101
|
Salt flat microbial diversity and dynamics across salinity gradient. Sci Rep 2022; 12:11293. [PMID: 35788147 PMCID: PMC9253026 DOI: 10.1038/s41598-022-15347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sabkhas are hypersaline, mineral-rich, supratidal mudflats that harbor microbes that are adapted to high salt concentration. Sabkha microbial diversity is generally studied for their community composition, but less is known about their genetic structure and heterogeneity. In this study, we analyzed a coastal sabkha for its microbial composition using 16S rDNA and whole metagenome, as well as for its population genetic structure. Our 16S rDNA analysis show high alpha diversity in both inner and edge sabkha than outer sabkha. Beta diversity result showed similar kind of microbial composition between inner and edge sabkha, while outer sabkha samples show different microbial composition. At phylum level, Bacteroidetes (~ 22 to 34%), Euryarchaeota (~ 18 to ~ 30%), unclassified bacteria (~ 24 to ~ 35%), Actinobacteria (~ 0.01 to ~ 11%) and Cyanobacteria (less than 1%) are predominantly found in both inside and edge sabkha regions, whereas Proteobacteria (~ 92 to ~ 97%) and Parcubacteria (~ 1 to ~ 2%) are predominately found in outer sabkha. Our 225 metagenomes assembly from this study showed similar bacterial community profile as observed in 16S rDNA-based analysis. From the assembled genomes, we found important genes that are involved in biogeochemical cycles and secondary metabolite biosynthesis. We observed a dynamic, thriving ecosystem that engages in metabolic activity that shapes biogeochemical structure via carbon fixation, nitrogen, and sulfur cycling. Our results show varying degrees of horizontal gene transfers (HGT) and homologous recombination, which correlates with the observed high diversity for these populations. Moreover, our pairwise population differentiation (Fst) for the abundance of species across the salinity gradient of sabkhas identified genes with strong allelic differentiation, lower diversity and elevated nonsynonymous to synonymous ratio of variants, which suggest selective sweeps for those gene variants. We conclude that the process of HGT, combined with recombination and gene specific selection, constitute the driver of genetic variation in bacterial population along a salinity gradient in the unique sabkha ecosystem.
Collapse
|
102
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
103
|
Traxler MF, Rozen DE. Ecological drivers of division of labour in Streptomyces. Curr Opin Microbiol 2022; 67:102148. [PMID: 35468363 PMCID: PMC12042799 DOI: 10.1016/j.mib.2022.102148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Division of labour occurs when different individuals, cells or tissues become specialised to perform complementary tasks that benefit the whole organism or social group. Although long studied in multicellular organisms and colonies of social insects, several recent studies have established that division of labour is common in microorganisms. We review recent work on the division of labour in unicellular and multicellular bacteria, with a particular focus on reproductive and metabolic divisions of labour in actinomycetes. Actinomycetes show enormous variation in sporophore morphology and spore production patterns that likely affect the potential for cooperative interactions within colonies. They also display both irreversible genetic and spatiotemporally regulated phenotypic divisions of labour that structure antibiotic production. We highlight outstanding questions in this group of multicellular bacteria and outline factors that can modify the expression of division of labour across microbes.
Collapse
Affiliation(s)
- Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
104
|
Alviz-Gazitua P, González A, Lee MR, Aranda CP. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:431-447. [PMID: 35486299 DOI: 10.1007/s10126-022-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.
Collapse
Affiliation(s)
- P Alviz-Gazitua
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - A González
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - M R Lee
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, P. Box 5480000, Puerto Montt, Chile
| | - C P Aranda
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile.
| |
Collapse
|
105
|
Studying the effect of oxygen availability and matrix structure on population density and inter-strain interactions of Listeria monocytogenes in different dairy model systems. Food Res Int 2022; 156:111118. [DOI: 10.1016/j.foodres.2022.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
|
106
|
Raju DV, Nagarajan A, Pandit S, Nag M, Lahiri D, Upadhye V. Effect of bacterial quorum sensing and mechanism of antimicrobial resistance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
107
|
Subinhibitory Cefotaxime and Levofloxacin Concentrations Contribute to Selection of Pseudomonas aeruginosa in Coculture with Staphylococcus aureus. Appl Environ Microbiol 2022; 88:e0059222. [PMID: 35638844 DOI: 10.1128/aem.00592-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial species in the polymicrobial community evolve interspecific interaction relationships to adapt to the survival stresses imposed by neighbors or environmental cues. Pseudomonas aeruginosa and Staphylococcus aureus are two common bacterial pathogens frequently coisolated from patients with burns and respiratory disease. Whether the application of commonly used antibiotics influences the interaction dynamics of the two species still remains largely unexplored. By performing a series of on-plate competition assays and RNA sequencing-based transcriptional profiling, we showed that the presence of the cephalosporin antibiotic cefotaxime or the quinolone antibiotic levofloxacin at subinhibitory concentration contributes to selecting P. aeruginosa from the coculture with S. aureus by modulating the quorum-sensing (QS) system of P. aeruginosa. Specifically, a subinhibitory concentration of cefotaxime promotes the growth suppression of S. aureus by P. aeruginosa in coculture. This process may be related to the increased production of the antistaphylococcal molecule pyocyanin and the expression of lasR, which is the central regulatory gene of the P. aeruginosa QS hierarchy. On the other hand, subinhibitory concentrations of levofloxacin decrease the competitive advantage of P. aeruginosa over S. aureus by inhibiting the growth and the las QS system of P. aeruginosa. However, pqs signaling of P. aeruginosa can be activated instead to overcome S. aureus. Therefore, this study contributes to understanding the interaction dynamics of P. aeruginosa and S. aureus during antibiotic treatment and provides an important basis for studying the pathogenesis of polymicrobial infections. IMPORTANCE Increasing evidence has demonstrated the polymicrobial characteristics of most chronic infections, and the frequent communications among bacterial pathogens result in many difficulties for clinical therapy. Exploring bacterial interspecific interaction during antibiotic treatment is an emerging endeavor that may facilitate the understanding of polymicrobial infections and the optimization of clinical therapies. Here, we investigated the interaction of cocultured P. aeruginosa and S. aureus with the intervention of commonly used antibiotics in clinic. We found that the application of subinhibitory concentrations of cefotaxime and levofloxacin can select P. aeruginosa in coculture with S. aureus by modulating P. aeruginosa QS regulation to enhance the production of antistaphylococcal metabolites in different ways. This study emphasizes the role of the QS system in the interaction of P. aeruginosa with other bacterial species and provides an explanation for the persistence and enrichment of P. aeruginosa in patients after antibiotic treatment and a reference for further clinical therapy.
Collapse
|
108
|
Lin L, Capozzoli R, Ferrand A, Plum M, Vettiger A, Basler M. Subcellular localization of Type VI secretion system assembly in response to cell–cell contact. EMBO J 2022; 41:e108595. [PMID: 35634969 PMCID: PMC9251886 DOI: 10.15252/embj.2021108595] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria require a number of systems, including the type VI secretion system (T6SS), for interbacterial competition and pathogenesis. The T6SS is a large nanomachine that can deliver toxins directly across membranes of proximal target cells. Since major reassembly of T6SS is necessary after each secretion event, accurate timing and localization of T6SS assembly can lower the cost of protein translocation. Although critically important, mechanisms underlying spatiotemporal regulation of T6SS assembly remain poorly understood. Here, we used super‐resolution live‐cell imaging to show that while Acinetobacter and Burkholderia thailandensis can assemble T6SS at any site, a significant subset of T6SS assemblies localizes precisely to the site of contact between neighboring bacteria. We identified a class of diverse, previously uncharacterized, periplasmic proteins required for this dynamic localization of T6SS to cell–cell contact (TslA). This precise localization is also dependent on the outer membrane porin OmpA. Our analysis links transmembrane communication to accurate timing and localization of T6SS assembly as well as uncovers a pathway allowing bacterial cells to respond to cell–cell contact during interbacterial competition.
