaths (mortalities) worldwide. Many factors have played a role in the differential morbidity and mortality experienced by nations and ethnicities against SARS-CoV-2, such as the quality of primary medical health facilities or enabling economies. At the same time, the most important variable, i.e., the subsequent ability of individuals to be immunologically sensitive or resistant to the infection, has not been properly discussed before. Despite having excellent medical facilities, an astounding issue arose when some developed countries experienced higher morbidity and mortality compared with their relatively underdeveloped counterparts. Hence, this investigative review attempts to analyze the issue from an angle of previously undiscussed genetic, epigenetic, and molecular immune resistance mechanisms in correlation with the pathophysiology of SARS-CoV-2 and varied ethnicity-based immunological responses against it. The biological factors discussed here include the overall landscape of human microbiota, endogenous retroviral genes spliced into the human genome, and copy number variation, and how they could modulate the innate and adaptive immune systems that put a certain ethnic genetic architecture at a higher risk of SARS-CoV-2 infection than others. Considering an array of these factors in their entirety may help explain the geographic disparity of disease incidence, severity, and subsequent mortality associated with the disease while at the same time encouraging scientists to design new experimental approaches to investigation.
Collapse
Affiliation(s)
- Usman Abdullah
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
| | - Ned Saleh
- Synsal Inc., San Jose, CA 95138, USA
| | - Peter Shaw
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| | - Nasir Jalal
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
105
|
Li H, Borné Y, Wang Y, Sonestedt E. Starch intake, amylase gene copy number variation, plasma proteins, and risk of cardiovascular disease and mortality. BMC Med 2023; 21:27. [PMID: 36691017 PMCID: PMC9872432 DOI: 10.1186/s12916-022-02706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Salivary amylase, encoded by the AMY1 gene, initiate the digestion of starch. Whether starch intake or AMY1 copy number is related to disease risk is currently rather unknown. The aim was to investigate the association between starch intake and AMY1 copy number and risk of cardiovascular disease (CVD) and mortality and whether there is an interaction. In addition, we aim to identify CVD-related plasma proteins associated with starch intake and AMY1 copy number. METHODS This prospective cohort study used data from 21,268 participants from the Malmö Diet and Cancer Study. Dietary data were collected through a modified diet history method and incident CVD and mortality were ascertained through registers. AMY1 gene copy number was determined by droplet digital polymerase chain reaction, a risk score of 10 genetic variants in AMY1 was measured, and a total of 88 selected CVD-related proteins were measured. Cox proportional hazards regression was used to analyze the associations of starch intake and AMY1 copy number with disease risk. Linear regression was used to identify plasma proteins associated with starch intake and AMY1 copy number. RESULTS Over a median of 23 years' follow-up, 4443 individuals developed CVD event and 8125 died. After adjusting for potential confounders, a U-shape association between starch intake and risk of CVD (P-nonlinearity = 0.001) and all-cause mortality (P-nonlinearity = 0.03) was observed. No significant association was found between AMY1 copy number and risk of CVD and mortality, and there were no interactions between starch intake and AMY1 copy number (P interaction > 0.23). Among the 88 plasma proteins, adrenomedullin, interleukin-1 receptor antagonist protein, fatty acid-binding protein, leptin, and C-C motif chemokine 20 were associated with starch intake after adjusting for multiple testing. CONCLUSIONS In this large prospective study among Swedish adults, a U-shaped association between starch intake and risk of CVD and all-cause mortality was found. Several plasma proteins were identified which might provide information on potential pathways for such association. AMY1 copy number was not associated with CVD risk or any of the plasma proteins, and there was no interaction between starch intake and AMY1 copy number on disease risk.
Collapse
Affiliation(s)
- Huiping Li
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
- Nutritional Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden.
| | - Yan Borné
- Nutritional Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
106
|
Smith EG, Surm JM, Macrander J, Simhi A, Amir G, Sachkova MY, Lewandowska M, Reitzel AM, Moran Y. Micro and macroevolution of sea anemone venom phenotype. Nat Commun 2023; 14:249. [PMID: 36646703 PMCID: PMC9842752 DOI: 10.1038/s41467-023-35794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.
Collapse
Affiliation(s)
- Edward G Smith
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA. .,School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jason Macrander
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA.,Florida Southern College, Biology Department, Lakeland, FL, USA
| | - Adi Simhi
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Guy Amir
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
107
|
Nayema Z, Sato T, Kannon T, Tsujiguchi H, Hosomichi K, Nakamura H, Tajima A. Genetic factors associated with serum amylase in a Japanese population: combined analysis of copy-number and single-nucleotide variants. J Hum Genet 2023; 68:313-319. [PMID: 36599956 PMCID: PMC10125868 DOI: 10.1038/s10038-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Amylase activity and levels in humans are heritable quantitative traits. Although many studies exist on the effects of copy-number variants (CNVs) in amylase genes (AMY) on human phenotypes, such as body mass index (BMI), the genetic factors controlling interindividual variation in amylase levels remain poorly understood. Here, we conducted a genome-wide association study (GWAS) of serum amylase levels (SAL) in 814 Japanese individuals to identify associated single-nucleotide variants (SNVs), after adjusting for non-genetic factors. Diploid copy numbers (CN) of AMY (AMY1, AMY2A, and AMY2B) were measured using droplet digital PCR to examine the association between each diploid CN and SAL. We further assessed the relative contribution of the GWAS-lead SNV and AMY CNVs to SAL. GWAS identified 14 significant SNVs (p < 5 × 10-8) within a linkage disequilibrium block near the AMY cluster on chromosome 1. The association analyses of AMY CNVs and SAL showed a significant association between AMY1 diploid CN and SAL (p = 1.89 × 10-19), while no significant association with SAL was found for AMY2A CN (p = 0.54) or AMY2B CN (p = 0.15). In a joint association analysis with SAL using the GWAS-lead SNV and AMY1 diploid CN, AMY1 CN remained significant (p = 5.4 ×10-13), while the association of the lead SNV was marginal (p = 0.08). We also found no association between AMY1 diploid CN and BMI (p = 0.14). Our results indicate that AMY1 CNV is the major genetic factor for Japanese SAL, with no significant association with BMI.
Collapse
Affiliation(s)
- Zannatun Nayema
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
108
|
De Guzman MB, Buhay MNM. Nutrigenomics and nutrigenetics: Importance in health and diseases. ROLE OF NUTRIGENOMICS IN MODERN-DAY HEALTHCARE AND DRUG DISCOVERY 2023:19-34. [DOI: 10.1016/b978-0-12-824412-8.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
109
|
Jorgensen K, Garcia OA, Kiyamu M, Brutsaert TD, Bigham AW. Genetic adaptations to potato starch digestion in the Peruvian Andes. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:162-172. [PMID: 39882941 DOI: 10.1002/ajpa.24656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2025]
Abstract
OBJECTIVES Potatoes are an important staple crop across the world and particularly in the Andes, where they were cultivated as early as 10,000 years ago. Ancient Andean populations that relied upon this high-starch food to survive could possess genetic adaptation(s) to digest potato starch more efficiently. Here, we analyzed genomic data to identify whether this putative adaptation is still present in their modern-day descendants, namely Peruvians of Indigenous American ancestry. MATERIALS AND METHODS We applied several tests to detect signatures of natural selection in genes associated with starch-digestion, AMY1, AMY2, SI, and MGAM in Peruvians. These were compared to two populations who only recently incorporated potatoes into their diets, Han Chinese and West Africans. RESULTS Overlapping statistical results identified a regional haplotype in MGAM that is unique to Peruvians. The age of this haplotype was estimated to be around 9547 years old. DISCUSSION The MGAM haplotype in Peruvians lies within a region of high transcriptional activity associated with the REST protein. The timing of this haplotype suggests that it arose in response to increased potato cultivation and attendant consumption. For Peruvian populations that relied upon the high-starch potato as a major source of nutrition, natural selection likely favored these MGAM variant(s) that led to more efficient digestion and increased glucose production. This research provides further support that detecting subtle shifts in human diet can be a major driver of human evolutionary change, as these results indicate that there is global variation in human ability to better digest high-starch foods.
