101
|
Overexpression of integrin-linked kinase (ILK) is associated with tumor progression and an unfavorable prognosis in patients with colorectal cancer. J Mol Histol 2012; 44:183-9. [PMID: 23108908 DOI: 10.1007/s10735-012-9463-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022]
Abstract
Integrin-linked kinase (ILK), an intracellular serine-threonine kinase, has been reported to be overexpressed in multiple types of human malignancies, including colorectal cancer (CRC). The prognostic value of ILK in CRC, however, remains unknown. In the present study, expression of ILK in 25 paired primary CRC samples and adjacent noncancerous tissues were quantified using real-time PCR and Western blotting. ILK protein expression was analyzed in 102 archived, paraffin-embedded CRC samples using immunohistochemistry. The correlation between ILK expression and clinicopathological factors was evaluated by the χ(2) test. Patients' overall survival was analyzed by Kaplan-Meier method. We found that both ILK mRNA and protein expression levels were significantly up-regulated in primary CRC samples compared with their corresponding normal tissues. Immunohistochemical analysis revealed relative high expression of ILK in 43 of 102 (42.2 %) primary CRC samples. Statistical analysis showed a significant correlation of ILK expression with tumor differentiation, lymph node metastasis, tumor invasion, and tumor-node-metastasis stage. Patients with tumors displaying high-level ILK expression showed significantly shorter overall survival (P = 0.028, log-rank test). More importantly, multivariate analysis indicated that high ILK protein expression was an independent prognostic factor for CRC patients (P = 0.026). Taken together, our data suggest that ILK overexpression is associated with tumor progression and a poor prognosis in CRC patients and may represent a novel potential prognostic marker for patients with CRC.
Collapse
|
102
|
Davidson B, Holth A, Nguyen MTP, Tropé CG, Wu C. Migfilin, α-parvin and β-parvin are differentially expressed in ovarian serous carcinoma effusions, primary tumors and solid metastases. Gynecol Oncol 2012; 128:364-70. [PMID: 23099104 DOI: 10.1016/j.ygyno.2012.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study is to analyze the expression and clinical role of integrin-linked kinase (ILK), α-parvin, β-parvin and migfilin in advanced-stage serous ovarian carcinoma. METHODS Expression of these 4 proteins was investigated in 205 effusions and in 94 patient-matched solid lesions (33 primary tumors and 61 solid metastases) using immunohistochemistry. Protein expression was analyzed for association with clinicopathologic parameters and survival. RESULTS ILK, α-parvin, β-parvin and migfilin were expressed in tumor cells in 53%, 2%, 28% and 53% of effusions and 57%, 20%, 83% and 25% of solid lesions, respectively. Statistical analysis showed significantly higher α-parvin and β-parvin expression in primary carcinomas (p=0.02 and p=0.001, respectively) and solid metastases (p=0.001 and p<0.001, respectively), compared to effusions, with opposite findings for migfilin (p=0.006 and p=0.008 for primary carcinomas and solid metastases, respectively). ILK expression was comparable at all anatomic sites. β-Parvin expression in effusions was associated with better response to chemotherapy at diagnosis (p=0.014), with no other significant association with clinicopathologic parameters or survival. Expression in primary tumors and solid metastases was similarly unrelated to clinicopathologic parameters or survival. CONCLUSIONS This study provides further evidence to our previous observations that the adhesion profile of ovarian serous carcinoma cells in effusions differs from their counterparts in primary carcinomas and solid metastases. β-Parvin may be a novel marker of chemoresponse in metastatic ovarian carcinoma.
