101
|
Safdar S, Lammertyn J, Spasic D. RNA-Cleaving NAzymes: The Next Big Thing in Biosensing? Trends Biotechnol 2020; 38:1343-1359. [PMID: 32473751 DOI: 10.1016/j.tibtech.2020.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Nucleic acid enzymes (NAzymes) are nucleic acid molecules with catalytic activity. A subset, the RNA-cleaving NAzyme, is characterized by its substrate of choice: an RNA unit. These enzymes have been used for diverse applications, including biosensor development, akin to their protein counterparts. Owing to their function as both biorecognition elements and signal generators, robust bioassays based entirely on NAzyme molecules have been developed. Additionally, unique mechanisms for integration with other biorecognition elements and signal generation methods have been explored to realize ultrasensitive, specific, and user-friendly biosensors. Furthermore, NAzyme-based bioassays have already broken into the in vitro diagnostics market, with more promise in the pipeline.
Collapse
Affiliation(s)
- Saba Safdar
- Department of Biosystems, Biosensors Group, KU Leuven, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, 3001, Leuven, Belgium.
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
102
|
Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Ther 2020; 27:383-391. [PMID: 32366887 PMCID: PMC7445782 DOI: 10.1038/s41434-020-0151-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Single-strand oligonucleotides provide promising potential as new therapeutics towards various diseases. However, the efficient delivery of oligonucleotide therapeutics is still challenging due to their susceptibility to nuclease degradation and the lack of effective carriers for condensation. In this study, we reported the use of natural polyphenol to facilitate the condensation of single-strand oligonucleotides by cationic polymers. Green tea catechin complexed with single-strand oligonucleotides to form anionic nanoparticles, which were further coated by low molecular weight cationic polymers to increase their cell internalization. The resulting core-shell structured nanoparticles, so-called green nanoparticles (GNPs), showed improved cargo stability, and achieved high efficiency in the delivery of several types of single-strand oligonucleotides including antisense oligonucleotides, anti-miRNA, and DNAzyme. This study provides a facile strategy for the efficient delivery of single-strand oligonucleotides.
Collapse
|
103
|
Sun K, Xue X, Liu N, Zhu Z, Li H. A point-to-point protein-protein interaction assay reveals the signaling interplays among plant hormones and environmental cues. PLANT DIRECT 2020; 4:e00228. [PMID: 32490347 PMCID: PMC7247280 DOI: 10.1002/pld3.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/13/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
As sessile organisms, plants must properly coordinate their growth and developmental programs with changes in the environment. The integration of exogenous environmental cues with endogenous plant hormone responses often occurs through physical protein-protein interactions (PPIs). However, a comprehensive PPI network that mediates environmental and hormonal responses has not been established. In this study, we initially cloned 113 phytohormone-related genes and 29 light signaling components of Arabidopsis and then individually tested their mutual interactions (in total 2,655 tests) using a yeast-two-hybrid approach to ultimately identify 141 interactions. Based on these interaction results, we next revealed the signaling cross talk between jasmonate and abscisic acid by characterizing the JAZ1-PYL4 and JAZ1-ABI1 interactions. Thus, we generated a useful resource for the community to explore the molecular mechanisms underlying signaling interactions between plant hormones and/or with light.
Collapse
Affiliation(s)
- Kaiwen Sun
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiangwen Xue
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Nana Liu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
104
|
Sathiskumar C, Alex C, John NS. Nickel Cobalt Phosphite Nanorods Decorated with Carbon Nanotubes as Bifunctional Electrocatalysts in Alkaline Medium with a High Yield of Hydrogen Peroxide. ChemElectroChem 2020. [DOI: 10.1002/celc.202000176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Chandraraj Alex
- Centre for Nano and Soft Matter Sciences Jalahalli Bengaluru 560013 India
| | - Neena S. John
- Centre for Nano and Soft Matter Sciences Jalahalli Bengaluru 560013 India
| |
Collapse
|
105
|
Raman R, Langer R. Biohybrid Design Gets Personal: New Materials for Patient-Specific Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901969. [PMID: 31271257 PMCID: PMC6942246 DOI: 10.1002/adma.201901969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Indexed: 05/08/2023]
Abstract
Precision medicine requires materials and devices that can sense and adapt to dynamic physiological and pathological conditions. This motivates the design and manufacture of biohybrid materials that mimic the responsive behaviors demonstrated by natural biological systems. Two parallel approaches to biohybrid design are presented-biomimetics and biointegration. Biohybrid hydrogels that mimic the form and function of natural materials, or that integrate living cells or bioactive moieties, can respond to a range of environmental stimuli in parallel, including heat, light, pH, hydration, enzymes, and electric, mechanical, and magnetic forces. A range of examples that illustrate the tremendous potential of this nascent discipline are presented, and ongoing technical challenges related to manufacturing, storage, transport, and external noninvasive control of these materials that will need to be overcome in the coming years are outlined. The ethical, educational, and regulatory challenges that will govern translation of biohybrid design into medical applications are also discussed. Personalized medical therapies that target the precise needs of patients are a critically needed and expanding market. Biohybrid design offers the unique ability to manufacture materials and devices that match the dynamic and patient-specific in vivo environment, promising to generate more effective and safe therapies that enable personalized care.