Collapse
Affiliation(s)
- Kelsey Jorgensen
- Department of Anthropology, University of California, Los Angeles, California, USA
- Department of Anthropology, Wayne State University, Detroit, Michigan, USA
| | - Obed A Garcia
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, New York, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, California, USA
| |
Collapse
|
110
|
Lv Y, Liu R, Jia H, Sun X, Gong Y, Ma L, Qiu W, Wang X. Alterations of the gut microbiota in type 2 diabetics with or without subclinical hypothyroidism. PeerJ 2023; 11:e15193. [PMID: 37073275 PMCID: PMC10106085 DOI: 10.7717/peerj.15193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 04/20/2023] Open
Abstract
Background Diabetes and thyroid dysfunction are two closely related endocrine diseases. Increasing evidences show that gut microbiota plays an important role in both glucose metabolism and thyroid homeostasis. Meanwhile, copy number variation (CNV) of host salivary α-amylase gene (AMY1) has been shown to correlate with glucose homeostasis. Hence, we aim to characterize the gut microbiota and CNV of AMY1 in type 2 diabetes (T2D) patients with or without subclinical hypothyroidism (SCH). Methods High-throughput sequencing was used to analyze the gut microbiota of euthyroid T2D patients, T2D patients with SCH and healthy controls. Highly sensitive droplet digital PCR was used to measure AMY1 CN. Results Our results revealed that T2D patients have lower gut microbial diversity, no matter with or without SCH. The characteristic taxa of T2D patients were Coriobacteriales, Coriobacteriaceae, Peptostreptococcaceae, Pseudomonadaceae, Collinsella, Pseudomonas and Romboutsia. Meanwhile, Escherichia/Shigella, Lactobacillus_Oris, Parabacteroides Distasonis_ATCC_8503, Acetanaerobacterium, Lactonifactor, uncultured bacterium of Acetanaerobacterium were enriched in T2D patients with SCH. Moreover, serum levels of free triiodothyronine (FT3) and free thyroxine (FT4) in T2D patients were both negatively correlated with richness of gut microbiota. A number of specific taxa were also associated with clinical parameters at the phylum and genus level. In contrast, no correlation was found between AMY1 CN and T2D or T2D_SCH. Conclusion This study identified characteristic bacterial taxa in gut microbiota of T2D patients with or without SCH, as well as the taxa associated with clinical indices in T2D patients. These results might be exploited in the prevention, diagnosis and treatment of endocrine disorders in the future.
Collapse
Affiliation(s)
- Yanrong Lv
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rong Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Huaijie Jia
- State Key Laboratory of Veterinary of Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolan Sun
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yuhan Gong
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Qiu
- Department of Endocrinology, Xinxiang First People’s Hospital, The Affiliated People’s Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
111
|
Santos FB, Del-Bem LE. The Evolution of tRNA Copy Number and Repertoire in Cellular Life. Genes (Basel) 2022; 14:27. [PMID: 36672768 PMCID: PMC9858662 DOI: 10.3390/genes14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
tRNAs are universal decoders that bridge the gap between transcriptome and proteome. They can also be processed into small RNA fragments with regulatory functions. In this work, we show that tRNA copy number is largely controlled by genome size in all cellular organisms, in contrast to what is observed for protein-coding genes that stop expanding between ~20,000 and ~35,000 loci per haploid genome in eukaryotes, regardless of genome size. Our analyses indicate that after the bacteria/archaea split, the tRNA gene pool experienced the evolution of increased anticodon diversity in the archaeal lineage, along with a tRNA gene size increase and mature tRNA size decrease. The evolution and diversification of eukaryotes from archaeal ancestors involved further expansion of the tRNA anticodon repertoire, additional increase in tRNA gene size and decrease in mature tRNA length, along with an explosion of the tRNA gene copy number that emerged coupled with accelerated genome size expansion. Our findings support the notion that macroscopic eukaryotes with a high diversity of cell types, such as land plants and vertebrates, independently evolved a high diversity of tRNA anticodons along with high gene redundancy caused by the expansion of the tRNA copy number. The results presented here suggest that the evolution of tRNA genes played important roles in the early split between bacteria and archaea, and in eukaryogenesis and the later emergence of complex eukaryotes, with potential implications in protein translation and gene regulation through tRNA-derived RNA fragments.
Collapse
Affiliation(s)
- Fenícia Brito Santos
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Luiz-Eduardo Del-Bem
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
112
|
Söylev A, Çokoglu SS, Koptekin D, Alkan C, Somel M. CONGA: Copy number variation genotyping in ancient genomes and low-coverage sequencing data. PLoS Comput Biol 2022; 18:e1010788. [PMID: 36516232 PMCID: PMC9873172 DOI: 10.1371/journal.pcbi.1010788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/24/2023] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection software to be effectively applied to ancient genomes. Here we present CONGA, tailored for genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage.
Collapse
Affiliation(s)
- Arda Söylev
- Department of Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- * E-mail: (AS); (MS)
| | | | - Dilek Koptekin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey
- * E-mail: (AS); (MS)
| |
Collapse
|
113
|
Pokrovac I, Pezer Ž. Recent advances and current challenges in population genomics of structural variation in animals and plants. Front Genet 2022; 13:1060898. [PMID: 36523759 PMCID: PMC9745067 DOI: 10.3389/fgene.2022.1060898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 05/02/2024] Open
Abstract
The field of population genomics has seen a surge of studies on genomic structural variation over the past two decades. These studies witnessed that structural variation is taxonomically ubiquitous and represent a dominant form of genetic variation within species. Recent advances in technology, especially the development of long-read sequencing platforms, have enabled the discovery of structural variants (SVs) in previously inaccessible genomic regions which unlocked additional structural variation for population studies and revealed that more SVs contribute to evolution than previously perceived. An increasing number of studies suggest that SVs of all types and sizes may have a large effect on phenotype and consequently major impact on rapid adaptation, population divergence, and speciation. However, the functional effect of the vast majority of SVs is unknown and the field generally lacks evidence on the phenotypic consequences of most SVs that are suggested to have adaptive potential. Non-human genomes are heavily under-represented in population-scale studies of SVs. We argue that more research on other species is needed to objectively estimate the contribution of SVs to evolution. We discuss technical challenges associated with SV detection and outline the most recent advances towards more representative reference genomes, which opens a new era in population-scale studies of structural variation.
Collapse
Affiliation(s)
| | - Željka Pezer
- Laboratory for Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
114
|
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, Bukhman YV. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes. BMC Biol 2022; 20:245. [DOI: 10.1186/s12915-022-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
Results
We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse.
Conclusions
Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.