Collapse
Affiliation(s)
- Ben Davidson
- Division of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0424 Oslo, Norway.
| | | | | | | | | |
Collapse
|
103
|
Liang CH, Chiu SY, Hsu IL, Wu YY, Tsai YT, Ke JY, Pan SH, Hsu YC, Li KC, Yang PC, Chen YL, Hong TM. α-Catulin drives metastasis by activating ILK and driving an αvβ3 integrin signaling axis. Cancer Res 2012; 73:428-38. [PMID: 23047866 DOI: 10.1158/0008-5472.can-12-2095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
α-Catulin is an oncoprotein that helps sustain proliferation by preventing cellular senescence. Here, we report that α-catulin also drives malignant invasion and metastasis. α-Catulin was upregulated in highly invasive non-small cell lung cancer (NSCLC) cell lines, where its ectopic expression or short-hairpin RNA-mediated attenuation enhanced or limited invasion or metastasis, respectively. α-Catulin interacted with integrin-linked kinase (ILK), a serine/threonine protein kinase implicated in cancer cell proliferation, antiapoptosis, invasion, and angiogenesis. Attenuation of ILK or α-catulin reciprocally blocked cell migration and invasion induced by the other protein. Mechanistic investigations revealed that α-catulin activated Akt-NF-κB signaling downstream of ILK, which in turn led to increased expression of fibronectin and integrin αvβ3. Pharmacologic or antibody-mediated blockade of NF-κB or αvβ3 was sufficient to inhibit α-catulin-induced cell migration and invasion. Clinically, high levels of expression of α-catulin and ILK were associated with poor overall survival in patients with NSCLC. Taken together, our study shows that α-catulin plays a critical role in cancer metastasis by activating the ILK-mediated Akt-NF-κB-αvβ3 signaling axis.
Collapse
Affiliation(s)
- Chen-Hsien Liang
- Institute of Basic Medical Sciences, Institute of Oral Medicine, and Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
PURPOSE OF REVIEW Differences in local blood flow patterns along the endothelium may trigger abnormal vascular responses which can have profound pathophysiological consequences. While endothelial cells exposed to laminar blood flow (high shear stress) are protected from atherosclerosis formation, turbulent or disturbed blood flow, which occurs at bends and bifurcations of blood vessels, facilitates atherosclerosis formation. Here, we will highlight the endothelial cell mechanisms involved in detecting shear stress and their translation into downstream biochemical signals. RECENT FINDINGS Prior evidence supports a role for integrins as mechanotransducers in the endothelium by promoting phosphorylation of different targets through the activation of focal adhesion kinase. Our recent findings show that integrins contact integrin-linked kinase and regulate vasomotor responses by an endothelial nitric oxide synthase-dependent mechanism, which stabilizes the production of vasoactive factor nitric oxide. In addition, different structures of endothelial cells, mainly primary cilia, are investigated, as they can explain the differential responses to laminar versus disturbed flow. SUMMARY The discovery of a connection between endothelial cell structures such as cilia, integrin, extracellular matrix, and signaling events opens today a new chapter in our understanding of the molecular mechanisms regulating vascular responses to the changes in flow.
Collapse
Affiliation(s)
- Carlos Zaragoza
- National Center for Cardiovascular Research, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
105
|
Abstract
Actin dynamics are implicated in various cellular processes, not only through the regulation of cytoskeletal organization, but also via the control of gene expression. In the present study we show that the Src family kinase substrate p130Cas (Cas is Crk-associated substrate) influences actin remodelling and concomitant muscle-specific gene expression, thereby regulating myogenic differentiation. In C2C12 myoblasts, silencing of p130Cas expression by RNA interference impaired F-actin (filamentous actin) formation and nuclear localization of the SRF (serum-response factor) co-activator MAL (megakaryocytic acute leukaemia) following the induction of myogenic differentiation. Consequently, formation of multinucleated myotubes was abolished. Re-introduction of wild-type p130Cas, but not its phosphorylation-defective mutant, into p130Cas-knockdown myoblasts restored F-actin assembly, MAL nuclear localization and myotube formation. Depletion of the adhesion molecule integrin β3, a key regulator of myogenic differentiation as well as actin cytoskeletal organization, attenuated p130Cas phosphorylation and MAL nuclear localization during C2C12 differentiation. Moreover, knockdown of p130Cas led to the activation of the F-actin-severing protein cofilin. The introduction of a dominant-negative mutant of cofilin into p130Cas-knockdown myoblasts restored muscle-specific gene expression and myotube formation. The results of the present study suggest that p130Cas phosphorylation, mediated by integrin β3, facilitates cofilin inactivation and promotes myogenic differentiation through modulating actin cytoskeleton remodelling.
