101
|
Abstract
The fly olfactory system has a three-layer architecture: The fly's olfactory receptor neurons send odor information to the first layer (the encoder) where this information is formatted as combinatorial odor code, one which is maximally informative, with the most informative neurons firing fastest. This first layer then sends the encoded odor information to the second layer (decoder), which consists of about 2,000 neurons that receive the odor information and "break" the code. For each odor, the amplitude of the synaptic odor input to the 2,000 second-layer neurons is approximately normally distributed across the population, which means that only a very small fraction of neurons receive a large input. Each odor, however, activates its own population of large-input neurons and so a small subset of the 2,000 neurons serves as a unique tag for the odor. Strong inhibition prevents most of the second-stage neurons from firing spikes, and therefore spikes from only the small population of large-input neurons is relayed to the third stage. This selected population provides the third stage (the user) with an odor label that can be used to direct behavior based on what odor is present.
Collapse
|
102
|
Kohl J, Huoviala P, Jefferis GS. Pheromone processing in Drosophila. Curr Opin Neurobiol 2015; 34:149-57. [PMID: 26143522 DOI: 10.1016/j.conb.2015.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/12/2015] [Accepted: 06/14/2015] [Indexed: 11/30/2022]
Abstract
Understanding how sensory stimuli are processed in the brain to instruct appropriate behavior is a fundamental question in neuroscience. Drosophila has become a powerful model system to address this problem. Recent advances in characterizing the circuits underlying pheromone processing have put the field in a position to follow the transformation of these chemical signals all the way from the sensory periphery to decision making and motor output. Here we describe the latest advances, outline emerging principles of pheromone processing and discuss future questions.
Collapse
Affiliation(s)
- Johannes Kohl
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Paavo Huoviala
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gregory Sxe Jefferis
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
103
|
Abstract
The Drosophila mushroom bodies are critical association areas whose role in olfactory associative learning has been well characterized. Recent behavioral studies using a taste association paradigm revealed that gustatory conditioning also requires the mushroom bodies (Masek and Scott, 2010; Keene and Masek, 2012). Here, we examine the representations of tastes and the neural sites for taste associations in the mushroom bodies. Using molecular genetic approaches to target different neuronal populations, we find that the gamma lobes of the mushroom bodies and a subset of dopaminergic input neurons are required for taste associative learning. Monitoring responses to taste compounds in the mushroom body calyx with calcium imaging reveals sparse, taste-specific and organ-specific activation in the Kenyon cell dendrites of the main calyx and the dorsal accessory calyx. Our work provides insight into gustatory representations in the mushroom bodies, revealing the essential role of gustatory inputs not only as rewards and punishments but also as adaptive cues.
Collapse
|
104
|
Kazama H. Systems neuroscience in Drosophila: Conceptual and technical advantages. Neuroscience 2015; 296:3-14. [DOI: 10.1016/j.neuroscience.2014.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
|
105
|
Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TTB, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 2014; 3:e04577. [PMID: 25535793 PMCID: PMC4273437 DOI: 10.7554/elife.04577] [Citation(s) in RCA: 642] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell-MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daisuke Hattori
- Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Yang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Teri-T B Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - L F Abbott
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, United States
| | - Richard Axel
- Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Hiromu Tanimoto
- Tohuku University Graduate School of Life Sciences, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
106
|
Abstract
The mushroom bodies in the insect brain serve as a central information processing area. Here, focusing mainly on olfaction, we discuss functionally related roles the mushroom bodies play in signal gain control, response sparsening, the separation of similar signals (decorrelation), and learning and memory. In sum, the mushroom bodies assemble and format a context-appropriate representation of the insect's world.
Collapse
Affiliation(s)
- Mark Stopfer
- NIH-NICHD, Building 35, 35 Lincoln Drive, Rm 3E-623, msc 3715, Bethesda, MD 20892 USA,
| |
Collapse
|
107
|
Two protein N-acetylgalactosaminyl transferases regulate synaptic plasticity by activity-dependent regulation of integrin signaling. J Neurosci 2014; 34:13047-65. [PMID: 25253852 DOI: 10.1523/jneurosci.1484-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using a Drosophila whole-genome transgenic RNAi screen for glycogenes regulating synapse function, we have identified two protein α-N-acetylgalactosaminyltransferases (pgant3 and pgant35A) that regulate synaptic O-linked glycosylation (GalNAcα1-O-S/T). Loss of either pgant alone elevates presynaptic/postsynaptic molecular assembly and evoked neurotransmission strength, but synapses appear restored to normal in double mutants. Likewise, activity-dependent facilitation, augmentation, and posttetanic potentiation are all suppressively impaired in pgant mutants. In non-neuronal contexts, pgant function regulates integrin signaling, and we show here that the synaptic Position Specific 2 (αPS2) integrin receptor and transmembrane tenascin ligand are both suppressively downregulated in pgant mutants. Channelrhodopsin-driven activity rapidly (<1 min) drives integrin signaling in wild-type synapses but is suppressively abolished in pgant mutants. Optogenetic stimulation in pgant mutants alters presynaptic vesicle trafficking and postsynaptic pocket size during the perturbed integrin signaling underlying synaptic plasticity defects. Critically, acute blockade of integrin signaling acts synergistically with pgant mutants to eliminate all activity-dependent synaptic plasticity.