Collapse
|
115
|
Saint-Martin V, Quéré P, Trapp S, Guabiraba R. Uncovering the core principles of the gut-lung axis to enhance innate immunity in the chicken. Front Immunol 2022; 13:956670. [PMID: 36268022 PMCID: PMC9577073 DOI: 10.3389/fimmu.2022.956670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Research in mammals has evidenced that proper colonization of the gut by a complex commensal microbial community, the gut microbiota (GM), is critical for animal health and wellbeing. It greatly contributes to the control of infectious processes through competition in the microbial environment while supporting proper immune system development and modulating defence mechanisms at distant organ sites such as the lung: a concept named ‘gut-lung axis’. While recent studies point to a role of the GM in boosting immunity and pathogen resilience also in poultry, the mechanisms underlying this role are largely unknown. In spite of this knowledge gap, GM modulation approaches are today considered as one of the most promising strategies to improve animal health and welfare in commercial poultry production, while coping with the societal demand for responsible, sustainable and profitable farming systems. The majority of pathogens causing economically important infectious diseases in poultry are targeting the respiratory and/or gastrointestinal tract. Therefore, a better understanding of the role of the GM in the development and function of the mucosal immune system is crucial for implementing measures to promote animal robustness in commercial poultry production. The importance of early gut colonization in the chicken has been overlooked or neglected in industrial poultry production systems, where chicks are hampered from acquiring a complex GM from the hen. Here we discuss the concept of strengthening mucosal immunity in the chicken through GM modulation approaches favouring immune system development and functioning along the gut-lung axis, which could be put into practice through improved farming systems, early-life GM transfer, feeding strategies and pre-/probiotics. We also provide original data from experiments with germ-free and conventional chickens demonstrating that the gut-lung axis appears to be functional in chickens. These key principles of mucosal immunity are likely to be relevant for a variety of avian diseases and are thus of far-reaching importance for the poultry sector worldwide.
Collapse
|
116
|
Löytynoja A. Thousands of human mutation clusters are explained by short-range template switching. Genome Res 2022; 32:1437-1447. [PMID: 35760560 PMCID: PMC9435742 DOI: 10.1101/gr.276478.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/21/2022] [Indexed: 02/03/2023]
Abstract
Variation within human genomes is unevenly distributed, and variants show spatial clustering. DNA replication-related template switching is a poorly known mutational mechanism capable of causing major chromosomal rearrangements as well as creating short inverted sequence copies that appear as local mutation clusters in sequence comparisons. In this study, haplotype-resolved genome assemblies representing 25 human populations and multinucleotide variants aggregated from 140,000 human sequencing experiments were reanalyzed. Local template switching could explain thousands of complex mutation clusters across the human genome, the loci segregating within and between populations. During the study, computational tools were developed for identification of template switch events using both short-read sequencing data and genotype data, and for genotyping candidate loci using short-read data. The characteristics of template-switch mutations complicate their detection, and widely used analysis pipelines for short-read sequencing data, normally capable of identifying single nucleotide changes, were found to miss template-switch mutations of tens of base pairs, potentially invalidating medical genetic studies searching for a causative allele behind genetic diseases. Combined with the massive sequencing data now available for humans, the novel tools described here enable building catalogs of affected loci and studying the cellular mechanisms behind template switching in both healthy organisms and disease.
Collapse
Affiliation(s)
- Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
117
|
Padró J, De Panis DN, Luisi P, Dopazo H, Szajnman S, Hasson E, Soto IM. Ortholog genes from cactophilic Drosophila provide insight into human adaptation to hallucinogenic cacti. Sci Rep 2022; 12:13180. [PMID: 35915153 PMCID: PMC9343604 DOI: 10.1038/s41598-022-17118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Cultural transformations of lifestyles and dietary practices have been key drivers of human evolution. However, while most of the evidence of genomic adaptations is related to the hunter-gatherer transition to agricultural societies, little is known on the influence of other major cultural manifestations. Shamanism is considered the oldest religion that predominated throughout most of human prehistory and still prevails in many indigenous populations. Several lines of evidence from ethno-archeological studies have demonstrated the continuity and importance of psychoactive plants in South American cultures. However, despite the well-known importance of secondary metabolites in human health, little is known about its role in the evolution of ethnic differences. Herein, we identified candidate genes of adaptation to hallucinogenic cactus in Native Andean populations with a long history of shamanic practices. We used genome-wide expression data from the cactophilic fly Drosophila buzzatii exposed to a hallucinogenic columnar cactus, also consumed by humans, to identify ortholog genes exhibiting adaptive footprints of alkaloid tolerance. Genomic analyses in human populations revealed a suite of ortholog genes evolving under recent positive selection in indigenous populations of the Central Andes. Our results provide evidence of selection in genetic variants related to alkaloids toxicity, xenobiotic metabolism, and neuronal plasticity in Aymara and Quechua populations, suggesting a possible process of gene-culture coevolution driven by religious practices.
Collapse
Affiliation(s)
- Julian Padró
- INIBIOMA-CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF, San Carlos de Bariloche, Argentina.
| | - Diego N De Panis
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Pierre Luisi
- Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba (FFyH-UNC), Córdoba, Argentina.,Microbial Paleogenomics Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Hernan Dopazo
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Sergio Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Esteban Hasson
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Ignacio M Soto
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
118
|
Food as we knew it: Food processing as an evolutionary discourse. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
119
|
Kijner S, Kolodny O, Yassour M. Human milk oligosaccharides and the infant gut microbiome from an eco-evolutionary perspective. Curr Opin Microbiol 2022; 68:102156. [DOI: 10.1016/j.mib.2022.102156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
|
120
|
Ohsugi Y, Hatasa M, Katagiri S, Hirota T, Shimohira T, Shiba T, Komatsu K, Tsuchiya Y, Fukuba S, Lin P, Toyoshima K, Maekawa S, Niimi H, Iwata T, Aoki A. High-frequency pulsed diode laser irradiation inhibits bone resorption in mice with ligature-induced periodontitis. J Clin Periodontol 2022; 49:1275-1288. [PMID: 35817415 DOI: 10.1111/jcpe.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
AIM The purpose of this study was to elucidate the suppressive effect of high-frequency pulsed diode laser irradiation on bone resorption and its biological effects for gene expression and microbiome composition on the gingival tissue in ligature-induced periodontitis in mice. MATERIALS AND METHODS Ligating ligature around the teeth and/or laser irradiation was performed on the gingival tissue in mice as follows: Co (no ligature and no laser irradiation), Li (ligation without laser irradiation), La (no ligature but with laser irradiation), and LiLa (ligation with laser irradiation). Bone resorption was evaluated using micro-computed tomography. RNA-seq analysis was performed on gingival tissues of all four groups at 3 days post ligation. The differences in microbial composition between Li and LiLa were evaluated based on the number of 16S rRNA gene sequences. RESULTS Bone resorption caused by ligation was significantly suppressed by laser irradiation. RNA-seq in Co and La gingival tissue revealed many differentially expressed genes, suggesting diode laser irradiation altered gene expression. Gene set enrichment analysis revealed mTORC1 signaling and E2F target gene sets were enriched in gingival tissues both in La and LiLa compared to that in Co and Li, respectively. The amount of extracted DNA from ligatures was reduced by laser irradiation, and bacterial network structure was altered between the Li and LiLa. CONCLUSIONS High-frequency pulsed diode laser irradiation showed biological effects and suppressed bone resorption in ligature-induced periodontitis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Research Center for Medical Science, The Jikei University School of Medicine, Japan
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
121
|
Garg P, Jadhav B, Lee W, Rodriguez OL, Martin-Trujillo A, Sharp AJ. A phenome-wide association study identifies effects of copy-number variation of VNTRs and multicopy genes on multiple human traits. Am J Hum Genet 2022; 109:1065-1076. [PMID: 35609568 PMCID: PMC9247821 DOI: 10.1016/j.ajhg.2022.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/28/2022] [Indexed: 01/04/2023] Open
Abstract
The human genome contains tens of thousands of large tandem repeats and hundreds of genes that show common and highly variable copy-number changes. Due to their large size and repetitive nature, these variable number tandem repeats (VNTRs) and multicopy genes are generally recalcitrant to standard genotyping approaches and, as a result, this class of variation is poorly characterized. However, several recent studies have demonstrated that copy-number variation of VNTRs can modify local gene expression, epigenetics, and human traits, indicating that many have a functional role. Here, using read depth from whole-genome sequencing to profile copy number, we report results of a phenome-wide association study (PheWAS) of VNTRs and multicopy genes in a discovery cohort of ∼35,000 samples, identifying 32 traits associated with copy number of 38 VNTRs and multicopy genes at 1% FDR. We replicated many of these signals in an independent cohort and observed that VNTRs showing trait associations were significantly enriched for expression QTLs with nearby genes, providing strong support for our results. Fine-mapping studies indicated that in the majority (∼90%) of cases, the VNTRs and multicopy genes we identified represent the causal variants underlying the observed associations. Furthermore, several lie in regions where prior SNV-based GWASs have failed to identify any significant associations with these traits. Our study indicates that copy number of VNTRs and multicopy genes contributes to diverse human traits and suggests that complex structural variants potentially explain some of the so-called "missing heritability" of SNV-based GWASs.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - William Lee
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Oscar L Rodriguez
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
122
|
Goza JL, Ziegler GR, Wee J, Hayes JE, Hopfer H. Salivary α-amylase activity and flow rate explain differences in temporal flavor perception in a chewing gum matrix comprising starch-limonene inclusion complexes. Food Res Int 2022; 158:111573. [DOI: 10.1016/j.foodres.2022.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
|
123
|
Tergemina E, Elfarargi AF, Flis P, Fulgione A, Göktay M, Neto C, Scholle M, Flood PJ, Xerri SA, Zicola J, Döring N, Dinis H, Krämer U, Salt DE, Hancock AM. A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment. SCIENCE ADVANCES 2022; 8:eabm9385. [PMID: 35584228 PMCID: PMC9116884 DOI: 10.1126/sciadv.abm9385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time.