Collapse
Affiliation(s)
- Lin Lin
- Biozentrum University of Basel Basel Switzerland
| | | | - Alexia Ferrand
- Biozentrum Imaging Core Facility University of Basel Basel Switzerland
| | - Miro Plum
- Biozentrum University of Basel Basel Switzerland
| | | | - Marek Basler
- Biozentrum University of Basel Basel Switzerland
| |
Collapse
|
109
|
De Wit G, Svet L, Lories B, Steenackers HP. Microbial Interspecies Interactions and Their Impact on the Emergence and Spread of Antimicrobial Resistance. Annu Rev Microbiol 2022; 76:179-192. [PMID: 35609949 DOI: 10.1146/annurev-micro-041320-031627] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria are social organisms that commonly live in dense communities surrounded by a multitude of other species. The competitive and cooperative interactions between these species not only shape the bacterial communities but also influence their susceptibility to antimicrobials. While several studies have shown that mixed-species communities are more tolerant toward antimicrobials than their monospecies counterparts, only limited empirical data are currently available on how interspecies interactions influence resistance development. We here propose a theoretic framework outlining the potential impact of interspecies social behavior on different aspects of resistance development. We identify factors by which interspecies interactions might influence resistance evolution and distinguish between their effect on (a) the emergence of a resistant mutant and (b) the spread of this resistance throughout the population. Our analysis indicates that considering the social life of bacteria is imperative to the rational design of more effective antibiotic treatment strategies with a minimal hazard for resistance development. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gitta De Wit
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Luka Svet
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| |
Collapse
|
110
|
Henriksen NNSE, Lindqvist LL, Wibowo M, Sonnenschein EC, Bentzon-Tilia M, Gram L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev 2022; 46:fuac007. [PMID: 35099011 PMCID: PMC9075582 DOI: 10.1093/femsre/fuac007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.
Collapse
Affiliation(s)
- Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Laura L Lindqvist
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
111
|
Abstract
The diversity, ubiquity, and significance of microbial communities is clear. However, the predictable and reliable manipulation of microbiomes to impact human, environmental, and agricultural health remains a challenge.
Collapse
|
112
|
Multikingdom interactions govern the microbiome in subterranean cultural heritage sites. Proc Natl Acad Sci U S A 2022; 119:e2121141119. [PMID: 35344401 PMCID: PMC9169738 DOI: 10.1073/pnas.2121141119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe conservation of historical relics against microbial biodeterioration is critical to preserving cultural heritages. One major challenge is our limited understanding of microorganisms' dispersal, colonization, and persistence on relics after excavation and opening to external environments. Here, we investigate the ecological and physiological profiles of the microbiome within and outside the Dahuting Han Dynasty Tomb with a 1,800-y history. Actinobacteria dominate the microbiome in this tomb. Via interkingdom signaling mutualism, springtails carry Actinobacteria as one possible source into the tomb from surrounding environments. Subsequently, Actinobacteria produce cellulases combined with antimicrobial substances, which helps them to colonize and thrive in the tomb via intrakingdom competition. Our findings unravel the ecology of the microbiomes colonizing historical relics and provide help for conservation practices.
Collapse
|
113
|
Hashem I, Van Impe JFM. A Game Theoretic Analysis of the Dual Function of Antibiotics. Front Microbiol 2022; 12:812788. [PMID: 35250912 PMCID: PMC8889009 DOI: 10.3389/fmicb.2021.812788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
There are two major views toward the role of antibiotics in microbial social interactions. The classical view is that antibiotics serve as weapons, produced by a bacterial species, at a significant cost, to inhibit the growth of its competitors. This view is supported by observations that antibiotics are usually upregulated by stress responses that infer the intensity of ecological competition, such as nutrient limitation and cellular damage, which point out to a competitive role for antibiotics. The other ecological function frequently assigned to antibiotics is that they serve as signaling molecules which regulate the collective behavior of a microbial community. Here, we investigate the conditions at which a weapon can serve as a signal in the context of microbial competition. We propose that an antibiotic will serve as a signal whenever a potential alteration of the growth behavior of the signal receiver, in response to a subinhibitory concentration (SIC) of the antibiotic, reduces the competitive pressure on the signal producer. This in turn would lead to avoiding triggering the stress mechanisms of the signal producer responsible for further antibiotics production. We show using individual-based modeling that this reduction of competitive pressure on the signal producer can happen through two main classes of responses by the signal recipient: competition tolerance, where the recipient reduces its competitive impact on the signal producer by switching to a low growth rate/ high yield strategy, and niche segregation, where the recipient reduces the competitive pressure on the signal producer by reducing their niche overlap. Our hypothesis proposes that antibiotics serve as signals out of their original function as weapons in order to reduce the chances of engaging in fights that would be costly to both the antibiotic producer as well as to its competitors.
Collapse
Affiliation(s)
- Ihab Hashem
- Department of Chemical Engineering, BioTeC+ & OPTEC, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- Department of Chemical Engineering, BioTeC+ & OPTEC, KU Leuven, Ghent, Belgium
| |
Collapse
|
114
|
Apostolopoulou NG, Smeti E, Lamorgese M, Varkitzi I, Whitfield P, Regnault C, Spatharis S. Microalgae show a range of responses to exometabolites of foreign species. ALGAL RES 2022; 62:None. [PMID: 35311224 PMCID: PMC8924005 DOI: 10.1016/j.algal.2021.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022]
Abstract
Studies on microalgae interspecific interactions have so far focused either on nutrient competition or allelopathic effects due to excreted substances from Harmful Algal Bloom (HAB) species. Evidence from plants, bacteria and specific microalgae groups, point to a range of responses mediated by sensing or direct chemical impact of exometabolites from foreign species. Such processes remain under-investigated, especially in non-HAB microalgae, despite the importance of such knowledge in ecology and industrial applications. Here, we study the directional effect of exometabolites of 4 "foreign" species Heterosigma akashiwo, Phaeocystis sp., Tetraselmis sp. and Thalassiosira sp. to each of three "target" species across a total of 12 treatments. We disentangle these effects from nutrient competition by adding cell free medium of each "foreign" species into our treatment cultures. We measured the biomass response, to the foreign exometabolites, as cell number and photosynthetic biomass (Chla), whereas nutrient use was measured as residual phosphorus (PO4) and intracellular phosphorus (P). Exometabolites from filtrate of foreign species were putatively annotated by untargeted metabolomics analysis and were discussed in association to observed responses of target species. Among others, these metabolites included L-histidinal, Tiliacorine and dimethylsulfoniopropionate (DMSP). Our findings show that species show a range of responses with the most common being biomass suppression, and less frequent biomass enhancement and intracellular P storage. Filtrate from the green microalgae Tetraselmis caused the most pronounced negative effects suggesting that non-HAB species can also cause negative chemical interference. A candidate metabolite inducing this response is L-histidinal which was measured in high abundance uniquely in Tetraselmis and its L-histidine form derived from bacteria was previously confirmed as a microalgal algicidal. H. akashiwo also induced biomass suppression on other microalgae and a candidate metabolite for this response is Tiliacorine, a plant-derived alkaloid with confirmed cytotoxic activity.
Collapse
Affiliation(s)
- Natalia G. Apostolopoulou
- Department of Ecology and Systematics, National and Kapodistrian University of Athens, 10679, Greece
- School of Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Evangelia Smeti
- Institute of Marine Biological Resources and Inland Waters, HCMR Hellenic Centre for Marine Research, PO Box 713, Anavyssos 19013, Greece
| | | | - Ioanna Varkitzi
- Institute of Oceanography, HCMR Hellenic Centre for Marine Research, PO Box 713, Anavyssos 19013, Greece
| | | | | | - Sofie Spatharis
- School of Life Sciences, University of Glasgow, G12 8QQ, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
115
|
Kraigher B, Butolen M, Stefanic P, Mandic Mulec I. Kin discrimination drives territorial exclusion during Bacillus subtilis swarming and restrains exploitation of surfactin. THE ISME JOURNAL 2022; 16:833-841. [PMID: 34650232 PMCID: PMC8857193 DOI: 10.1038/s41396-021-01124-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Swarming is the collective movement of bacteria across a surface. It requires the production of surfactants (public goods) to overcome surface tension and provides an excellent model to investigate bacterial cooperation. Previously, we correlated swarm interaction phenotypes with kin discrimination between B. subtilis soil isolates, by showing that less related strains form boundaries between swarms and highly related strains merge. However, how kin discrimination affects cooperation and territoriality in swarming bacteria remains little explored. Here we show that the pattern of surface colonization by swarming mixtures is influenced by kin types. Closely related strain mixtures colonize the surface in a mixed swarm, while mixtures of less related strains show competitive exclusion as only one strain colonizes the surface. The outcome of nonkin swarm expansion depends on the initial ratio of the competing strains, indicating positive frequency-dependent competition. We find that addition of surfactin (a public good excreted from cells) can complement the swarming defect of nonkin mutants, whereas close encounters in nonkin mixtures lead to territorial exclusion, which limits the exploitation of surfactin by nonkin nonproducers. The work suggests that kin discrimination driven competitive territorial exclusion may be an important determinant for the success of cooperative surface colonization.