Collapse
|
106
|
Abstract
Abstract
Platelets from patients with diabetes are hyperreactive and demonstrate increased adhesiveness, aggregation, degranulation, and thrombus formation, processes that contribute to the accelerated development of vascular disease. Part of the problem seems to be dysregulated platelet Ca2+ signaling and the activation of calpains, which are Ca2+-activated proteases that result in the limited proteolysis of substrate proteins and subsequent alterations in signaling. In the present study, we report that the activation of μ- and m-calpain in patients with type 2 diabetes has profound effects on the platelet proteome and have identified septin-5 and the integrin-linked kinase (ILK) as novel calpain substrates. The calpain-dependent cleavage of septin-5 disturbed its association with syntaxin-4 and promoted the secretion of α-granule contents, including TGF-β and CCL5. Calpain was also released by platelets and cleaved CCL5 to generate a variant with enhanced activity. Calpain activation also disrupted the ILK-PINCH-Parvin complex and altered platelet adhesion and spreading. In diabetic mice, calpain inhibition reversed the effects of diabetes on platelet protein cleavage, decreased circulating CCL5 levels, reduced platelet-leukocyte aggregate formation, and improved platelet function. The results of the present study indicate that diabetes-induced platelet dysfunction is mediated largely by calpain activation and suggest that calpain inhibition may be an effective way of preserving platelet function and eventually decelerating atherothrombosis development.
Collapse
|
107
|
Leyme A, Bourd-Boittin K, Bonnier D, Falconer A, Arlot-Bonnemains Y, Théret N. Identification of ILK as a new partner of the ADAM12 disintegrin and metalloprotease in cell adhesion and survival. Mol Biol Cell 2012; 23:3461-72. [PMID: 22767580 PMCID: PMC3431925 DOI: 10.1091/mbc.e11-11-0918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ILK is identified as a new partner for ADAM12L cell signaling functions. ADAM12L colocalizes with ILK at focal adhesions and induces the Akt-dependent survival pathway via stimulation of β1 integrins and activation of PI3K. This effect is independent of ADAM12L proteolytic activity and involves its cytoplasmic domain. Based on its shedding and binding activities, the disintegrin and metalloprotease 12 (ADAM12) has been implicated in cell signaling. Here we investigate the intracellular protein interaction network of the transmembrane ADAM12L variant using an integrative approach. We identify the integrin-linked kinase (ILK) as a new partner for ADAM12L cellular functions. We demonstrate that ADAM12L coimmunoprecipitates with ILK in cells and that its cytoplasmic tail is required for this interaction. In human cultured hepatic stellate cells (HSCs), which express high levels of endogenous ADAM12L and ILK, the two proteins are redistributed to focal adhesions upon stimulation of a β1 integrin–dependent pathway. We show that down-regulation of ADAM12L in HSCs leads to cytoskeletal disorganization and loss of adhesion. Conversely, up-regulation of ADAM12L induces the Akt Ser-473 phosphorylation-dependent survival pathway via stimulation of β1 integrins and activation of phosphoinositide 3-kinase (PI3K). Depletion of ILK inhibits this effect, which is independent of ADAM12L proteolytic activity and involves its cytoplasmic domain. We further demonstrate that overexpression of ADAM12L promotes kinase activity from ILK immunoprecipitates. Our data suggest a new role for ADAM12L in mediating the functional association of ILK with β1 integrin to regulate cell adhesion/survival through a PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Anthony Leyme