Collapse
Affiliation(s)
- Emmanuel Tergemina
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ahmed F. Elfarargi
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD Nottingham, UK
| | - Andrea Fulgione
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Mehmet Göktay
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Célia Neto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pádraic J. Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Sophie-Asako Xerri
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Johan Zicola
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nina Döring
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Herculano Dinis
- Parque Natural do Fogo, Direção Nacional do Ambiente, 115 Chã d’Areia, Praia, Santiago, Cabo Verde, Africa
- Associação Projecto Vitó, 8234, Xaguate, Cidade de São Filipe, Fogo, Cabo Verde, Africa
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - David E. Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD Nottingham, UK
| | - Angela M. Hancock
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
124
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
125
|
Hasegawa T, Kakuta M, Yamaguchi R, Sato N, Mikami T, Murashita K, Nakaji S, Itoh K, Imoto S. Impact of salivary and pancreatic amylase gene copy numbers on diabetes, obesity, and functional profiles of microbiome in Northern Japanese population. Sci Rep 2022; 12:7628. [PMID: 35538098 PMCID: PMC9090785 DOI: 10.1038/s41598-022-11730-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Amylase genes reside in a structurally complex locus, and their copy numbers vary greatly, and several studies have reported their association with obesity. The mechanism of this effect was partially explained by changes in the oral and gut microbiome compositions; however, a detailed mechanism has been unclarified. In this study, we showed their association with diabetes in addition to obesity, and further discovered a plausible mechanism of this association based on the function of commensal bacteria. First, we confirmed that the amylase copy number in the population tends to be larger than that reported in other studies and that there is a positive association between obesity and diabetes (p = 1.89E-2 and 8.63E-3). Second, we identified that relative abundance of some genus level microbiome, Capnocytophaga, Dialister, and previously reported bacteria, were significantly associated with amylase copy numbers. Finally, through functional gene-set analysis using shotgun sequencing, we observed that the abundance of genes in the Acarbose pathway in the gut microbiome was significantly decreased with an increase in the amylase copy number (p-value = 5.80E-4). Our findings can partly explain the mechanism underlying obesity and diabetes in populations with high amylase copy numbers.
Collapse
Affiliation(s)
- Takanori Hasegawa
- Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Masanori Kakuta
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Rui Yamaguchi
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Koichi Murashita
- COI Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Seiya Imoto
- Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
126
|
Purugganan MD. What is domestication? Trends Ecol Evol 2022; 37:663-671. [PMID: 35534288 DOI: 10.1016/j.tree.2022.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/12/2022] [Accepted: 04/11/2022] [Indexed: 01/06/2023]
Abstract
The nature of domestication is often misunderstood. Most definitions of the process are anthropocentric and center on human intentionality, which minimizes the role of unconscious selection and also excludes non-human domesticators. An overarching, biologically grounded definition of domestication is discussed, which emphasizes its core nature as a coevolutionary process that arises from a specialized mutualism, in which one species controls the fitness of another in order to gain resources and/or services. This inclusive definition encompasses both human-associated domestication of crop plants and livestock as well as other non-human domesticators, such as insects. It also calls into question the idea that humans are themselves domesticated, given that evolution of human traits did not arise through the control of fitness by another species.
Collapse
Affiliation(s)
- Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10011, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Institute for the Study of the Ancient World, New York University, New York, NY 10028, USA.
| |
Collapse
|
127
|
Eco-Evolutionary Dynamics of the Human-Gut Microbiota Symbiosis in a Changing Nutritional Environment. Evol Biol 2022. [DOI: 10.1007/s11692-022-09569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe operational harmony between living beings and their circumstances, their ever-changing environment, is a constitutive condition of their existence. Nutrition and symbiosis are two essential aspects of this harmony. Disruption of the symbiosis between host and gut microbiota, the so-called dysbiosis, as well as the inadequate diet from which it results, contribute to the etiology of immunometabolic disorders. Research into the development of these diseases is highly influenced by our understanding of the evolutionary roots of metabolic functioning, thereby considering that chronic non-communicable diseases arise from an evolutionary mismatch. However, the lens has been mostly directed toward energy availability and metabolism, but away from our closest environmental factor, the gut microbiota. Thus, this paper proposes a narrative thread that places symbiosis in an evolutionary perspective, expanding the traditional framework of humans’ adaptation to their food environment.
Collapse
|
128
|
Duan X, Pan M, Fan S. Comprehensive evaluation of structural variant genotyping methods based on long-read sequencing data. BMC Genomics 2022; 23:324. [PMID: 35461238 PMCID: PMC9034514 DOI: 10.1186/s12864-022-08548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Structural variants (SVs) play a crucial role in gene regulation, trait association, and disease in humans. SV genotyping has been extensively applied in genomics research and clinical diagnosis. Although a growing number of SV genotyping methods for long reads have been developed, a comprehensive performance assessment of these methods has yet to be done. RESULTS Based on one simulated and three real SV datasets, we performed an in-depth evaluation of five SV genotyping methods, including cuteSV, LRcaller, Sniffles, SVJedi, and VaPoR. The results show that for insertions and deletions, cuteSV and LRcaller have similar F1 scores (cuteSV, insertions: 0.69-0.90, deletions: 0.77-0.90 and LRcaller, insertions: 0.67-0.87, deletions: 0.74-0.91) and are superior to other methods. For duplications, inversions, and translocations, LRcaller yields the most accurate genotyping results (0.84, 0.68, and 0.47, respectively). When genotyping SVs located in tandem repeat region or with imprecise breakpoints, cuteSV (insertions and deletions) and LRcaller (duplications, inversions, and translocations) are better than other methods. In addition, we observed a decrease in F1 scores when the SV size increased. Finally, our analyses suggest that the F1 scores of these methods reach the point of diminishing returns at 20× depth of coverage. CONCLUSIONS We present an in-depth benchmark study of long-read SV genotyping methods. Our results highlight the advantages and disadvantages of each genotyping method, which provide practical guidance for optimal application selection and prospective directions for tool improvement.