Collapse
Affiliation(s)
- Barbara Kraigher
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Monika Butolen
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Polonca Stefanic
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ines Mandic Mulec
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia ,grid.8954.00000 0001 0721 6013Chair of Micro Process Engineering and Technology COMPETE, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
116
|
Hashem I, Van Impe JFM. Dishonest Signaling in Microbial Conflicts. Front Microbiol 2022; 13:812763. [PMID: 35283822 PMCID: PMC8914469 DOI: 10.3389/fmicb.2022.812763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 01/21/2023] Open
Abstract
Quorum sensing is a cell-cell communication system that bacteria use to express social phenotypes, such as the production of extracellular enzymes or toxins, at high cell densities when these phenotypes are most beneficial. However, many bacterial strains are known to lack a sensing mechanism for quorum signals, despite having the gene responsible for releasing the signals to the environment. The aim of this article is 2-fold. First, we utilize mathematical modeling and signaling theory to elucidate the advantage that a bacterial species can gain by releasing quorum signals, while not being able to sense them, in the context of ecological competition with a focal quorum sensing species, by reducing the focal species' ability to optimize the timing of expression of the quorum sensing regulated phenotype. Additionally, the consequences of such “dishonest signaling,” signaling that has evolved to harm the signal's receiver, on the focal quorum sensing species are investigated. It is found that quorum sensing bacteria would have to incur an additional, strategic, signaling cost in order to not suffer a reduction in fitness against dishonest signaling strains. Also, the concept of the Least Expensive Reliable Signal is introduced and applied to study how the properties of the regulated phenotype affect the metabolic investment in signaling needed by the quorum sensing bacteria to withstand dishonest signaling.
Collapse
|
117
|
Maan H, Itkin M, Malitsky S, Friedman J, Kolodkin-Gal I. Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors. Nat Commun 2022; 13:431. [PMID: 35058430 PMCID: PMC8776889 DOI: 10.1038/s41467-021-27904-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Microbial communities employ a variety of complex strategies to compete successfully against competitors sharing their niche, with antibiotic production being a common strategy of aggression. Here, by systematic evaluation of four non-ribosomal peptides/polyketide (NRPs/PKS) antibiotics produced by Bacillus subtilis clade, we revealed that they acted synergistically to effectively eliminate phylogenetically distinct competitors. The production of these antibiotics came with a fitness cost manifested in growth inhibition, rendering their synthesis uneconomical when growing in proximity to a phylogenetically close species, carrying resistance against the same antibiotics. To resolve this conflict and ease the fitness cost, antibiotic production was only induced by the presence of a peptidoglycan cue from a sensitive competitor, a response mediated by the global regulator of cellular competence, ComA. These results experimentally demonstrate a general ecological concept - closely related communities are favoured during competition, due to compatibility in attack and defence mechanisms.
Collapse
Affiliation(s)
- Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Maxim Itkin
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
118
|
Piatek P, Humphreys C, Raut MP, Wright PC, Simpson S, Köpke M, Minton NP, Winzer K. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Sci Rep 2022; 12:411. [PMID: 35013405 PMCID: PMC8748961 DOI: 10.1038/s41598-021-03999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
Acetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological functions remain elusive. Among these is quorum sensing, a bacterial communication mechanism known to coordinate gene expression in response to cell population density. Two putative agr systems have been identified in the genome of Clostridium autoethanogenum suggesting bacterial communication via autoinducing signal molecules. Signal molecule-encoding agrD1 and agrD2 genes were targeted for in-frame deletion. During heterotrophic growth on fructose as a carbon and energy source, single deletions of either gene did not produce an observable phenotype. However, when both genes were simultaneously inactivated, final product concentrations in the double mutant shifted to a 1.5:1 ratio of ethanol:acetate, compared to a 0.2:1 ratio observed in the wild type control, making ethanol the dominant fermentation product. Moreover, CO2 re-assimilation was also notably reduced in both hetero- and autotrophic growth conditions. These findings were supported through comparative proteomics, which showed lower expression of carbon monoxide dehydrogenase, formate dehydrogenase A and hydrogenases in the ∆agrD1∆agrD2 double mutant, but higher levels of putative alcohol and aldehyde dehydrogenases and bacterial micro-compartment proteins. These findings suggest that Agr quorum sensing, and by inference, cell density play a role in carbon resource management and use of the Wood-Ljungdahl pathway as an electron sink.
Collapse
Affiliation(s)
- Pawel Piatek
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Christopher Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Mahendra P Raut
- Department of Chemical and Biological Engineering, The ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Phillip C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Sean Simpson
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK.
| |
Collapse
|
119
|
Ting SY, LaCourse KD, Ledvina HE, Zhang R, Radey MC, Kulasekara HD, Somavanshi R, Bertolli SK, Gallagher LA, Kim J, Penewit KM, Salipante SJ, Xu L, Peterson SB, Mougous JD. Discovery of coordinately regulated pathways that provide innate protection against interbacterial antagonism. eLife 2022; 11:74658. [PMID: 35175195 PMCID: PMC8926400 DOI: 10.7554/elife.74658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial survival is fraught with antagonism, including that deriving from viruses and competing bacterial cells. It is now appreciated that bacteria mount complex antiviral responses; however, whether a coordinated defense against bacterial threats is undertaken is not well understood. Previously, we showed that Pseudomonas aeruginosa possess a danger-sensing pathway that is a critical fitness determinant during competition against other bacteria. Here, we conducted genome-wide screens in P. aeruginosa that reveal three conserved and widespread interbacterial antagonism resistance clusters (arc1-3). We find that although arc1-3 are coordinately activated by the Gac/Rsm danger-sensing system, they function independently and provide idiosyncratic defense capabilities, distinguishing them from general stress response pathways. Our findings demonstrate that Arc3 family proteins provide specific protection against phospholipase toxins by preventing the accumulation of lysophospholipids in a manner distinct from previously characterized membrane repair systems. These findings liken the response of P. aeruginosa to bacterial threats to that of eukaryotic innate immunity, wherein threat detection leads to the activation of specialized defense systems.
Collapse
Affiliation(s)
- See-Yeun Ting
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Kaitlyn D LaCourse
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Hannah E Ledvina
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Rutan Zhang
- Department of Medicinal Chemistry, University of Washington School of PharmacySeattleUnited States
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Hemantha D Kulasekara
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Rahul Somavanshi
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Larry A Gallagher
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Jennifer Kim
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Kelsi M Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of MedicineSeattleUnited States
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of MedicineSeattleUnited States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington School of PharmacySeattleUnited States
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States,Department of Biochemistry, University of Washington School of MedicineSeattleUnited States,Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
120
|
Maan H, Povolotsky TL, Porat Z, Itkin M, Malitsky S, Kolodkin-Gal I. Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members. Comput Struct Biotechnol J 2021; 20:15-25. [PMID: 34976308 PMCID: PMC8666610 DOI: 10.1016/j.csbj.2021.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
In nature, bacteria frequently reside in differentiated communities or biofilms. These multicellular communities are held together by self-produced polymers that allow the community members to adhere to the surface as well as to neighbor bacteria. Here, we report that exopolysaccharides prevent Bacillus subtilis from co-aggregating with a distantly related bacterium Bacillus mycoides, while maintaining their role in promoting self-adhesion and co-adhesion with phylogenetically related bacterium, Bacillus atrophaeus. The defensive role of the exopolysaccharides is due to the specific regulation of bacillaene. Single cell analysis of biofilm and free-living bacterial cells using imaging flow cytometry confirmed a specific role for the exopolysaccharides in microbial competition repelling B. mycoides. Unlike exopolysaccharides, the matrix protein TasA induced bacillaene but inhibited the expression of the biosynthetic clusters for surfactin, and therefore its overall effect on microbial competition during floating biofilm formation was neutral. Thus, the exopolysaccharides provide a dual fitness advantage for biofilm-forming cells, as it acts to promote co-aggregation of related species, as well as, a secreted cue for chemical interference with non-compatible partners. These results experimentally demonstrate a general assembly principle of complex communities and provides an appealing explanation for how closely related species are favored during community assembly. Furthermore, the differential regulation of surfactin and bacillaene by the extracellular matrix may explain the spatio-temporal gradients of antibiotic production within biofilms.