Collapse
|
108
|
Thoma M, Hansson BS, Knaden M. Compound valence is conserved in binary odor mixtures in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 217:3645-55. [PMID: 25189369 DOI: 10.1242/jeb.106591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most naturally occurring olfactory signals do not consist of monomolecular odorants but, rather, are mixtures whose composition and concentration ratios vary. While there is ample evidence for the relevance of complex odor blends in ecological interactions and for interactions of chemicals in both peripheral and central neuronal processing, a fine-scale analysis of rules governing the innate behavioral responses of Drosophila melanogaster towards odor mixtures is lacking. In this study we examine whether the innate valence of odors is conserved in binary odor mixtures. We show that binary mixtures of attractants are more attractive than individual mixture constituents. In contrast, mixing attractants with repellents elicits responses that are lower than the responses towards the corresponding attractants. This decrease in attraction is repellent-specific, independent of the identity of the attractant and more stereotyped across individuals than responses towards the repellent alone. Mixtures of repellents are either less attractive than the individual mixture constituents or these mixtures represent an intermediate. Within the limits of our data set, most mixture responses are quantitatively predictable on the basis of constituent responses. In summary, the valence of binary odor mixtures is predictable on the basis of valences of mixture constituents. Our findings will further our understanding of innate behavior towards ecologically relevant odor blends and will serve as a powerful tool for deciphering the olfactory valence code.
Collapse
Affiliation(s)
- Michael Thoma
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
109
|
Masuda-Nakagawa LM, Ito K, Awasaki T, O'Kane CJ. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila. Front Neural Circuits 2014; 8:35. [PMID: 24782716 PMCID: PMC3988396 DOI: 10.3389/fncir.2014.00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs) are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region) of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has pre-synaptic terminals in the calyx and post-synaptic branches in the MB lobes (output axonal area). We call this neuron the larval anterior paired lateral (APL) neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP) suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs), but few contacts with incoming projection neurons (PNs). Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a manner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.
Collapse
Affiliation(s)
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Takeshi Awasaki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge Cambridge, UK
| |
Collapse
|
110
|
Friedrich RW, Moressis A, Frank T. Stereotopy versus stochasticity in olfaction. Nat Neurosci 2014; 17:147-9. [PMID: 24473259 DOI: 10.1038/nn.3630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rainer W Friedrich
- 1] Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. [2] University of Basel, Basel, Switzerland
| | | | - Thomas Frank
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
111
|
Barth J, Dipt S, Pech U, Hermann M, Riemensperger T, Fiala A. Differential associative training enhances olfactory acuity in Drosophila melanogaster. J Neurosci 2014; 34:1819-37. [PMID: 24478363 PMCID: PMC6827587 DOI: 10.1523/jneurosci.2598-13.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/21/2022] Open
Abstract
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.
Collapse
Affiliation(s)
- Jonas Barth
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Shubham Dipt
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Ulrike Pech
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Moritz Hermann
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Thomas Riemensperger
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - André Fiala
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| |
Collapse
|
112
|
Stereotyped connectivity and computations in higher-order olfactory neurons. Nat Neurosci 2013; 17:280-8. [PMID: 24362761 DOI: 10.1038/nn.3613] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022]
Abstract
In the first brain relay of the olfactory system, odors are encoded by combinations of glomeruli, but it is not known how glomerular signals are ultimately integrated. In Drosophila melanogaster, the majority of glomerular projections target the lateral horn. Here we show that lateral horn neurons (LHNs) receive input from sparse and stereotyped combinations of glomeruli that are coactivated by odors, and certain combinations of glomeruli are over-represented. One morphological LHN type is broadly tuned and sums input from multiple glomeruli. These neurons have a broader dynamic range than their individual glomerular inputs do. By contrast, a second morphological type is narrowly tuned and receives prominent odor-selective inhibition through both direct and indirect pathways. We show that this wiring scheme confers increased selectivity. The biased stereotyped connectivity of the lateral horn contrasts with the probabilistic wiring of the mushroom body, reflecting the distinct roles of these regions in innate as compared to learned behaviors.
Collapse
|