Collapse
Affiliation(s)
- Xiaoke Duan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438 China
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Mingpei Pan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438 China
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438 China
| |
Collapse
|
129
|
The Development of the Davis Food Glycopedia-A Glycan Encyclopedia of Food. Nutrients 2022; 14:nu14081639. [PMID: 35458202 PMCID: PMC9032246 DOI: 10.3390/nu14081639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022] Open
Abstract
The molecular complexity of the carbohydrates consumed by humans has been deceptively oversimplified due to a lack of analytical methods that possess the throughput, sensitivity, and resolution required to provide quantitative structural information. However, such information is becoming an integral part of understanding how specific glycan structures impact health through their interaction with the gut microbiome and host physiology. This work presents a detailed catalogue of the glycans present in complementary foods commonly consumed by toddlers during weaning and foods commonly consumed by American adults. The monosaccharide compositions of over 800 foods from diverse food groups including Fruits, Vegetables, Grain Products, Beans, Peas, Other Legumes, Nuts, Seeds; Sugars, Sweets and Beverages; Animal Products, and more were obtained and used to construct the “Davis Food Glycopedia” (DFG), an open-access database that provides quantitative structural information on the carbohydrates in food. While many foods within the same group possessed similar compositions, hierarchical clustering analysis revealed similarities between different groups as well. Such a Glycopedia can be used to formulate diets rich in specific monosaccharide residues to provide a more targeted modulation of the gut microbiome, thereby opening the door for a new class of prophylactic or therapeutic diets.
Collapse
|
130
|
Chen X, Bai X, Liu H, Zhao B, Yan Z, Hou Y, Chu Q. Population Genomic Sequencing Delineates Global Landscape of Copy Number Variations that Drive Domestication and Breed Formation of in Chicken. Front Genet 2022; 13:830393. [PMID: 35391799 PMCID: PMC8980806 DOI: 10.3389/fgene.2022.830393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Copy number variation (CNV) is an important genetic mechanism that drives evolution and generates new phenotypic variations. To explore the impact of CNV on chicken domestication and breed shaping, the whole-genome CNVs were detected via multiple methods. Using the whole-genome sequencing data from 51 individuals, corresponding to six domestic breeds and wild red jungle fowl (RJF), we determined 19,329 duplications and 98,736 deletions, which covered 11,123 copy number variation regions (CNVRs) and 2,636 protein-coding genes. The principal component analysis (PCA) showed that these individuals could be divided into four populations according to their domestication and selection purpose. Seventy-two highly duplicated CNVRs were detected across all individuals, revealing pivotal roles of nervous system (NRG3, NCAM2), sensory (OR), and follicle development (VTG2) in chicken genome. When contrasting the CNVs of domestic breeds to those of RJFs, 235 CNVRs harboring 255 protein-coding genes, which were predominantly involved in pathways of nervous, immunity, and reproductive system development, were discovered. In breed-specific CNVRs, some valuable genes were identified, including HOXB7 for beard trait in Beijing You chicken; EDN3, SLMO2, TUBB1, and GFPT1 for melanin deposition in Silkie chicken; and SORCS2 for aggressiveness in Luxi Game fowl. Moreover, CSMD1 and NTRK3 with high duplications found exclusively in White Leghorn chicken, and POLR3H, MCM9, DOCK3, and AKR1B1L found in Recessive White Rock chicken may contribute to high egg production and fast-growing traits, respectively. The candidate genes of breed characteristics are valuable resources for further studies on phenotypic variation and the artificial breeding of chickens.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xue Bai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Binbin Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
131
|
Jin X, Lin S, Gao J, Kim EHJ, Morgenstern MP, Wilson AJ, Agarwal D, Wadamori Y, Wang Y, Ying J, Dong Z, Zhou W, Song X, Zhao Q. Ethnicity impact on oral processing behaviour and glycemic response to noodles: Chinese (Asian) vs. New Zealander (Caucasian). Food Funct 2022; 13:3840-3852. [PMID: 35315467 DOI: 10.1039/d1fo04078b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an increasing awareness of the link between food breakdown during chewing and its nutrient release and absorption in the gastrointestinal tract. However, how oral processing behaviour varies among different ethnic groups, and how such difference further impacts on bolus characteristics and consequently glycemic response (GR) are not well understood. In this study, we recruited a group of Asian (Chinese) subjects in China (n = 32) and a group of Caucasian subjects in New Zealand (n = 30), both aged between 18 and 30 years, and compared their blood glucose level (BGL) over 120 min following consumption of a glucose drink and cooked white noodles. We also assessed their chewing behaviour, unstimulated saliva flow rate, and ready-to-swallow bolus characteristics to determine whether these measures explain the ethnic differences in postprandial glycaemia. Compared to New Zealand subjects, the Chinese subjects showed 35% slower saliva flow rate but around 2 times higher salivary α-amylase activity in the unstimulated state. During consumption of noodles, Chinese subjects on average took a larger mouthful size, chewed each mouthful for longer and swallowed a larger number of particles with a smaller particle size area. Total GR measured by area under the curve (IAUC) was higher among the Chinese subjects. They also experienced higher BGL at 15 min, as well as higher peak BGL. There were strong correlations observed between oral processing and GR parameters. Results of this study confirmed the significance of oral processing in determining food digestion, and will provide new insights on the role of ethnicity in influencing people's physiological response to food.
Collapse
Affiliation(s)
- Xiaoxuan Jin
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Suyun Lin
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Jing Gao
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Esther H-J Kim
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand. .,Riddet Institute, Palmerston North, New Zealand
| | - Marco P Morgenstern
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand. .,Riddet Institute, Palmerston North, New Zealand
| | - Arran J Wilson
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand.
| | - Deepa Agarwal
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand.
| | - Yukiko Wadamori
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand.
| | - Yong Wang
- COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Jian Ying
- COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Zhizhong Dong
- COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Xiaoming Song
- Peking University Health Science Centre, Beijing 100191, China
| | - Qian Zhao
- Peking University Health Science Centre, Beijing 100191, China
| |
Collapse
|
132
|
Palma-Morales M, Mateos A, Rodríguez J, Casuso RA, Huertas JR. Food made us humans: Recent genetic variability and its relevance 2 to the current distribution of macronutrients 3. Nutrition 2022; 101:111702. [DOI: 10.1016/j.nut.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
|
133
|
Parsaie Z, Rezaie P, Azimi N, Mohammadi N. Relationship between Salivary Alpha-Amylase Enzyme Activity, Anthropometric Indices, Dietary Habits, and Early Childhood Dental Caries. Int J Dent 2022; 2022:2617197. [PMID: 35378726 PMCID: PMC8976663 DOI: 10.1155/2022/2617197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Although early childhood dental caries (ECC) have the same general etiology as other types of caries, predisposing factors are not well elucidated. This study aimed to investigate the effect of salivary alpha-amylase (sAA) activity, body mass index (BMI), dietary habits, and oral hygiene on ECC. Methods This cross-sectional study was performed on 38 ECC-affected and 41 caries-free children, aged 36 to 72 months. Upon the parents' consent, 3 mL of non-stimulated saliva was collected from the participants to measure the level of sAA activity through spectrophotometry. Additionally, parents/caretakers completed a structured questionnaire about demographic factors, oral hygiene, and consumption of sugar-containing foods. BMI, BMI z-scores, and percentile data were calculated by using an online calculator. The independent variables were dichotomized and tested through chi-square test, followed by a stepwise logistic regression, by using SPSS software (α = 0.05). Results The sAA activity was significantly higher in caries-free children (P ≤ 0.001). However, the mean BMI was not significantly different between the two groups (P=0.49). Brushing and other measured dietary habits were significantly associated with the development of ECC (P ≤ 0.001). According to the results of the logistic regression, sAA activity was shown to be a predictor for ECC development (Odds ratio (95% confidence interval): 0.9 (0.95-0.98)). Conclusion Children with inherently lower levels of sAA activity were more susceptible to dental caries. Improper nutritional habits and poor oral health care could exacerbate the risk of ECC.