Collapse
Affiliation(s)
- Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
121
|
Staphylococcal ClpXP protease targets the cellular antioxidant system to eliminate fitness-compromised cells in stationary phase. Proc Natl Acad Sci U S A 2021; 118:2109671118. [PMID: 34782466 DOI: 10.1073/pnas.2109671118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
The transition from growth to stationary phase is a natural response of bacteria to starvation and stress. When stress is alleviated and more favorable growth conditions return, bacteria resume proliferation without a significant loss in fitness. Although specific adaptations that enhance the persistence and survival of bacteria in stationary phase have been identified, mechanisms that help maintain the competitive fitness potential of nondividing bacterial populations have remained obscure. Here, we demonstrate that staphylococci that enter stationary phase following growth in media supplemented with excess glucose, undergo regulated cell death to maintain the competitive fitness potential of the population. Upon a decrease in extracellular pH, the acetate generated as a byproduct of glucose metabolism induces cytoplasmic acidification and extensive protein damage in nondividing cells. Although cell death ensues, it does not occur as a passive consequence of protein damage. Instead, we demonstrate that the expression and activity of the ClpXP protease is induced, resulting in the degeneration of cellular antioxidant capacity and, ultimately, cell death. Under these conditions, inactivation of either clpX or clpP resulted in the extended survival of unfit cells in stationary phase, but at the cost of maintaining population fitness. Finally, we show that cell death from antibiotics that interfere with bacterial protein synthesis can also be partly ascribed to the corresponding increase in clpP expression and activity. The functional conservation of ClpP in eukaryotes and bacteria suggests that ClpP-dependent cell death and fitness maintenance may be a widespread phenomenon in these domains of life.
Collapse
|
122
|
da Rosa CE, Pinilla CMB, Stincone P, Pereira JQ, Varela APM, Mayer FQ, Brandelli A. Genomic characterization and production of antimicrobial lipopeptides by Bacillus velezensis P45 growing on feather by-products. J Appl Microbiol 2021; 132:2067-2079. [PMID: 34811844 DOI: 10.1111/jam.15363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the potential of novel Bacillus velezensis P45 as an eco-friendly alternative for bioprocessing poultry by-products into valuable antimicrobial products. METHODS AND RESULTS The complete genome of B. velezensis P45 was sequenced using the Illumina MiSeq platform, showing 4455 protein and 98 RNA coding sequences according to the annotation on the RAST server. Moreover, the genome contains eight gene clusters for the production of antimicrobial secondary metabolites and 25 putative protease-related genes, which can be related to feather-degrading activity. Then, in vitro tests were performed to determine the production of antimicrobial compounds using feather, feather meal and brain-heart infusion (BHI) cultures. Antimicrobial activity was observed in feather meal and BHI media, reaching 800 and 3200 AU ml-1 against Listeria monocytogenes respectively. Mass spectrometry analysis indicates the production of antimicrobial lipopeptides surfactin, fengycin and iturin. CONCLUSIONS The biotechnological potential of B. velezensis P45 was deciphered through genome analysis and in vitro studies. This strain produced antimicrobial lipopeptides growing on feather meal, a low-cost substrate. SIGNIFICANCE AND IMPACT OF STUDY The production of antimicrobial peptides by this keratinolytic strain may represent a sustainable alternative for recycling by-products from poultry industry. Furthermore, whole B. velezensis P45 genome sequence was obtained and deposited.
Collapse
Affiliation(s)
- Carolini Esmeriz da Rosa
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Paolo Stincone
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jamile Queiroz Pereira
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Frederico Westphalen, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Brazil
| | - Fabiana Quoos Mayer
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Brazil
| | - Adriano Brandelli
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
123
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
124
|
Falgueras-Cano J, Falgueras-Cano JA, Moya A. A Study of the Coevolution of Digital Organisms with an Evolutionary Cellular Automaton. BIOLOGY 2021; 10:1147. [PMID: 34827140 PMCID: PMC8614957 DOI: 10.3390/biology10111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023]
Abstract
This paper presents an Evolutionary Cellular Automaton (ECA) that simulates the evolutionary dynamics of biological interactions by manipulating strategies of dispersion and associations between digital organisms. The parameterization of the different types of interaction and distribution strategies using configuration files generates easily interpretable results. In that respect, ECA is an effective instrument for measuring the effects of relative adaptive advantages and a good resource for studying natural selection. Although ECA works effectively in obtaining the expected results from most well-known biological interactions, some unexpected effects were observed. For example, organisms uniformly distributed in fragmented habitats do not favor eusociality, and mutualism evolved from parasitism simply by varying phenotypic flexibility. Finally, we have verified that natural selection represents a cost for the emergence of sex by destabilizing the stable evolutionary strategy of the 1:1 sex ratio after generating randomly different distributions in each generation.
Collapse
Affiliation(s)
- Javier Falgueras-Cano
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, 46980 Valencia, Spain
| | | | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, 46980 Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), 46020 Valencia, Spain
- Biomedical Research Centre Network of Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| |
Collapse
|
125
|
Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Balikova Novotna G. Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis. mBio 2021; 12:e0173121. [PMID: 34488446 PMCID: PMC8546547 DOI: 10.1128/mbio.01731-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.
Collapse
Affiliation(s)
- Marketa Koberska
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ludmila Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Charles University in Prague, Faculty of Science, Department of Genetics and Microbiology, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jakub Lenart
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
126
|
Ramdass AC, Rampersad SN. Molecular signatures of Janthinobacterium lividum from Trinidad support high potential for crude oil metabolism. BMC Microbiol 2021; 21:287. [PMID: 34670489 PMCID: PMC8527658 DOI: 10.1186/s12866-021-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Janthinobacterium lividum is considered to be a psychrotrophic bacterial species. For the first time in the literature, J. lividum strains were isolated from Trinidad presenting with atypical features - hydrocarbonoclastic and able to survive in a tropical environment. Methods Identification of the Trinidad strains was carried out through 16S rRNA phylogenetic analysis. Gene-specific primers were designed to target the VioA which encodes violacein pigment and the EstA/B gene which encodes secreted extracellular lipase. Bioinformatics analyses were carried out on the nucleotide and amino acid sequences of VioA and EstA/B genes of the Trinidad Janthinobacterium strains to assess functionality and phylogenetic relatedness to other Janthinobacterium sequences specifically and more broadly, to other members of the Oxalobacteraceae family of betaproteobacteria. Results 16S rRNA confirmed the identity of the Trinidad strains as J. lividum and resolved three of the Trinidad strains at the intra-specific level. Typical motility patterns of this species were recorded. VioAp sequences were highly conserved, however, synonymous substitutions located outside of the critical sites for enzyme function were detected for the Trinidad strains. Comparisons with PDB 6g2p model from aa231 to aa406 further indicated no functional disruption of the VioA gene of the Trinidad strains. Phylogeny of the VioA protein sequences inferred placement of all J. lividum taxa into a highly supported species-specific clade (bs = 98%). EstA/Bp sequences were highly conserved, however, synonymous substitutions were detected that were unique to the Trinidad strains. Phylogenetic inference positioned the Trinidad consensus VioA and EstA protein sequences in a clearly distinct branch. Conclusions The findings showed that the primary sequence of VioAp and EstA/Bp were unique to the Trinidad strains and these molecular signatures were reflected in phylogenetic inference. Our results supported chemotaxis, possible elective inactivation of VioA gene expression and secreted lipase activity as survival mechanisms of the Trinidad strains in petrogenic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02346-4.
Collapse
Affiliation(s)
- Amanda C Ramdass
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sephra N Rampersad
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
127
|
Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 2021; 33:108259. [PMID: 33053336 DOI: 10.1016/j.celrep.2020.108259] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.
Collapse
|
128
|
Baggio G, Groves RA, Chignola R, Piacenza E, Presentato A, Lewis IA, Lampis S, Vallini G, Turner RJ. Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SeITE01. Front Microbiol 2021; 12:711000. [PMID: 34603239 PMCID: PMC8481872 DOI: 10.3389/fmicb.2021.711000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite (SeO 3 2 - ) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect ofSeO 3 2 - exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not withSeO 3 2 - . The results show substantial biochemical changes in SeITE01 cells when exposed toSeO 3 2 - . The initial uptake ofSeO 3 2 - by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms againstSeO 3 2 - are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification ofSeO 3 2 - to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells fromSeO 3 2 - toxicity while it is converting into SeNPs.