- Institut National de la Santé et de la Recherche Médicale, UMR1085, Institut de Recherche en Santé, Environnement et Travail, Université de Rennes 1, 35043 Rennes, France
| | | | | | | | | | | |
Collapse
|
108
|
Qin J, Wu C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr Opin Cell Biol 2012; 24:607-13. [PMID: 22763012 DOI: 10.1016/j.ceb.2012.06.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 01/18/2023]
Abstract
Integrin-linked kinase (ILK) is a widely expressed and evolutionally conserved component of cell-extracellular matrix (ECM) adhesions. Although initially named as a kinase, ILK contains an unusual pseudoactive site that is incapable of catalyzing phosphorylation. Instead, ILK acts as a central component of a heterotrimer (the PINCH-ILK-parvin complex) at ECM adhesions mediating interactions with a large number of proteins via multiple sites including its pseudoactive site. Through higher level protein-protein interactions, this scaffold links integrins to the actin cytoskeleton and catalytic proteins and thereby regulates focal adhesion assembly, cytoskeleton organization and signaling. This review summarizes recent advances in our understanding of the structure and functions of the PINCH-ILK-parvin complex, and discusses emerging new features of the molecular mechanisms by which it regulates diverse cellular, physiological and pathological processes.
Collapse
Affiliation(s)
- Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
109
|
Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer. Cell Signal 2012; 24:1173-84. [PMID: 22330072 DOI: 10.1016/j.cellsig.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/12/2023]
Abstract
Kinases play a critical role in regulating many cellular functions including development, differentiation and proliferation. To date, over 518 proteins with kinase activity, comprising ~2-3% of total cellular proteins, have been identified from within the human kinome. Interestingly, approximately 10% of kinases are categorised as pseudokinases since they lack one or more conserved catalytic residues within their kinase domain and were originally thought to have no enzymatic activity. Recently, there has been strong evidence to suggest that some pseudokinsases can not only function as scaffold proteins, but may also possess kinase activity leading to modulation of cell signalling pathways. Altered activity of these pseudokinases can result in impaired cellular function, particularly in malignancies. In this review we are discussing recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer and Surgery, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|
110
|
Steinbrunn T, Siegmund D, Andrulis M, Grella E, Kortüm M, Einsele H, Wajant H, Bargou RC, Stühmer T. Integrin-linked kinase is dispensable for multiple myeloma cell survival. Leuk Res 2012; 36:1165-71. [PMID: 22658851 DOI: 10.1016/j.leukres.2012.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/19/2012] [Accepted: 05/12/2012] [Indexed: 12/30/2022]
Abstract
We investigated the utility of integrin-linked kinase (ILK) as a target for therapeutic intervention in multiple myeloma (MM). ILK (over-)expression was assessed in primary samples and MM cell lines, and the molecular and physiological consequences of siRNA-mediated ILK ablation were compared to treatment with the small molecule inhibitor QLT0267. Whereas ILK expression was ubiquitous, overexpression was only rarely observed in patient biopsies. ILK knockdown had no effect on the viability or survival pathway activity pattern of MM cells. Conversely, QLT0267 induced cell death in MM cell lines and most primary tumor samples via the intrinsic apoptotic pathway. Although this effect was largely tumor cell-specific it is unlikely to have been mediated via ILK. We conclude that ILK does not play a prominent role in the promotion or sustenance of established MM.