Collapse
Affiliation(s)
- Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA, 02142, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA, 02142, USA
| |
Collapse
|
106
|
Gaines CS, Piccirilli JA, York DM. The L-platform/L-scaffold framework: a blueprint for RNA-cleaving nucleic acid enzyme design. RNA (NEW YORK, N.Y.) 2020; 26:111-125. [PMID: 31776179 PMCID: PMC6961537 DOI: 10.1261/rna.071894.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/14/2019] [Indexed: 05/13/2023]
Abstract
We develop an L-platform/L-scaffold framework we hypothesize may serve as a blueprint to facilitate site-specific RNA-cleaving nucleic acid enzyme design. Building on the L-platform motif originally described by Suslov and coworkers, we identify new critical scaffolding elements required to anchor a conserved general base guanine ("L-anchor") and bind functionally important metal ions at the active site ("L-pocket"). Molecular simulations, together with a broad range of experimental structural and functional data, connect the L-platform/L-scaffold elements to necessary and sufficient conditions for catalytic activity. We demonstrate that the L-platform/L-scaffold framework is common to five of the nine currently known naturally occurring ribozyme classes (Twr, HPr, VSr, HHr, Psr), and intriguingly from a design perspective, the framework also appears in an artificially engineered DNAzyme (8-17dz). The flexibility of the L-platform/L-scaffold framework is illustrated on these systems, highlighting modularity and trends in the variety of known general acid moieties that are supported. These trends give rise to two distinct catalytic paradigms, building on the classifications proposed by Wilson and coworkers and named for the implicated general base and acid. The "G + A" paradigm (Twr, HPr, VSr) exclusively utilizes nucleobase residues for chemistry, and the "G + M + " paradigm (HHr, 8-17dz, Psr) involves structuring of the "L-pocket" metal ion binding site for recruitment of a divalent metal ion that plays an active role in the chemical steps of the reaction. Finally, the modularity of the L-platform/L-scaffold framework is illustrated in the VS ribozyme where the "L-pocket" assumes the functional role of the "L-anchor" element, highlighting a distinct mechanism, but one that is functionally linked with the hammerhead ribozyme.
Collapse
Affiliation(s)
- Colin S Gaines
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
107
|
Ma L, Liu J. Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020; 23:100815. [PMID: 31954323 PMCID: PMC6962706 DOI: 10.1016/j.isci.2019.100815] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Since the initial discovery of ribozymes in the early 1980s, catalytic nucleic acids have been used in different areas. Compared with protein enzymes, catalytic nucleic acids are programmable in structure, easy to modify, and more stable especially for DNA. We take a historic view to summarize a few main interdisciplinary areas of research on nucleic acid enzymes that may have broader impacts. Early efforts on ribozymes in the 1980s have broken the notion that all enzymes are proteins, supplying new evidence for the RNA world hypothesis. In 1994, the first catalytic DNA (DNAzyme) was reported. Since 2000, the biosensor applications of DNAzymes have emerged and DNAzymes are particularly useful for detecting metal ions, a challenging task for enzymes and antibodies. Combined with nanotechnology, DNAzymes are key building elements for switches allowing dynamic control of materials assembly. The search for new DNAzymes and ribozymes is facilitated by developments in DNA sequencing and computational algorithms, further broadening our fundamental understanding of their biochemistry.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
108
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020; 59:3573-3577. [PMID: 31867832 DOI: 10.1002/anie.201915675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
109
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
110
|
