101
|
Nguyen TM, Kabotyanski EB, Dou Y, Reineke LC, Zhang P, Zhang XHF, Malovannaya A, Jung SY, Mo Q, Roarty KP, Chen Y, Zhang B, Neilson JR, Lloyd RE, Perou CM, Ellis MJ, Rosen JM. FGFR1-Activated Translation of WNT Pathway Components with Structured 5' UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation. Cancer Res 2018; 78:4229-4240. [PMID: 29844125 PMCID: PMC6072612 DOI: 10.1158/0008-5472.can-18-0631] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/26/2018] [Accepted: 05/23/2018] [Indexed: 11/16/2022]
Abstract
Cooperativity between WNT and FGF signaling is well documented in embryonic development and cancer progression, but the molecular mechanisms underlying this cross-talk remain elusive. In this study, we interrogated the dynamics of RNA levels, ribosome occupancy, and protein expression as a function of inducible FGF signaling in mouse mammary glands with constitutive WNT hyperactivation. Multiomics correlation analysis revealed a substantial discrepancy between RNA and ribosome occupancy levels versus protein levels. However, this discrepancy decreased as cells became premalignant and dynamically responded to FGF signaling, implicating the importance of stringent gene regulation in nontransformed cells. Analysis of individual genes demonstrated that acute FGF hyperactivation increased translation of many stem cell self-renewal regulators, including WNT signaling components, and decreased translation of genes regulating cellular senescence. WNT pathway components translationally upregulated by FGF signaling had long and structured 5' UTRs with a high frequency of polypurine sequences, several of which harbored (CGG)4 motifs that can fold into either stable G-quadruplexes or other stable secondary structures. The FGF-mediated increase in translation of WNT pathway components was compromised by silvestrol, an inhibitor of EIF4A that clamps EIF4A to polypurine sequences to block 43S scanning and inhibits its RNA-unwinding activity important for translation initiation. Moreover, silvestrol treatment significantly delayed FGF-WNT-driven tumorigenesis. Taken together, these results suggest that FGF signaling selectively enhances translation of structured mRNAs, particularly WNT signaling components, and highlight their vulnerability to inhibitors that target the RNA helicase EIF4A.Significance: The RNA helicase EIF4A may serve as a therapeutic target for breast cancers that require FGF and WNT signaling. Cancer Res; 78(15); 4229-40. ©2018 AACR.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Elena B Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Anna Malovannaya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Houston, Texas
| | - Sung Yun Jung
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Qianxing Mo
- Dan L Duncan Comprehensive Cancer Center, Houston, Texas
| | - Kevin P Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew J Ellis
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Houston, Texas
| | - Jeffrey M Rosen
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
102
|
Erhard F, Halenius A, Zimmermann C, L’Hernault A, Kowalewski DJ, Weekes MP, Stevanovic S, Zimmer R, Dölken L. Improved Ribo-seq enables identification of cryptic translation events. Nat Methods 2018; 15:363-366. [PMID: 29529017 PMCID: PMC6152898 DOI: 10.1038/nmeth.4631] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Ribosome profiling has been used to predict thousands of short open reading frames (sORFs) in eukaryotic cells, but it suffers from substantial levels of noise. PRICE (https://github.com/erhard-lab/price) is a computational method that models experimental noise to enable researchers to accurately resolve overlapping sORFs and noncanonical translation initiation. We experimentally validated translation using major histocompatibility complex class I (MHC I) peptidomics and observed that sORF-derived peptides efficiently enter the MHC I presentation pathway and thus constitute a substantial fraction of the antigen repertoire.
Collapse
Affiliation(s)
- Florian Erhard
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333 München, Germany
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Cosima Zimmermann
- Institute of Virology, Medical Center, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Anne L’Hernault
- AstraZeneca UK Ltd, Innovative Medicines & Early Development, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Daniel J. Kowalewski
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, CB20XY Cambridge, United Kingdom
| | - Stefan Stevanovic
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333 München, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| |
Collapse
|