Collapse
Affiliation(s)
- Torsten Steinbrunn
- Department of Internal Medicine II, Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Sutherland C, Walsh MP. Myosin regulatory light chain diphosphorylation slows relaxation of arterial smooth muscle. J Biol Chem 2012; 287:24064-76. [PMID: 22661704 DOI: 10.1074/jbc.m112.371609] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The principal signal to activate smooth muscle contraction is phosphorylation of the regulatory light chains of myosin (LC(20)) at Ser(19) by Ca(2+)/calmodulin-dependent myosin light chain kinase. Inhibition of myosin light chain phosphatase leads to Ca(2+)-independent phosphorylation at both Ser(19) and Thr(18) by integrin-linked kinase and/or zipper-interacting protein kinase. The functional effects of phosphorylation at Thr(18) on steady-state isometric force and relaxation rate were investigated in Triton-skinned rat caudal arterial smooth muscle strips. Sequential phosphorylation at Ser(19) and Thr(18) was achieved by treatment with adenosine 5'-O-(3-thiotriphosphate) in the presence of Ca(2+), which induced stoichiometric thiophosphorylation at Ser(19), followed by microcystin (phosphatase inhibitor) in the absence of Ca(2+), which induced phosphorylation at Thr(18). Phosphorylation at Thr(18) had no effect on steady-state force induced by Ser(19) thiophosphorylation. However, phosphorylation of Ser(19) or both Ser(19) and Thr(18) to comparable stoichiometries (0.5 mol of P(i)/mol of LC(20)) and similar levels of isometric force revealed differences in the rates of dephosphorylation and relaxation following removal of the stimulus: t(½) values for dephosphorylation were 83.3 and 560 s, and for relaxation were 560 and 1293 s, for monophosphorylated (Ser(19)) and diphosphorylated LC(20), respectively. We conclude that phosphorylation at Thr(18) decreases the rates of LC(20) dephosphorylation and smooth muscle relaxation compared with LC(20) phosphorylated exclusively at Ser(19). These effects of LC(20) diphosphorylation, combined with increased Ser(19) phosphorylation (Ca(2+)-independent), may underlie the hypercontractility that is observed in response to certain physiological contractile stimuli, and under pathological conditions such as cerebral and coronary arterial vasospasm, intimal hyperplasia, and hypertension.
Collapse
Affiliation(s)
- Cindy Sutherland
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
112
|
Integrin signaling in cancer cell survival and chemoresistance. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:283181. [PMID: 22567280 PMCID: PMC3332161 DOI: 10.1155/2012/283181] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/10/2012] [Indexed: 01/09/2023]
Abstract
Resistance to apoptosis and chemotherapy is a hallmark of cancer cells, and it is a critical factor in cancer recurrence and patient relapse. Extracellular matrix (ECM) via its receptors, the integrins, has emerged as a major pathway contributing to cancer cell survival and resistance to chemotherapy. Several studies over the last decade have demonstrated that ECM/integrin signaling provides a survival advantage to various cancer cell types against numerous chemotherapeutic drugs and against antibody therapy. In this paper, we will discuss the major findings on how ECM/integrin signaling protects tumor cells from drug-induced apoptosis. We will also discuss the potential role of ECM in malignant T-cell survival and in cancer stem cell resistance. Understanding how integrins and their signaling partners promote tumor cell survival and chemoresistance will likely lead to the development of new therapeutic strategies and agents for cancer treatment.
Collapse
|
113
|
Devallière J, Chatelais M, Fitau J, Gérard N, Hulin P, Velazquez L, Turner CE, Charreau B. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets α-parvin to control cell adhesion and migration. FASEB J 2012; 26:2592-606. [PMID: 22441983 DOI: 10.1096/fj.11-193383] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Focal adhesion (FA) formation and disassembly play an essential role in adherence and migration of endothelial cells. These processes are highly regulated and involve various signaling molecules that are not yet completely identified. Lnk [Src homology 2-B3 (SH2B3)] belongs to a family of SH2-containing proteins with important adaptor functions. In this study, we showed that Lnk distribution follows that of vinculin, localizing Lnk in FAs. Inhibition of Lnk by RNA interference resulted in decreased spreading, whereas sustained expression dramatically increases the number of focal and cell-matrix adhesions. We demonstrated that Lnk expression impairs FA turnover and cell migration and regulates β1-integrin-mediated signaling via Akt and GSK3β phosphorylation. Moreover, the α-parvin protein was identified as one of the molecular targets of Lnk responsible for impaired FA dynamics and cell migration. Finally, we established the ILK protein as a new molecular partner for Lnk and proposed a model in which Lnk regulates α-parvin expression through its interaction with ILK. Collectively, our results underline the adaptor Lnk as a novel and effective key regulator of integrin-mediated signaling controlling endothelial cell adhesion and migration.