Wang C, Wu J, He Y, Song Z, Shi S, Zhu Y, Jia Y, Ye W. Fully Solid-State Graphene Transistors with Striking Homogeneity and Sensitivity for the Practicalization of Single-Device Electronic Bioassays. NANO LETTERS 2020; 20:166-175. [PMID: 31815482 DOI: 10.1021/acs.nanolett.9b03528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To break through a critical barrier in the practical application of graphene biosensors, namely, device-to-device performance inhomogeneity, this work presents a novel scenario employing a fully solid-state (FSS) transistor configuration. Herein, the graphene sensing unit is completely encapsulated by a high-κ solid dielectric material, which isolates the sensing unit from solution contaminants and thus homogeneously maintains the extraordinary carrier mobility of pristine graphene in batch-made devices. To create an interface sensitive to biomolecular interactions based on the FSS configuration, a metallic floating gate functionalized by conductive mercapto-phenyl molecular linkers is defined on the top-layer solid dielectric. As the solid dielectric layer beneath the metal floating gate enables a higher capacitive gating efficiency than the regular graphene-solution electrical double layer (EDL) interface, the overall transistor amplification gain is further enhanced. As a proof of principle, a label-free DNAzymatic bioassay of Pb2+ is conducted. Without the traditional one-by-one device normalization, an excellent concentration detection limit of 929.8 fM is achieved, which is almost 2 orders of magnitude lower than that in existing works. The FSS configuration allows enhanced sensitivity and homogeneity, thereby providing new developmental guidelines for graphene biosensors beyond the laboratory investigation stage. Additionally, it has the potential to be universally applicable for cost-efficient single-device bioassays.
Collapse
Affiliation(s)
| | | | | | | | | | - Yibo Zhu
- Department of Mechanical Engineering , Columbia University , New York 10027 , United States
| | - Yuan Jia
- Jiangsu Key Laboratory of Micro-Nano Biomedical Instrument Design and Manufacture, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Weixiang Ye
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
| |
Collapse
|
111
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
112
|
Rudeejaroonrung K, Hanpanich O, Saito K, Shimada N, Maruyama A. Cationic copolymer enhances 8–17 DNAzyme and MNAzyme activities. Biomater Sci 2020; 8:3812-3818. [DOI: 10.1039/d0bm00428f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cationic copolymer acts as a chaperone to facilitate multiple strand assembly and enhance nucleic acid enzyme activities.
Collapse
Affiliation(s)
| | - Orakan Hanpanich
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Ken Saito
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Naohiko Shimada
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Atsushi Maruyama
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
113
|
Hu L, Fu X, Kong G, Yin Y, Meng HM, Ke G, Zhang XB. DNAzyme–gold nanoparticle-based probes for biosensing and bioimaging. J Mater Chem B 2020; 8:9449-9465. [DOI: 10.1039/d0tb01750g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and applications of DNAzyme–gold nanoparticle-based probes in biosensing and bioimaging are summarized here.
Collapse
Affiliation(s)
- Ling Hu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiaoyi Fu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Gezhi Kong
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Yao Yin
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Hong-Min Meng
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| |
Collapse
|
114
|
Cepeda-Plaza M, Peracchi A. Insights into DNA catalysis from structural and functional studies of the 8-17 DNAzyme. Org Biomol Chem 2020; 18:1697-1709. [DOI: 10.1039/c9ob02453k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review examines functional knowledge gathered over two decades of research on the 8-17 DNAzyme, focusing on three aspects: the structural requirements for catalysis, the role of metal ions and the participation of general acid-base catalysis.