Collapse
Affiliation(s)
- Greta Baggio
- Department of Biotechnology, University of Verona, Verona, Italy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ryan A. Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
129
|
Bejarano A, Perazzolli M, Pertot I, Puopolo G. The Perception of Rhizosphere Bacterial Communication Signals Leads to Transcriptome Reprogramming in Lysobacter capsici AZ78, a Plant Beneficial Bacterium. Front Microbiol 2021; 12:725403. [PMID: 34489914 PMCID: PMC8416617 DOI: 10.3389/fmicb.2021.725403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
The rhizosphere is a dynamic region governed by complex microbial interactions where diffusible communication signals produced by bacteria continuously shape the gene expression patterns of individual species and regulate fundamental traits for adaptation to the rhizosphere environment. Lysobacter spp. are common bacterial inhabitants of the rhizosphere and have been frequently associated with soil disease suppressiveness. However, little is known about their ecology and how diffusible communication signals might affect their behavior in the rhizosphere. To shed light on the aspects determining rhizosphere competence and functioning of Lysobacter spp., we carried out a functional and transcriptome analysis on the plant beneficial bacterium Lysobacter capsici AZ78 (AZ78) grown in the presence of the most common diffusible communication signals released by rhizosphere bacteria. Mining the genome of AZ78 and other Lysobacter spp. showed that Lysobacter spp. share genes involved in the production and perception of diffusible signal factors, indole, diffusible factors, and N-acyl-homoserine lactones. Most of the tested diffusible communication signals (i.e., indole and glyoxylic acid) influenced the ability of AZ78 to inhibit the growth of the phytopathogenic oomycete Pythium ultimum and the Gram-positive bacterium Rhodococcus fascians. Moreover, RNA-Seq analysis revealed that nearly 21% of all genes in AZ78 genome were modulated by diffusible communication signals. 13-Methyltetradecanoic acid, glyoxylic acid, and 2,3-butanedione positively influenced the expression of genes related to type IV pilus, which might enable AZ78 to rapidly colonize the rhizosphere. Moreover, glyoxylic acid and 2,3-butanedione downregulated tRNA genes, possibly as a result of the elicitation of biological stress responses. On its behalf, indole downregulated genes related to type IV pilus and the heat-stable antifungal factor, which might result in impairment of twitching motility and antibiotic production in AZ78. These results show that diffusible communication signals may affect the ecology of Lysobacter spp. in the rhizosphere and suggest that diffusible communication signals might be used to foster rhizosphere colonization and functioning of plant beneficial bacteria belonging to the genus Lysobacter.
Collapse
Affiliation(s)
- Ana Bejarano
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
130
|
Niehus R, Oliveira NM, Li A, Fletcher AG, Foster KR. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. eLife 2021; 10:69756. [PMID: 34488940 PMCID: PMC8423443 DOI: 10.7554/elife.69756] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/01/2021] [Indexed: 12/21/2022] Open
Abstract
Bacteria inhibit and kill one another with a diverse array of compounds, including bacteriocins and antibiotics. These attacks are highly regulated, but we lack a clear understanding of the evolutionary logic underlying this regulation. Here, we combine a detailed dynamic model of bacterial competition with evolutionary game theory to study the rules of bacterial warfare. We model a large range of possible combat strategies based upon the molecular biology of bacterial regulatory networks. Our model predicts that regulated strategies, which use quorum sensing or stress responses to regulate toxin production, will readily evolve as they outcompete constitutive toxin production. Amongst regulated strategies, we show that a particularly successful strategy is to upregulate toxin production in response to an incoming competitor’s toxin, which can be achieved via stress responses that detect cell damage (competition sensing). Mirroring classical game theory, our work suggests a fundamental advantage to reciprocation. However, in contrast to classical results, we argue that reciprocation in bacteria serves not to promote peaceful outcomes but to enable efficient and effective attacks.
Collapse
Affiliation(s)
- Rene Niehus
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Harvard University, Boston, United States
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China.,Institue for Artificial Intelligence, Peking University, Beijing, China
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
131
|
Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 2021; 19:600-614. [PMID: 33824496 DOI: 10.1038/s41579-021-00540-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 02/03/2023]
Abstract
Biofilm formation is a process in which microbial cells aggregate to form collectives that are embedded in a self-produced extracellular matrix. Bacillus subtilis is a Gram-positive bacterium that is used to dissect the mechanisms controlling matrix production and the subsequent transition from a motile planktonic cell state to a sessile biofilm state. The collective nature of life in a biofilm allows emergent properties to manifest, and B. subtilis biofilms are linked with novel industrial uses as well as probiotic and biocontrol processes. In this Review, we outline the molecular details of the biofilm matrix and the regulatory pathways and external factors that control its production. We explore the beneficial outcomes associated with biofilms. Finally, we highlight major advances in our understanding of concepts of microbial evolution and community behaviour that have resulted from studies of the innate heterogeneity of biofilms.
Collapse
Affiliation(s)
- Sofia Arnaouteli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Natalie C Bamford
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
132
|
Tabraiz S, Petropoulos E, Shamurad B, Quintela-Baluja M, Mohapatra S, Acharya K, Charlton A, Davenport RJ, Dolfing J, Sallis PJ. Temperature and immigration effects on quorum sensing in the biofilms of anaerobic membrane bioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112947. [PMID: 34289594 DOI: 10.1016/j.jenvman.2021.112947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Quorum sensing (QS), a microbial communication mechanism modulated by acyl homoserine lactone (AHL) molecules impacts biofilm formation in bioreactors. This study investigated the effects of temperature and immigration on AHL levels and biofouling in anaerobic membrane bioreactors. The hypothesis was that the immigrant microbial community would increase the AHL-mediated QS, thus stimulating biofouling and that low temperatures would exacerbate this. We observed that presence of immigrants, especially when exposed to low temperatures indeed increased AHL concentrations and fouling in the biofilms on the membranes. At low temperature, the concentrations of the main AHLs observed, N-dodecanoyl-L-homoserine lactone and N-decanoyl-L-homoserine lactone, were significantly higher in the biofilms than in the sludge and correlated significantly with the abundance of immigrant bacteria. Apparently low temperature, immigration and denser community structure in the biofilm stressed the communities, triggering AHL production and excretion. These insights into the social behaviour of reactor communities responding to low temperature and influx of immigrants have implications for biofouling control in bioreactors.
Collapse
Affiliation(s)
- Shamas Tabraiz
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK; School of Natural and Applied Sciences, Canterbury Christ Church University, CT1 1QU, UK.
| | | | - Burhan Shamurad
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| | | | - Sanjeeb Mohapatra
- Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| | - Alex Charlton
- School of Natural and Environmental Sciences, Newcastle University, UK
| | | | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8QH, UK
| | - Paul J Sallis
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| |
Collapse
|
133
|
Niggli S, Wechsler T, Kümmerli R. Single-Cell Imaging Reveals That Staphylococcus aureus Is Highly Competitive Against Pseudomonas aeruginosa on Surfaces. Front Cell Infect Microbiol 2021; 11:733991. [PMID: 34513736 PMCID: PMC8426923 DOI: 10.3389/fcimb.2021.733991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus frequently occur together in polymicrobial infections, and their interactions can complicate disease progression and treatment options. While interactions between P. aeruginosa and S. aureus have been extensively described using planktonic batch cultures, little is known about whether and how individual cells interact with each other on solid substrates. This is important because both species frequently colonize surfaces to form aggregates and biofilms in infections. Here, we performed single-cell time-lapse fluorescence microscopy, combined with automated image analysis, to describe interactions between P. aeruginosa PAO1 with three different S. aureus strains (Cowan I, 6850, JE2) during microcolony growth on agarose surfaces. While P. aeruginosa is usually considered the dominant species, we found that the competitive balance tips in favor of S. aureus on surfaces. We observed that all S. aureus strains accelerated the onset of microcolony growth in competition with P. aeruginosa and significantly compromised P. aeruginosa growth prior to physical contact. Upon direct contact, JE2 was the most competitive S. aureus strain, simply usurping P. aeruginosa microcolonies, while 6850 was the weakest competitor itself suppressed by P. aeruginosa. Moreover, P. aeruginosa reacted to the assault of S. aureus by showing increased directional growth and expedited expression of quorum sensing regulators controlling the synthesis of competitive traits. Altogether, our results reveal that quantitative single-cell live imaging has the potential to uncover microbial behaviors that cannot be predicted from batch culture studies, and thereby contribute to our understanding of interactions between pathogens that co-colonize host-associated surfaces during polymicrobial infections.
Collapse
Affiliation(s)
- Selina Niggli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
134
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
135
|
Kern L, Abdeen SK, Kolodziejczyk AA, Elinav E. Commensal inter-bacterial interactions shaping the microbiota. Curr Opin Microbiol 2021; 63:158-171. [PMID: 34365152 DOI: 10.1016/j.mib.2021.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiota, a complex ecosystem of microorganisms of different kingdoms, impacts host physiology and disease. Within this ecosystem, inter-bacterial interactions and their impacts on microbiota community structure and the eukaryotic host remain insufficiently explored. Microbiota-related inter-bacterial interactions range from symbiotic interactions, involving exchange of nutrients, enzymes, and genetic material; competition for nutrients and space, mediated by biophysical alterations and secretion of toxins and anti-microbials; to predation of overpopulating bacteria. Collectively, these understudied interactions hold important clues as to forces shaping microbiota diversity, niche formation, and responses to signals perceived from the host, incoming pathogens and the environment. In this review, we highlight the roles and mechanisms of selected inter-bacterial interactions in the microbiota, and their potential impacts on the host and pathogenic infection. We discuss challenges in mechanistically decoding these complex interactions, and prospects of harnessing them as future targets for rational microbiota modification in a variety of diseases.