Collapse
Affiliation(s)
- Julie Devallière
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 643, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Howe GA, Addison CL. β1 integrin: an emerging player in the modulation of tumorigenesis and response to therapy. Cell Adh Migr 2012; 6:71-7. [PMID: 22568952 DOI: 10.4161/cam.20077] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Historically, a hallmark of tumorigenesis was the ability to grow in an anchorage-independent manner. Hence, tumors were thought to proliferate and survive independently of integrin attachment to the substratum. However, recent data suggest that integrins regulate not only tumor cell proliferation, survival and migration, but may also influence their response to anti-cancer agents. Interestingly, these influences are largely masked by growth of tumor cells in the standard, yet artificial, environment of 2D cell culture, but are readily apparent under 3D in vitro culture conditions and in tumor growth in vivo. We, and others, have recently demonstrated that the β1 integrin subunit controls the growth and invasion of prostate tumor cells in 3D culture conditions. Recently, the importance of integrins has also been demonstrated using tissue specific conditional knockout strategies in transgenic mouse tumor models, where they control primary tumor growth and dictate the site of metastatic spread. Furthermore, integrin-extracellular matrix interactions may modulate the response of tumors to standard chemotherapy agents or radiation. Taken together, these results highlight the important role of integrins in regulating tumor growth and metastasis; however, point out that the evaluation of their contribution to these processes requires appropriate contextual modeling.
Collapse
Affiliation(s)
- Grant A Howe
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | | |
Collapse
|
115
|
Herranz B, Marquez S, Guijarro B, Aracil E, Aicart-Ramos C, Rodriguez-Crespo I, Serrano I, Rodríguez-Puyol M, Zaragoza C, Saura M. Integrin-linked kinase regulates vasomotor function by preventing endothelial nitric oxide synthase uncoupling: role in atherosclerosis. Circ Res 2011; 110:439-49. [PMID: 22194624 DOI: 10.1161/circresaha.111.253948] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Atherosclerotic lesions develop in regions of disturbed flow, whereas laminar flow protects from atherogenesis; however, the mechanisms involved are not completely elucidated. Integrins are mechanosensors of shear stress in endothelial cells, and integrin-linked kinase (ILK) is important for blood vessel integrity and cardiovascular development. OBJECTIVES To explore the role of ILK in vascular function by studying conditionally ILK-deficient (cKO) mice and human atherosclerotic arteries. RESULTS ILK expression was detected in the endothelial cell layer of nonatherosclerotic vessels but was absent from the endothelium of atherosclerotic arteries. Live ultrasound imaging revealed that acetylcholine-mediated vasodilatation was impaired in cKO mice. These mice exhibited lowered agonist-induced nitric oxide synthase (NOS) activity and decreased cyclic guanosine monophosphate and nitrite production. ILK deletion caused endothelial NOS (eNOS) uncoupling, reflected in reduced tetrahydrobiopterin (BH4) levels, increased BH2 levels, decreased dihydrofolate reductase expression, and increased eNOS-dependent generation of superoxide accompanied by extensive vascular protein nitration. ILK reexpression prevented eNOS uncoupling in cKO cells, whereas superoxide formation was unaffected by ILK depletion in eNOS-KO cells, indicating eNOS as a primary source of superoxide anion. eNOS and ILK coimmunoprecipitated in aortic lysates from control animals, and eNOS-ILK-shock protein 90 interaction was detected in human normal mammary arteries but was absent from human atherosclerotic carotid arteries. eNOS-ILK interaction in endothelial cells was prevented by geldanamycin, suggesting heat shock protein 90 as a binding partner. CONCLUSIONS Our results identify ILK as a regulatory partner of eNOS in vivo that prevents eNOS uncoupling, and suggest ILK as a therapeutic target for prevention of endothelial dysfunction related to shear stress-induced vascular diseases.