Collapse
Affiliation(s)
- Zahra Parsaie
- Department of Pediatric Dentistry, Zahedan Dental School, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Pediatric Dentistry, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Niloofar Azimi
- Department of Pediatric Dentistry, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Mohammadi
- Oral and Dental Disease Research Center, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
134
|
Choudhuri S. Toxicological Implications of Biological Heterogeneity. Int J Toxicol 2022; 41:132-142. [PMID: 35311363 DOI: 10.1177/10915818211066492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
From a micro to macro scale of biological organization, macromolecular diversity and biological heterogeneity are fundamental properties of biological systems. Heterogeneity may result from genetic, epigenetic, and non-genetic characteristics (e.g., tissue microenvironment). Macromolecular diversity and biological heterogeneity are tolerated as long as the sustenance and propagation of life are not disrupted. They also provide the raw materials for microevolutionary changes that may help organisms adapt to new selection pressures arising from the environment. Sequence evolution, functional divergence, and positive selection of gene and promoter dosage play a major role in the evolution of life's diversity including complex metabolic networks, which is ultimately reflected in changes in the allele frequency over time. Robustness in evolvable biological systems is conferred by functional redundancy that is often created by macromolecular diversity and biological heterogeneity. The ability to investigate biological macromolecules at an increasingly finer level has uncovered a wealth of information in this regard. Therefore, the dynamics of biological complexity should be taken into consideration in biomedical research.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, US Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
135
|
Roca-Umbert A, Caro-Consuegra R, Londono-Correa D, Rodriguez-Lozano GF, Vicente R, Bosch E. Understanding signatures of positive natural selection in human zinc transporter genes. Sci Rep 2022; 12:4320. [PMID: 35279701 PMCID: PMC8918337 DOI: 10.1038/s41598-022-08439-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential micronutrient with a tightly regulated systemic and cellular homeostasis. In humans, some zinc transporter genes (ZTGs) have been previously reported as candidates for strong geographically restricted selective sweeps. However, since zinc homeostasis is maintained by the joint action of 24 ZTGs, other more subtle modes of selection could have also facilitated human adaptation to zinc availability. Here, we studied whether the complete set of ZTGs are enriched for signals of positive selection in worldwide populations and population groups from South Asia. ZTGs showed higher levels of genetic differentiation between African and non-African populations than would be randomly expected, as well as other signals of polygenic selection outside Africa. Moreover, in several South Asian population groups, ZTGs were significantly enriched for SNPs with unusually extended haplotypes and displayed SNP genotype-environmental correlations when considering zinc deficiency levels in soil in that geographical area. Our study replicated some well-characterized targets for positive selection in East Asia and sub-Saharan Africa, and proposes new candidates for follow-up in South Asia (SLC39A5) and Africa (SLC39A7). Finally, we identified candidate variants for adaptation in ZTGs that could contribute to different disease susceptibilities and zinc-related human health traits.
Collapse
Affiliation(s)
- Ana Roca-Umbert
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Diego Londono-Correa
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Gabriel Felipe Rodriguez-Lozano
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Ruben Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43206, Reus, Spain.
| |
Collapse
|
136
|
Al-Akl N, Thompson RI, Arredouani A. Elevated levels of salivary α- amylase activity in saliva associated with reduced odds of obesity in adult Qatari citizens: A cross-sectional study. PLoS One 2022; 17:e0264692. [PMID: 35271604 PMCID: PMC8912263 DOI: 10.1371/journal.pone.0264692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
The relationship between salivary α-amylase activity (ssAAa) and the risk of metabolic disorders remains equivocal. We aimed to assess this relationship in adults from Qatar, where obesity and type 2 diabetes are highly prevalent. We cross-sectionally quantified ssAAa in saliva and estimated AMY1 CN from whole-genome sequencing data from 1499 participants. Linear regression was used to assess the relationship between ssAAa and adiposity and glycemic markers. Logistic regression was used to examine the association between ssAAa and occurrence of obesity or diabetes. The mean and median ssAAa were significantly lower in obese individuals. There were significant inverse associations between ssAAa and BMI, and fat mass. We detected a marked effect of ssAAa on reduced odds of obesity after adjusting for age and sex, glucose, LDL, HLD, total cholesterol, and systolic and diastolic blood pressure (OR per ssAAa unit 0.998 [95% CI 0.996-0.999], p = 0.005), with ssAAa ranging between 6.8 and 422U/mL. The obesity odds were significantly lower in the upper half of the ssAAa distributional (OR 0.58 [95% CI 0.42-0.76], p<0.001) and lower in the top versus the bottom decile of the ssAAa distribution (OR 0.46 [95% CI 0.23-0.92], p = 0.03). Our findings suggest a potential beneficial relationship between high sAAa in saliva and low odds of obesity in Qatari adults.
Collapse
Affiliation(s)
- Neyla Al-Akl
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Richard I. Thompson
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdelilah Arredouani
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
137
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
138
|
Saitou M, Masuda N, Gokcumen O. Similarity-Based Analysis of Allele Frequency Distribution among Multiple Populations Identifies Adaptive Genomic Structural Variants. Mol Biol Evol 2022; 39:msab313. [PMID: 34718708 PMCID: PMC8896759 DOI: 10.1093/molbev/msab313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Structural variants have a considerable impact on human genomic diversity. However, their evolutionary history remains mostly unexplored. Here, we developed a new method to identify potentially adaptive structural variants based on a similarity-based analysis that incorporates genotype frequency data from 26 populations simultaneously. Using this method, we analyzed 57,629 structural variants and identified 576 structural variants that show unusual population differentiation. Of these putatively adaptive structural variants, we further showed that 24 variants are multiallelic and overlap with coding sequences, and 20 variants are significantly associated with GWAS traits. Closer inspection of the haplotypic variation associated with these putatively adaptive and functional structural variants reveals deviations from neutral expectations due to: 1) population differentiation of rapidly evolving multiallelic variants, 2) incomplete sweeps, and 3) recent population-specific negative selection. Overall, our study provides new methodological insights, documents hundreds of putatively adaptive variants, and introduces evolutionary models that may better explain the complex evolution of structural variants.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
139
|
Uchida H, Ovitt CE. Novel impacts of saliva with regard to oral health. J Prosthet Dent 2022; 127:383-391. [PMID: 34140141 PMCID: PMC8669010 DOI: 10.1016/j.prosdent.2021.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
The maintenance of balanced oral homeostasis depends on saliva. A readily available and molecularly rich source of biological fluid, saliva fulfills many functions in the oral cavity, including lubrication, pH buffering, and tooth mineralization. Saliva composition and flow can be modulated by different factors, including circadian rhythm, diet, age, drugs, and disease. Recent events have revealed that saliva plays a central role in the dissemination and detection of the SARS-CoV-2 coronavirus. A working knowledge of saliva function and physiology is essential for dental health professionals.