Collapse
Affiliation(s)
- Lara Kern
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Suhaib K Abdeen
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel; Cancer-Microbiota Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
136
|
Yan B, Liu N, Liu M, Du X, Shang F, Huang Y. Soil actinobacteria tend to have neutral interactions with other co-occurring microorganisms, especially under oligotrophic conditions. Environ Microbiol 2021; 23:4126-4140. [PMID: 33760351 DOI: 10.1111/1462-2920.15483] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/23/2021] [Indexed: 01/07/2023]
Abstract
Actinobacteria produce a variety of secondary metabolites that can influence the survival or behaviour of other organisms. The understanding of the ecological roles of actinobacteria has significantly improved in the past decades, but a systematic insight into the interactions between actinobacteria and other microbes in nature is warranted. Here, we studied the pairwise effects of actinobacteria on other microbes isolated from red soils under different nutritional conditions. We found that neutral effects dominated the interactions, accounting for 68.1% of the interactions in eutrophic conditions and for a significantly higher proportion (86.2%) in oligotrophic conditions. High nutrient levels boosted active metabolism of actinobacteria and generally made them more aggressive, supporting the stress gradient hypothesis. The secondary metabolites produced by actinobacteria played a pivotal role in interference competition with other microbes, of which the role of desferrioxamine siderophores could not be ignored. Niche overlap seemed to be another cause of competition, notably under oligotrophic conditions. Moreover, the large-scale phylogeny had a much greater impact on the interaction than the location origin of the microbes. These results provide an understanding of the coexistence of actinobacteria with other microbes in nature and suggest neutrality as a key mechanism for maintaining microbial diversity in soils.
Collapse
Affiliation(s)
- Bingfa Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueyuan Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Shang
- Analytical and Testing Center, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
137
|
Molina-Santiago C, Vela-Corcía D, Petras D, Díaz-Martínez L, Pérez-Lorente AI, Sopeña-Torres S, Pearson J, Caraballo-Rodríguez AM, Dorrestein PC, de Vicente A, Romero D. Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Rep 2021; 36:109449. [PMID: 34320359 PMCID: PMC8333196 DOI: 10.1016/j.celrep.2021.109449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are in a continuous adaptive and evolutionary race for survival. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PCL1606 and Bacillus amyloliquefaciens FZB42. We reveal that the bacteriostatic activity of bacillaene produced by Bacillus relies on an interaction with the protein elongation factor FusA of P. chlororaphis and how mutations in this protein lead to tolerance to bacillaene and other protein translation inhibitors. Additionally, we describe how the unspecific tolerance of B. amyloliquefaciens to antimicrobials associated with mutations in the glycerol kinase GlpK is provoked by a decrease of Bacillus cell membrane permeability, among other pleiotropic responses. We conclude that nutrient specialization and mutations in basic biological functions are bacterial adaptive dynamics that lead to the coexistence of two primary competitive bacterial species rather than their mutual eradication. Bacillus and Pseudomonas interaction ranges from antagonism to co-existence Bacillaene from Bacillus is a bacteriostatic that targets FusA of Pseudomonas GlpK mutations in Bacillus confer unspecific antimicrobial resistance
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Daniel Petras
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA; University of California San Diego, Collaborative Mass Spectrometry Innovation Center, La Jolla, CA, USA
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Alicia Isabel Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Sara Sopeña-Torres
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - John Pearson
- Nano-imaging Unit, Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Málaga, Spain
| | | | - Pieter C Dorrestein
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, La Jolla, CA, USA
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain.
| |
Collapse
|
138
|
Matthews A, Majeed A, Barraclough TG, Raymond B. Function is a better predictor of plant rhizosphere community membership than 16S phylogeny. Environ Microbiol 2021; 23:6089-6103. [PMID: 34190398 DOI: 10.1111/1462-2920.15652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Rhizobacterial communities are important for plant health but we still have limited understanding of how they are constructed or how they can be manipulated. High-throughput 16S rRNA sequencing provides good information on taxonomic composition but remains an unreliable proxy for phenotypes. In this study, we tested the hypothesis that experimentally observed functional traits would be better predictors of community membership than phylogenetic origin. To test this hypothesis, we sampled communities on four plant species grown in two soil types and characterized 593 bacterial isolates in terms of antibiotic susceptibility, carbon metabolism, resource use and plant growth-promoting traits. In support of our hypothesis we found that three of the four plant species had phylogenetically diverse, but functionally constrained communities. Notably, communities did not grow best on complex media mimicking their host of origin but were distinguished by variation in overall growth characteristics (copiotrophy/oligotrophy) and antibiotic susceptibility. These data, combined with variation in phylogenetic structure, suggest that different classes of traits (antagonistic competition or resource-based) are more important in different communities. This culture-based approach supports and complements the findings of a previous high-throughput 16S rRNA analysis of this experiment and provides functional insights into the patterns observed with culture-independent methods.
Collapse
Affiliation(s)
- Andrew Matthews
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | | | - Ben Raymond
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
139
|
Clocchiatti A, Hannula SE, Rizaludin MS, Hundscheid MPJ, klein Gunnewiek PJA, Schilder MT, Postma J, de Boer W. Impact of Cellulose-Rich Organic Soil Amendments on Growth Dynamics and Pathogenicity of Rhizoctonia solani. Microorganisms 2021; 9:microorganisms9061285. [PMID: 34204724 PMCID: PMC8231496 DOI: 10.3390/microorganisms9061285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Cellulose-rich amendments stimulate saprotrophic fungi in arable soils. This may increase competitive and antagonistic interactions with root-infecting pathogenic fungi, resulting in lower disease incidence. However, cellulose-rich amendments may also stimulate pathogenic fungi with saprotrophic abilities, thereby increasing plant disease severity. The current study explores these scenarios, with a focus on the pathogenic fungus Rhizoctonia solani. Saprotrophic growth of R. solani on cellulose-rich materials was tested in vitro. This confirmed paper pulp as a highly suitable substrate for R. solani, whereas its performance on wood sawdusts varied with tree species. In two pot experiments, the effects of amendment of R. solani-infected soil with cellulose-rich materials on performance of beetroot seedlings were tested. All deciduous sawdusts and paper pulp stimulated soil fungal biomass, but only oak, elder and beech sawdusts reduced damping-off of beetroot. Oak sawdust amendment gave a consistent stimulation of saprotrophic Sordariomycetes fungi and of seedling performance, independently of the time between amendment and sowing. In contrast, paper pulp caused a short-term increase in R. solani abundance, coinciding with increased disease severity for beet seedlings sown immediately after amendment. However, damping-off of beetroot was reduced if plants were sown two or four weeks after paper pulp amendment. Cellulolytic bacteria, including Cytophagaceae, responded to paper pulp during the first two weeks and may have counteracted further spread of R. solani. The results showed that fungus-stimulating, cellulose-rich amendments have potential to be used for suppression of R. solani. However, such amendments require a careful consideration of material choice and application strategy.
Collapse
Affiliation(s)
- Anna Clocchiatti
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
- Correspondence: (A.C.); (W.d.B.)
| | - Silja Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands;
| | - Muhammad Syamsu Rizaludin
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Paulien J. A. klein Gunnewiek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Mirjam T. Schilder
- Biointeractions and Plant Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (M.T.S.); (J.P.)
| | - Joeke Postma
- Biointeractions and Plant Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (M.T.S.); (J.P.)
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
- Soil Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Correspondence: (A.C.); (W.d.B.)
| |
Collapse
|
140
|
Zandbergen LE, Halverson T, Brons JK, Wolfe AJ, de Vos MGJ. The Good and the Bad: Ecological Interaction Measurements Between the Urinary Microbiota and Uropathogens. Front Microbiol 2021; 12:659450. [PMID: 34040594 PMCID: PMC8141646 DOI: 10.3389/fmicb.2021.659450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 01/16/2023] Open
Abstract
The human body harbors numerous populations of microorganisms in various ecological niches. Some of these microbial niches, such as the human gut and the respiratory system, are well studied. One system that has been understudied is the urinary tract, primarily because it has been considered sterile in the absence of infection. Thanks to modern sequencing and enhanced culture techniques, it is now known that a urinary microbiota exists. The implication is that these species live as communities in the urinary tract, forming microbial ecosystems. However, the interactions between species in such an ecosystem remains unknown. Various studies in different parts of the human body have highlighted the ability of the pre-existing microbiota to alter the course of infection by impacting the pathogenicity of bacteria either directly or indirectly. For the urinary tract, the effect of the resident microbiota on uropathogens and the phenotypic microbial interactions is largely unknown. No studies have yet measured the response of uropathogens to the resident urinary bacteria. In this study, we investigate the interactions between uropathogens, isolated from elderly individuals suffering from UTIs, and bacteria isolated from the urinary tract of asymptomatic individuals using growth measurements in conditioned media. We observed that bacteria isolated from individuals with UTI-like symptoms and bacteria isolated from asymptomatic individuals can affect each other's growth; for example, bacteria isolated from symptomatic individuals affect the growth of bacteria isolated from asymptomatic individuals more negatively than vice versa. Additionally, we show that Gram-positive bacteria alter the growth characteristics differently compared to Gram-negative bacteria. Our results are an early step in elucidating the role of microbial interactions in urinary microbial ecosystems that harbor both uropathogens and pre-existing microbiota.