Collapse
|
116
|
Leong S, McKay MJ, Christopherson RI, Baxter RC. Biomarkers of breast cancer apoptosis induced by chemotherapy and TRAIL. J Proteome Res 2011; 11:1240-50. [PMID: 22133146 DOI: 10.1021/pr200935y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatment of breast cancer is complex and challenging due to the heterogeneity of the disease. To avoid significant toxicity and adverse side-effects of chemotherapy in patients who respond poorly, biomarkers predicting therapeutic response are essential. This study has utilized a proteomic approach integrating 2D-DIGE, LC-MS/MS, and bioinformatics to analyze the proteome of breast cancer (ZR-75-1 and MDA-MB-231) and breast epithelial (MCF-10A) cell lines induced to undergo apoptosis using a combination of doxorubicin and TRAIL administered in sequence (Dox-TRAIL). Apoptosis induction was confirmed using a caspase-3 activity assay. Comparative proteomic analysis between whole cell lysates of Dox-TRAIL and control samples revealed 56 differentially expressed spots (≥2-fold change and p < 0.05) common to at least two cell lines. Of these, 19 proteins were identified yielding 11 unique protein identities: CFL1, EIF5A, HNRNPK, KRT8, KRT18, LMNA, MYH9, NACA, RPLP0, RPLP2, and RAD23B. A subset of the identified proteins was validated by selected reaction monitoring (SRM) and Western blotting. Pathway analysis revealed that the differentially abundant proteins were associated with cell death, cellular organization, integrin-linked kinase signaling, and actin cytoskeleton signaling pathways. The 2D-DIGE analysis has yielded candidate biomarkers of response to treatment in breast cancer cell models. Their clinical utility will depend on validation using patient breast biopsies pre- and post-treatment with anticancer drugs.
Collapse
Affiliation(s)
- Sharon Leong
- Kolling Institute of Medical Research, The University of Sydney , Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | | | | |
Collapse
|
117
|
Donthamsetty S, Mars WM, Orr A, Wu C, Michalopoulos GK. Protection against Fas-induced fulminant hepatic failure in liver specific integrin linked kinase knockout mice. COMPARATIVE HEPATOLOGY 2011; 10:11. [PMID: 22104495 PMCID: PMC3228663 DOI: 10.1186/1476-5926-10-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/21/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Programmed cell death or apoptosis is an essential process for tissue homeostasis. Hepatocyte apoptosis is a common mechanism to many forms of liver disease. This study was undertaken to test the role of ILK in hepatocyte survival and response to injury using a Jo-2-induced apoptosis model. METHODS For survival experiments, ILK KO and WT mice received a single intraperitoneal injection of the agonistic anti-Fas monoclonal antibody Jo-2 at the lethal dose (0.4 μg/g body weight) or sublethal dose (0.16 μg/g body weight). For further mechanistic studies sublethal dose of Fas monoclonal antibody was chosen. RESULTS There was 100% mortality in the WT mice as compared to 50% in the KO mice. We also found that hepatocyte specific ILK KO mice (integrin linked kinase) died much later than WT mice after challenge with a lethal dose of Fas agonist Jo-2. At sublethal dose of Jo-2, there was 20% mortality in KO mice with minimal apoptosis whereas WT mice developed extensive apoptosis and liver injury leading to 70% mortality due to liver failure at 12 h. Proteins known to be associated with cell survival/death were differentially expressed in the 2 groups. In ILK KO mice there was downregulation of proapoptotic genes and upregulation of antiapoptotic genes. CONCLUSIONS Mechanistic insights revealed that pro-survival pathways such as Akt, ERK1/2, and NFkB signaling were upregulated in the ILK KO mice. Inhibition of only NFkB and ERK1/2 signaling led to an increase in the susceptibility of ILK KO hepatocytes to Jo-2-induced apoptosis. These studies suggest that ILK elimination from hepatocytes protects against Jo-2 induced apoptosis by upregulating survival pathways. FAK decrease may also play a role in this process. The results presented show that the signaling effects of ILK related to these functions are mediated in part mediated through NFkB and ERK1/2 signaling.