Collapse
Affiliation(s)
- Hitoshi Uchida
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Catherine E. Ovitt
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
140
|
Lipponen M, Hallikainen V, Kilpeläinen P. Effects of Nature-Based Intervention in Occupational Health Care on Stress – A Finnish Pilot Study Comparing Stress Evaluation Methods. J Multidiscip Healthc 2022; 15:577-593. [PMID: 35378740 PMCID: PMC8976576 DOI: 10.2147/jmdh.s353168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose To assess methodology and its limitations for measuring effects of nature-based intervention (NBI). Patients and Methods Participants were 11 middle-aged female health care workers with lowered capacity to work. NBI included six group appointments in six months study period. Heart rate variability (HRV) and self-reported pain and work exhaustion were measured pre-post study period. Salivary α-amylase samples were collected immediately before and after three individual interventions. Salivary cortisol samples were collected on the same three interventions, on three consecutive days starting from the day of intervention, to assess (a) month effect (pre-post study period) and (b) day effect (intervention day vs non-intervention day). Results Individual interventions resulted in increase in α-amylase activity. However, the average fold increase decreased from the 3.05 ± 1.20 of the first intervention to 1.91 ± 1.00 and 1.46 ± 0.77 in the second and third intervention, respectively (p < 0.001). Cortisol concentrations were lower on intervention days vs non-intervention days, the difference being indicative (p = 0.050). Pain and work exhaustion decreased during the study period, as well as HRV, although any of these changes was not statistically significant. Conclusion For a large-scale study, it would be ideal to select assays for both major pathways: hypothalamic-pituitary-adrenal axis can be measured by cortisol, whereas response via autonomic nervous system can be measured by HRV, when roles of sympathetic and parasympathetic nervous systems can be pinpointed separately. Salivary α-amylase can be used when continuous monitoring is not possible. Psychological well-being of participants should be surveyed, as well as their activities and moods on sampling days recorded.
Collapse
Affiliation(s)
- Maija Lipponen
- Unit of Bioeconomy and Environment, Natural Resources Institute Finland, Paltamo, Finland
- Correspondence: Maija Lipponen, Unit of Bioeconomy and Environment, Natural Resources Institute Finland, Manamansalontie 90, Paltamo, FI-88300, Finland, Tel +35 8295322024, Email
| | - Ville Hallikainen
- Unit of Natural Resources, Natural Resources Institute Finland, Rovaniemi, Finland
| | - Pekka Kilpeläinen
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, Kajaani, Finland
| |
Collapse
|
141
|
Butterworth PJ, Bajka BH, Edwards CH, Warren FJ, Ellis PR. Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends Food Sci Technol 2022; 120:254-264. [PMID: 35210697 PMCID: PMC8850932 DOI: 10.1016/j.tifs.2021.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Starch is a principal dietary source of digestible carbohydrate and energy. Glycaemic and insulinaemic responses to foods containing starch vary considerably and glucose responses to starchy foods are often described by the glycaemic index (GI) and/or glycaemic load (GL). Low GI/GL foods are beneficial in the management of cardiometabolic disorders (e.g., type 2 diabetes, cardiovascular disease). Differences in rates and extents of digestion of starch-containing foods will affect postprandial glycaemia. SCOPE AND APPROACH Amylolysis kinetics are influenced by structural properties of the food matrix and of starch itself. Native (raw) semi-crystalline starch is digested slowly but hydrothermal processing (cooking) gelatinises the starch and greatly increases its digestibility. In plants, starch granules are contained within cells and intact cell walls can limit accessibility of water and digestive enzymes hindering gelatinisation and digestibility. In vitro studies of starch digestion by α-amylase model early stages in digestion and can suggest likely rates of digestion in vivo and expected glycaemic responses. Reports that metabolic responses to dietary starch are influenced by α-amylase gene copy number, heightens interest in amylolysis. KEY FINDINGS AND CONCLUSIONS This review shows how enzyme kinetic strategies can provide explanations for differences in digestion rate of different starchy foods. Michaelis-Menten and Log of Slope analyses provide kinetic parameters (e.g., K m and k cat /K m ) for evaluating catalytic efficiency and ease of digestibility of starch by α-amylase. Suitable kinetic methods maximise the information that can be obtained from in vitro work for predictions of starch digestion and glycaemic responses in vivo.
Collapse
Key Words
- AMY1, human salivary α-amylase gene
- AMY2, human pancreatic α-amylase gene
- Alpha-amylase
- BMI, body mass index
- CE, catalytic efficiency
- CVD, cardiovascular disease
- Enzyme kinetics
- Fto, alpha-oxoglutarate-dependent dioxygenase gene
- GI, glycaemic index
- GIT, gastrointestinal tract
- GL, glycaemic load
- GLUT2, glucose transporter 2
- Gene copy number
- HI, hydrolysis index
- IC50, inhibitor concentration causing 50% inhibition
- LOS, logarithm of slope plot
- Metabolic significance
- RDS, rapidly digestible starch
- RS, resistant starch
- Resistant starch
- SCFAs, short chain fatty acids
- SDS, slowly digestible starch
- SGLT1, sodium-dependent glucose co-transporter
- Starch digestion
- XRD, X-ray diffraction
Collapse
Affiliation(s)
- Peter J. Butterworth
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Balázs H. Bajka
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Frederick J. Warren
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Peter R. Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
142
|
Rivera AM, Swanson WJ. The Importance of Gene Duplication and Domain Repeat Expansion for the Function and Evolution of Fertilization Proteins. Front Cell Dev Biol 2022; 10:827454. [PMID: 35155436 PMCID: PMC8830517 DOI: 10.3389/fcell.2022.827454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The process of gene duplication followed by gene loss or evolution of new functions has been studied extensively, yet the role gene duplication plays in the function and evolution of fertilization proteins is underappreciated. Gene duplication is observed in many fertilization protein families including Izumo, DCST, ZP, and the TFP superfamily. Molecules mediating fertilization are part of larger gene families expressed in a variety of tissues, but gene duplication followed by structural modifications has often facilitated their cooption into a fertilization function. Repeat expansions of functional domains within a gene also provide opportunities for the evolution of novel fertilization protein. ZP proteins with domain repeat expansions are linked to species-specificity in fertilization and TFP proteins that experienced domain duplications were coopted into a novel sperm function. This review outlines the importance of gene duplications and repeat domain expansions in the evolution of fertilization proteins.
Collapse
Affiliation(s)
- Alberto M. Rivera
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
143
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|
144
|
Conart C, Saclier N, Foucher F, Goubert C, Rius-Bony A, Paramita SN, Moja S, Thouroude T, Douady C, Sun P, Nairaud B, Saint-Marcoux D, Bahut M, Jeauffre J, Hibrand Saint-Oyant L, Schuurink RC, Magnard JL, Boachon B, Dudareva N, Baudino S, Caissard JC. Duplication and specialization of NUDX1 in Rosaceae led to geraniol production in rose petals. Mol Biol Evol 2022; 39:6505224. [PMID: 35022771 PMCID: PMC8857926 DOI: 10.1093/molbev/msac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1 function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa before domestication.