Collapse
Affiliation(s)
- Laurens E. Zandbergen
- Microbial Eco-Evolutionary Medicine Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Thomas Halverson
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, United States
| | - Jolanda K. Brons
- Microbial Eco-Evolutionary Medicine Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, United States
| | - Marjon G. J. de Vos
- Microbial Eco-Evolutionary Medicine Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
141
|
Buijs Y, Zhang SD, Jørgensen KM, Isbrandt T, Larsen TO, Gram L. Enhancement of antibiotic production by co-cultivation of two antibiotic producing marine Vibrionaceae strains. FEMS Microbiol Ecol 2021; 97:6164864. [PMID: 33693627 DOI: 10.1093/femsec/fiab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/05/2021] [Indexed: 01/07/2023] Open
Abstract
Deciphering the cues that stimulate microorganisms to produce their full secondary metabolic potential promises to speed up the discovery of novel drugs. Ecology-relevant conditions, including carbon-source(s) and microbial interactions, are important effectors of secondary metabolite production. Vice versa secondary metabolites are important mediators in microbial interactions, although their exact natural functions are not always completely understood. In this study, we investigated the effects of microbial interactions and in-culture produced antibiotics on the production of secondary metabolites by Vibrio coralliilyticus and Photobacterium galatheae, two co-occurring marine Vibrionaceae. In co-culture, production of andrimid by V. coralliilyticus and holomycin by P. galatheae, were, compared to monocultures, increased 4.3 and 2.7 fold, respectively. Co-cultures with the antibiotic deficient mutant strains (andrimid- and holomycin-) did not reveal a significant role for the competitor's antibiotic as stimulator of own secondary metabolite production. Furthermore, we observed that V. coralliilyticus detoxifies holomycin by sulphur-methylation. Results presented here indicate that ecological competition in Vibrionaceae is mediated by, and a cue for, antibiotic secondary metabolite production.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Karen Marie Jørgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Thomas Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
142
|
Zhao X, Illing R, Ruelens P, Bachmann M, Cuniberti G, de Visser JAGM, Baraban L. Coexistence of fluorescent Escherichia coli strains in millifluidic droplet reactors. LAB ON A CHIP 2021; 21:1492-1502. [PMID: 33881032 DOI: 10.1039/d0lc01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding competition and cooperation within microbiota is of high fundamental and clinical importance, helping to comprehend species' evolution and biodiversity. We co-encapsulated and cultured two isogenic Escherichia coli strains expressing blue (BFP) and yellow (YFP) fluorescent proteins into numerous emulsion droplets and quantified their growth by employing fluorescence measurements. To characterize and compare the bacterial growth kinetics and behavior in mono and co-culture, we compared the experimental observations with predictions from a simple growth model. Varying the initial ratio (R0) of both cell types injected, we observed a broad landscape from competition to cooperation between both strains in their confined microenvironments depending on start frequency: from a nearly symmetric situation at R0 = 1, up to the domination of one subpopulation when R0 ≫ 1 (or R0 ≪ 1). Due to competition between the strains, their doubling times and final biomass ratios (R1) continuously deviate from the monoculture behavior. The correlation map of the two strains' doubling times reveals that the R0 is one of the critical parameters affecting the competitive interaction between isogenic bacterial strains. Thanks to this strategy, different species of bacteria can be monitored simultaneously in real-time. Further advantages include high statistical output, unaffected bacteria growth, and long-time measurements in a well-mixed environment. We expect that the millifluidic droplet-based reactor can be utilized for practical clinical applications, such as bacterial antibiotic resistance and enzyme reaction kinetics studies.
Collapse
Affiliation(s)
- Xinne Zhao
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Rico Illing
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Philip Ruelens
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - J Arjan G M de Visser
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Larysa Baraban
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
143
|
Khare A. Experimental systems biology approaches reveal interaction mechanisms in model multispecies communities. Trends Microbiol 2021; 29:1083-1094. [PMID: 33865676 DOI: 10.1016/j.tim.2021.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/29/2022]
Abstract
Interactions between microorganisms in multispecies communities are thought to have substantial consequences for the community. Identifying the molecules and genetic pathways that contribute to such interplay is thus crucial to understand as well as modulate community dynamics. Here I focus on recent studies that utilize experimental systems biology techniques to study these phenomena in simplified model microbial communities. These unbiased biochemical and genomic approaches have identified novel interactions and described the underlying genetic and molecular mechanisms. I discuss the insights provided by these studies, describe innovative strategies used to investigate less tractable organisms and environments, and highlight the utility of integrating these and more targeted methods to comprehensively characterize interactions between species in microbial communities.
Collapse
Affiliation(s)
- Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
144
|
de Dios R, Santero E, Reyes-Ramírez F. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. Int J Mol Sci 2021; 22:ijms22083900. [PMID: 33918849 PMCID: PMC8103513 DOI: 10.3390/ijms22083900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity. Here, we have clustered 55 ECF groups with experimentally studied representatives into two broad classes of stress responses. The remaining 102 groups still lack any mechanistic or functional insight, representing a myriad of systems yet to explore. In this work, we review the main features of ECFs and discuss the different mechanisms controlling their production and activity, and how they lead to a functional stress response. Finally, we focus in more detail on two well-characterized ECFs, for which the mechanisms to detect and respond to stress are complex and completely different: Escherichia coli RpoE, which is the best characterized ECF and whose structural and functional studies have provided key insights into the transcription initiation by ECF-RNAP holoenzymes, and the ECF15-type EcfG, the master regulator of the general stress response in Alphaproteobacteria.
Collapse
|
145
|
Li J, Chen X, Lin J, Yuan Y, Huang T, Du L, Prithiviraj B, Zhang A, Wang X, Chu Y, Zhao K. Antibiotic intervention redisposes bacterial interspecific interacting dynamics in competitive environments. Environ Microbiol 2021; 23:7432-7444. [PMID: 33723911 DOI: 10.1111/1462-2920.15461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Interspecific interaction happens frequently among bacterial species and can promote the colonization of polymicrobial community in various environments. However, it is not clear whether the intervention of antibiotics, which is a common therapeutic method for infectious disease, will influence the interacting dynamics of different pathogenic bacteria. By using the frequently co-isolated bacteria Pseudomonas aeruginosa and Staphylococcus aureus as models, here we identify an antibiotic-determined mutual invasion relationship between bacterial pathogens. We show that although P. aeruginosa has a significant intrinsic competitive advantage over S. aureus by producing the quorum-sensing (QS)-controlled anti-staphylococcal molecules, methicillin-resistant S. aureus (MRSA) can inhibit neighbouring P. aeruginosa in the presence of subinhibitory aminoglycoside antibiotics (e.g. streptomycin) to P. aeruginosa. Importantly, subinhibitory streptomycin decreases the expression of QS-regulated genes in P. aeruginosa and thus relieves the survival stress of MRSA brought by P. aeruginosa. On the other side, the iron-uptake systems and pathogenicity of MRSA can be enhanced by the extracellular products of streptomycin-treated P. aeruginosa. Therefore, this study provides an explanation for the substitution of dominant species and persistent coexistence of bacterial pathogens in the host with repeated antibiotic therapies and contributes to further understanding the pathogenesis of chronic polymicrobial infections.
Collapse
Affiliation(s)
- Jing Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Aixue Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
146
|
Abstract
Bacteria secrete antibiotics to inhibit their competitors, but the presence of competitors can determine whether these toxins are produced. Here, we study the role of the competitive and resource environment on antibiotic production in Streptomyces, bacteria renowned for their production of antibiotics. One of the most important ways that bacteria compete for resources and space is by producing antibiotics that inhibit competitors. Because antibiotic production is costly, the biosynthetic gene clusters coordinating their synthesis are under strict regulatory control and often require “elicitors” to induce expression, including cues from competing strains. Although these cues are common, they are not produced by all competitors, and so the phenotypes causing induction remain unknown. By studying interactions between 24 antibiotic-producing strains of streptomycetes, we show that strains commonly inhibit each other’s growth and that this occurs more frequently if strains are closely related. Next, we show that antibiotic production is more likely to be induced by cues from strains that are closely related or that share secondary metabolite biosynthetic gene clusters (BGCs). Unexpectedly, antibiotic production is less likely to be induced by competitors that inhibit the growth of a focal strain, indicating that cell damage is not a general cue for induction. In addition to induction, antibiotic production often decreases in the presence of a competitor, although this response was not associated with genetic relatedness or overlap in BGCs. Finally, we show that resource limitation increases the chance that antibiotic production declines during competition. Our results reveal the importance of social cues and resource availability in the dynamics of interference competition in streptomycetes.