Collapse
Affiliation(s)
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Orr
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
118
|
Walsh MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life 2011; 63:987-1000. [PMID: 21990256 DOI: 10.1002/iub.527] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/21/2011] [Accepted: 05/31/2011] [Indexed: 12/17/2022]
Abstract
Smooth muscle contraction is activated primarily by phosphorylation at S19 of the 20-kDa regulatory light chain subunits of myosin II (LC(20) ) catalyzed by Ca(2+) /calmodulin-dependent myosin light chain kinase. Other kinases, for example, integrin-linked kinase (ILK), Rho-associated kinase (ROCK), and zipper-interacting protein kinase (ZIPK), can phosphorylate T18 in addition to S19, which increases the actin-activated myosin MgATPase activity at subsaturating actin concentrations ∼3-fold. These phosphorylatable residues and the amino acid sequence surrounding them are highly conserved throughout the animal kingdom; they are also found in an LC(20) homolog within the genome of Monosiga brevicollis, the closest living relative of metazoans. LC(20) diphosphorylation has been detected in mammalian vascular smooth muscle tissues in response to specific contractile stimuli and in pathophysiological situations associated with hypercontractility. LC(20) diphosphorylation has also been observed frequently in cultured cells where it activates force generation. Kinases such as ILK, ROCK, and ZIPK, therefore, are potential therapeutic targets in the treatment of, for example, cerebral vasospasm following subarachnoid hemorrhage and atherosclerosis.
Collapse
Affiliation(s)
- Michael P Walsh
- Smooth Muscle Research Group and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
119
|
Adams JR, Schachter NF, Liu JC, Zacksenhaus E, Egan SE. Elevated PI3K signaling drives multiple breast cancer subtypes. Oncotarget 2011; 2:435-47. [PMID: 21646685 PMCID: PMC3248195 DOI: 10.18632/oncotarget.285] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Most human breast tumors have mutations that elevate signaling through a key metabolic pathway that is induced by insulin and a number of growth factors. This pathway serves to activate an enzyme known as phosphatidylinositol 3' kinase (PI3K) as well as to regulate proteins that signal in response to lipid products of PI3K. The specific mutations that activate this pathway in breast cancer can occur in genes coding for tyrosine kinase receptors, adaptor proteins linked to PI3K, catalytic and regulatory subunits of PI3K, serine/threonine kinases that function downstream of PI3K, and also phosphatidylinositol 3' phosphatase tumor suppressors that function to antagonize this pathway. While each genetic change results in net elevation of PI3K pathway signaling, and all major breast cancer subtypes show pathway activation, the specific mutation(s) involved in any one tumor may play an important role in defining tumor subtype, prognosis and even sensitivity to therapy. Here, we describe mouse models of breast cancer with elevated PI3K signaling, and how they may be used to guide development of novel therapeutics.
Collapse
Affiliation(s)
- Jessica R. Adams
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nathan F. Schachter
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeff C. Liu
- 3 Division of Cell and Molecular Biology, Toronto General Research Institute–University Health Network, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- 3 Division of Cell and Molecular Biology, Toronto General Research Institute–University Health Network, Toronto, Ontario, Canada
- 4 The Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sean E. Egan
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|