Collapse
Affiliation(s)
- Corentin Conart
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Nathanaelle Saclier
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, F-69622, France
| | - Fabrice Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Clément Goubert
- Department of Human Genetics, McGill University Genome Center, 740 Dr Penfield Ave, Montreal, Quebec, H3A 0G1, Canada
| | - Aurélie Rius-Bony
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Saretta N Paramita
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Sandrine Moja
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Tatiana Thouroude
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Christophe Douady
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, F-69622, France.,Institut Universitaire de France, Paris, F-75005, France
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Baptiste Nairaud
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Denis Saint-Marcoux
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Muriel Bahut
- Univ Angers, SFR QUASAV, Angers, F-49000, France
| | - Julien Jeauffre
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Jean-Louis Magnard
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Benoît Boachon
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sylvie Baudino
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Jean-Claude Caissard
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| |
Collapse
|
145
|
Chebib J, Guillaume F. The relative impact of evolving pleiotropy and mutational correlation on trait divergence. Genetics 2022; 220:iyab205. [PMID: 34864966 PMCID: PMC8733425 DOI: 10.1093/genetics/iyab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 01/24/2023] Open
Abstract
Both pleiotropic connectivity and mutational correlations can restrict the decoupling of traits under divergent selection, but it is unknown which is more important in trait evolution. To address this question, we create a model that permits within-population variation in both pleiotropic connectivity and mutational correlation, and compare their relative importance to trait evolution. Specifically, we developed an individual-based stochastic model where mutations can affect whether a locus affects a trait and the extent of mutational correlations in a population. We find that traits can decouple whether there is evolution in pleiotropic connectivity or mutational correlation, but when both can evolve, then evolution in pleiotropic connectivity is more likely to allow for decoupling to occur. The most common genotype found in this case is characterized by having one locus that maintains connectivity to all traits and another that loses connectivity to the traits under stabilizing selection (subfunctionalization). This genotype is favored because it allows the subfunctionalized locus to accumulate greater effect size alleles, contributing to increasingly divergent trait values in the traits under divergent selection without changing the trait values of the other traits (genetic modularization). These results provide evidence that partial subfunctionalization of pleiotropic loci may be a common mechanism of trait decoupling under regimes of corridor selection.
Collapse
Affiliation(s)
- Jobran Chebib
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
146
|
Pathak AK, Sukhavasi K, Marnetto D, Chaubey G, Pandey AK. Human population genomics approach in food metabolism. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
147
|
Li H, Rafie R, Xu Z, Siddiqui RA. Phytochemical profile and anti-oxidation activity changes during ginger ( Zingiber officinale) harvest: Baby ginger attenuates lipid accumulation and ameliorates glucose uptake in HepG2 cells. Food Sci Nutr 2022; 10:133-144. [PMID: 35035916 PMCID: PMC8751441 DOI: 10.1002/fsn3.2654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
We determined the phenolic content and anti-oxidation properties of ginger at different harvesting time and tested its effects on lipid droplet formation and glucose uptake in HepG2 cells. Ginger samples at different stages of maturity were harvested every two weeks starting from mid-October for 16 weeks. Our data indicate that ginger has the highest phenolic contents and superior anti-oxidation activity when harvested early (immature baby ginger); however, the concentration of phenolic contents and its anti-oxidation activity were progressively reduced up to 50% as ginger matures. Furthermore, the data indicate that baby ginger extract inhibits lipid accumulation and triglyceride content in oleic acid-induced HepG2 cells up to 20% in a dose-dependent manner. Baby ginger exhibited significant inhibition of α-amylase enzyme activity by 29.5% and ameliorated glucose uptake in HepG2 cell at similar level. Our results suggest that harvesting ginger at an appropriate (early) time may be beneficial for optimizing its biological active contents and qualitative properties. The data also suggest that a regular use of ginger can potentially lower incidences of obesity and diabetes.
Collapse
Affiliation(s)
- Haiwen Li
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research StationVirginia State UniversityPetersburgVirginiaUSA
| | - Reza Rafie
- Cooperate ExtensionCollege of AgricultureVirginia State UniversityPetersburgVirginiaUSA
| | - Zhidong Xu
- Key Laboratory of Molecular Chemistry for Medicine of Hebei ProvinceCollege of Chemical & Pharmaceutical EngineeringHebei University of Science & TechnologyShijiazhuangChina
| | - Rafat A. Siddiqui
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research StationVirginia State UniversityPetersburgVirginiaUSA
| |
Collapse
|
148
|
Kun Á. Is there still evolution in the human population? Biol Futur 2022; 73:359-374. [PMID: 36592324 PMCID: PMC9806833 DOI: 10.1007/s42977-022-00146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
It is often claimed that humanity has stopped evolving because modern medicine erased all selection on survival. Even if that would be true, and it is not, there would be other mechanisms of evolution which could still led to changes in allelic frequencies. Here I show, by applying basic evolutionary genetics knowledge, that we expect humanity to evolve. The results from genome sequencing projects have repeatedly affirmed that there are still recent signs of selection in our genomes. I give some examples of such adaptation. Then I briefly discuss what our evolutionary future has in store for us.
Collapse
Affiliation(s)
- Ádám Kun
- grid.5591.80000 0001 2294 6276Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary ,Parmenides Center for the Conceptual Foundations of Science, Pöcking, Germany ,grid.481817.3Institute of Evolution, Centre for Ecological Research, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| |
Collapse
|
149
|
Prunier J, Carrier A, Gilbert I, Poisson W, Albert V, Taillon J, Bourret V, Côté SD, Droit A, Robert C. CNVs with adaptive potential in Rangifer tarandus: genome architecture and new annotated assembly. Life Sci Alliance 2021; 5:5/3/e202101207. [PMID: 34911809 PMCID: PMC8711850 DOI: 10.26508/lsa.202101207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
Rangifer tarandus has experienced recent drastic population size reductions throughout its circumpolar distribution and preserving the species implies genetic diversity conservation. To facilitate genomic studies of the species populations, we improved the genome assembly by combining long read and linked read and obtained a new highly accurate and contiguous genome assembly made of 13,994 scaffolds (L90 = 131 scaffolds). Using de novo transcriptome assembly of RNA-sequencing reads and similarity with annotated human gene sequences, 17,394 robust gene models were identified. As copy number variations (CNVs) likely play a role in adaptation, we additionally investigated these variations among 20 genomes representing three caribou ecotypes (migratory, boreal and mountain). A total of 1,698 large CNVs (length > 1 kb) showing a genome distribution including hotspots were identified. 43 large CNVs were particularly distinctive of the migratory and sedentary ecotypes and included genes annotated for functions likely related to the expected adaptations. This work includes the first publicly available annotation of the caribou genome and the first assembly allowing genome architecture analyses, including the likely adaptive CNVs reported here.
Collapse
Affiliation(s)
- Julien Prunier
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - William Poisson
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Steeve D Côté
- Caribou Ungava, département de biologie, Faculté des Sciences et de Génie, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| |
Collapse
|
150
|
Reconstructing Neanderthal diet: The case for carbohydrates. J Hum Evol 2021; 162:103105. [PMID: 34923240 DOI: 10.1016/j.jhevol.2021.103105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Evidence for plants rarely survives on Paleolithic sites, while animal bones and biomolecular analyses suggest animal produce was important to hominin populations, leading to the perspective that Neanderthals had a very-high-protein diet. But although individual and short-term survival is possible on a relatively low-carbohydrate diet, populations are unlikely to have thrived and reproduced without plants and the carbohydrates they provide. Today, nutritional guidelines recommend that around half the diet should be carbohydrate, while low intake is considered to compromise physical performance and successful reproduction. This is likely to have been the same for Paleolithic populations, highlighting an anomaly in that the basic physiological recommendations do not match the extensive archaeological evidence. Neanderthals had large, energy-expensive brains and led physically active lifestyles, suggesting that for optimal health they would have required high amounts of carbohydrates. To address this anomaly, we begin by outlining the essential role of carbohydrates in the human reproduction cycle and the brain and the effects on physical performance. We then evaluate the evidence for resource availability and the archaeological evidence for Neanderthal diet and investigate three ways that the anomaly between the archaeological evidence and the hypothetical dietary requirements might be explained. First, Neanderthals may have had an as yet unidentified genetic adaptation to an alternative physiological method to spare blood glucose and glycogen reserves for essential purposes. Second, they may have existed on a less-than-optimum diet and survived rather than thrived. Third, the methods used in dietary reconstruction could mask a complex combination of dietary plant and animal proportions. We end by proposing that analyses of Paleolithic diet and subsistence strategies need to be grounded in the minimum recommendations throughout the life course and that this provides a context for interpretation of the archaeological evidence from the behavioral and environmental perspectives.
Collapse
|