Collapse
|
147
|
Doekes HM, Mulder GA, Hermsen R. Repeated outbreaks drive the evolution of bacteriophage communication. eLife 2021; 10:58410. [PMID: 33459590 PMCID: PMC7935489 DOI: 10.7554/elife.58410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, a small-molecule communication mechanism was discovered in a range of Bacillus-infecting bacteriophages, which these temperate phages use to inform their lysis-lysogeny decision. We present a mathematical model of the ecological and evolutionary dynamics of such viral communication and show that a communication strategy in which phages use the lytic cycle early in an outbreak (when susceptible host cells are abundant) but switch to the lysogenic cycle later (when susceptible cells become scarce) is favoured over a bet-hedging strategy in which cells are lysogenised with constant probability. However, such phage communication can evolve only if phage-bacteria populations are regularly perturbed away from their equilibrium state, so that acute outbreaks of phage infections in pools of susceptible cells continue to occur. Our model then predicts the selection of phages that switch infection strategy when half of the available susceptible cells have been infected. Bacteriophages, or phages for short, are viruses that need to infect bacteria to multiply. Once inside a cell, phages follow one of two strategies. They either start to replicate quickly, killing the host in the process; or they lay dormant, their genetic material slowly duplicating as the bacterium divides. These two strategies are respectively known as a ‘lytic’ or a ‘lysogenic’ infection. In 2017, scientists discovered that, during infection, some phages produce a signalling molecule that influences the strategy other phages will use. Generally, a high concentration of the signal triggers lysogenic infection, while a low level prompts the lytic type. However, it is still unclear what advantages this communication system brings to the viruses, and how it has evolved. Here, Doekes et al. used a mathematical model to explore how communication changes as phages infect a population of bacteria, rigorously testing earlier theories. The simulations showed that early in an outbreak, when only a few cells have yet been infected, the signalling molecule levels are low: lytic infections are therefore triggered and the phages quickly multiply, killing their hosts in the process. This is an advantageous strategy since many bacteria are available for the viruses to prey on. Later on, as more phages are being produced and available bacteria become few and far between, the levels of the signalling molecule increase. The viruses then switch to lysogenic infections, which allows them to survive dormant, inside their host. Doekes et al. also discovered that this communication system only evolves if phages regularly cause large outbreaks in new, uninfected bacterial populations. From there, the model was able to predict that phages switch from lytic to lysogenic infections when about half the available bacteria have been infected. As antibiotic resistance rises around the globe, phages are increasingly considered as a new way to fight off harmful bacteria. Deciphering the way these viruses communicate could help to understand how they could be harnessed to control the spread of bacteria.
Collapse
Affiliation(s)
- Hilje M Doekes
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Glenn A Mulder
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Rutger Hermsen
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
148
|
Gkerekou MA, Athanaseli KG, Kapetanakou AE, Drosinos EH, Skandamis PN. Εvaluation of oxygen availability on growth and inter-strain interactions of L. monocytogenes in/on liquid, semi-solid and solid laboratory media. Int J Food Microbiol 2021; 341:109052. [PMID: 33515814 DOI: 10.1016/j.ijfoodmicro.2021.109052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The coexistence and interactions among Listeria monocytogenes strains in combination with the structural characteristics of foods, may influence their growth capacity and thus, the final levels at the time of consumption. In the present study, we aimed to evaluate the effect of oxygen availability in combination with substrate micro-structure on growth and inter-strain interactions of L. monocytogenes. L. monocytogenes strains, selected for resistance to different antibiotics (to enable distinct enumeration), belonging to serotypes 4b (C5, ScottA), 1/2a (6179) and 1/2b (PL25) and were inoculated in liquid (Tryptic Soy Broth supplemented with Yeast Extract - TSB-YE) and solid (TSB-YE supplemented with 0.6% and 1.2% agar) media (2-3 log CFU/mL, g or cm2), single or as two-strain cultures (1:1 strain-ratio). Aerobic conditions (A) were achieved with constant shaking or surface inoculation for liquid and solid media respectively, while static incubation or pour plated media corresponded to hypoxic environment (H). Anoxic conditions (An) were attained by adding 0.1% w/v sodium thioglycolate and paraffin overlay (for solid media). Growth was assessed during storage at 7 °C (n = 3 × 2). Inter-strain interactions were manifested by the difference in the final population between singly and co-cultured strains. Τhe extent of suppression increased with reduction in agar concentration, while the impact of oxygen availability was dependent on strain combination. During co-culture, in liquid and solid media, 6179 was suppressed by C5 by 4.0 (in TSB-YE under H) to 1.8 log units (in solid medium under An), compared to the single culture, which attained population of ca. 9.4 log CFU/mL or g. The growth of 6179 was also inhibited by ScottA by 2.7 and 1.9 log units, in liquid culture under H and An, respectively. Interestingly, in liquid medium under A, H and An, ScottA was suppressed by C5, by 3.3, 2.4 and 2.3 log units, respectively, while in solid media, growth inhibition was less pronounced. Investigating growth interactions in different environments could assist in explaining the dominance of L. monocytogenes certain serotypes.
Collapse
Affiliation(s)
- Maria A Gkerekou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Konstantina G Athanaseli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Anastasia E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece.
| |
Collapse
|
149
|
McGill SL, Yung Y, Hunt KA, Henson MA, Hanley L, Carlson RP. Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy. Sci Rep 2021; 11:1457. [PMID: 33446818 PMCID: PMC7809481 DOI: 10.1038/s41598-020-80522-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a globally-distributed bacterium often found in medical infections. The opportunistic pathogen uses a different, carbon catabolite repression (CCR) strategy than many, model microorganisms. It does not utilize a classic diauxie phenotype, nor does it follow common systems biology assumptions including preferential consumption of glucose with an 'overflow' metabolism. Despite these contradictions, P. aeruginosa is competitive in many, disparate environments underscoring knowledge gaps in microbial ecology and systems biology. Physiological, omics, and in silico analyses were used to quantify the P. aeruginosa CCR strategy known as 'reverse diauxie'. An ecological basis of reverse diauxie was identified using a genome-scale, metabolic model interrogated with in vitro omics data. Reverse diauxie preference for lower energy, nonfermentable carbon sources, such as acetate or succinate over glucose, was predicted using a multidimensional strategy which minimized resource investment into central metabolism while completely oxidizing substrates. Application of a common, in silico optimization criterion, which maximizes growth rate, did not predict the reverse diauxie phenotypes. This study quantifies P. aeruginosa metabolic strategies foundational to its wide distribution and virulence including its potentially, mutualistic interactions with microorganisms found commonly in the environment and in medical infections.
Collapse
Affiliation(s)
- S Lee McGill
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Yeni Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kristopher A Hunt
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Michael A Henson
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
150
|
Qi SS, Bogdanov A, Cnockaert M, Acar T, Ranty-Roby S, Coenye T, Vandamme P, König GM, Crüsemann M, Carlier A. Induction of antibiotic specialized metabolism by co-culturing in a collection of phyllosphere bacteria. Environ Microbiol 2021; 23:2132-2151. [PMID: 33393154 DOI: 10.1111/1462-2920.15382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023]
Abstract
A diverse set of bacteria live on the above-ground parts of plants, composing the phyllosphere, and play important roles for plant health. Phyllosphere microbial communities assemble in a predictable manner and diverge from communities colonizing other plant organs or the soil. However, how these communities differ functionally remains obscure. We assembled a collection of 258 bacterial isolates representative of the most abundant taxa of the phyllosphere of Arabidopsis and a shared soil inoculum. We screened the collection for the production of metabolites that inhibit the growth of Gram-positive and Gram-negative bacteria either in isolation or in co-culture. We found that isolates capable of constitutive antibiotic production in monoculture were significantly enriched in the soil fraction. In contrast, the proportion of binary cultures resulting in the production of growth inhibitory compounds differed only marginally between the phyllosphere and soil fractions. This shows that the phyllosphere may be a rich resource for potentially novel molecules with antibiotic activity, but that production or activity is dependent upon induction by external signals or cues. Finally, we describe the isolation of antimicrobial acyloin metabolites from a binary culture of Arabidopsis phyllosphere isolates, which inhibit the growth of clinically relevant Acinetobacter baumannii.
Collapse
Affiliation(s)
- Shan Shan Qi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Alexander Bogdanov
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Tessa Acar
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Sarah Ranty-Roby
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|