Collapse
Affiliation(s)
| | - Alessio Peracchi
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- Parma
- Italy
| |
Collapse
|
115
|
Lake RJ, Yang Z, Zhang J, Lu Y. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions. Acc Chem Res 2019; 52:3275-3286. [PMID: 31721559 PMCID: PMC7103667 DOI: 10.1021/acs.accounts.9b00419] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can be beneficial or toxic depending on their identity, oxidation state, and concentration. Therefore, the ability to detect and quantify different types of metal ions using portable sensors or in situ imaging agents is important for better environmental monitoring, in vitro medical diagnostics, and imaging of biological systems. While numerous metal ions in different oxidation states are present in the environment and biological systems, only a limited number of them can be detected effectively using current methods. In this Account, we summarize research results from our group that overcome this limitation by the development of a novel class of activity-based sensors based on metal-dependent DNAzymes, which are DNA molecules with enzymatic activity. First, we have developed an in vitro selection method to obtain DNAzymes from a large DNA library of up to 1015 sequences that can carry out cleavage of an oligonucleotide substrate only in the presence of a specific metal ion with high selectivity. Negative selection steps can further be used to improve the selectivity against potentially competing targets by removing sequences that recognize the competing metal ions. Second, we have developed a patented catalytic beacon method to transform the metal-dependent DNAzyme cleavage reaction into a turn-on fluorescent signal by attaching a fluorophore and quenchers to the DNAzyme complex. Because of the difference in the melting temperatures of DNA hybridization before and after metal-ion-dependent cleavage of the DNAzyme substrate, the fluorophore on the DNA cleavage product can be released from its quenchers to create a turn-on fluorescent signal. Because DNAzymes are easy to conjugate with other signaling moieties, such as gold nanoparticles, lanthanide-doped upconversion nanoparticles, electrochemical agents, and gadolinium complexes, these DNAzymes can also readily be converted into colorimetric sensors, upconversion luminescence sensors, electrochemical sensors, or magnetic resonance contrast agents. In addition to describing recent progress in developing and applying these metal ion sensors for environmental monitoring, point-of-care diagnostics, cellular imaging, and in vivo imaging in zebrafish, we summarize major advantages of this class of activity-based sensors. In addition to advantages common to most activity-based sensors, such as enzymatic turnovers that allow for signal amplification and the use of initial rates instead of absolute signals for quantification to avoid interferences from sample matrices, the DNAzyme-based sensors allow for in vitro selection to expand the method to almost any metal ion under a variety of conditions, negative selection to improve the selectivity against competing targets, and reselection of DNAzymes and combination of active and inactive variants to fine-tune the dynamic range of detection. The use of melting temperature differences to separate target binding from signaling moieties in the catalytic beacon method allows the use of different fluorophores and nanomaterials to extend the versatility and modularity of this sensing platform. Furthermore, sensing and imaging artifacts can be minimized by using an inactive mutant DNAzyme as a negative control, while spatiotemporal control of sensing/imaging can be achieved using optical, photothermal, and endogenous orthogonal caging methods. Finally, current challenges, opportunities, and future perspectives for DNAzymes as activity-based sensors are also discussed.
Collapse
Affiliation(s)
- Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
116
|
Ren W, Huang PJJ, He M, Lyu M, Wang S, Wang C, Liu J. The Two Classic Pb 2+ -Selective DNAzymes Are Related: Rational Evolution for Understanding Metal Selectivity. Chembiochem 2019; 21:1293-1297. [PMID: 31755629 DOI: 10.1002/cbic.201900664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 01/09/2023]
Abstract
In 1994, the first DNAzyme named GR5 was reported, which specifically requires Pb2+ for its RNA cleavage activity. Three years later, the 8-17 DNAzyme was isolated. The 8-17 DNAzyme and the related 17E DNAzyme are also most active with Pb2+ , although other divalent metals can work as well. GR5 and 17E have the same substrate sequence, and their catalytic loops in the enzyme strands also have a few similar and conserved nucleotides. Considering these, we hypothesized that 17E might be a special form of GR5. To test this hypothesis, we performed systematic rational evolution experiments to gradually mutate GR5 toward 17E. By using the activity ratio in the presence of Pb2+ and Mg2+ for defining these two DNAzymes, the critical nucleotide was identified to be T12 in 17E for metal specificity. In addition, G9 in GR5 is a position not found in most 17E or 8-17 DNAzymes, and G9 needs to be added to rescue GR5 activity if T12 becomes a cytosine. This study highlights the links between these two classic and widely used DNAzymes, and offers new insight into the sequence-activity relationship related to metal selectivity.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
117
|
Ganguly A, Weissman BP, Piccirilli JA, York DM. Evidence for a Catalytic Strategy to Promote Nucleophile Activation in Metal-Dependent RNA-Cleaving Ribozymes and 8-17 DNAzyme. ACS Catal 2019; 9:10612-10617. [PMID: 31840007 PMCID: PMC6902279 DOI: 10.1021/acscatal.9b02035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/04/2019] [Indexed: 12/30/2022]
Abstract
An unique catalytic strategy was recently reported for the glmS ribozyme [Bingaman et al., Nat. Chem. Biol.2017, 13, 439-445] that involves promotion of productive hydrogen bonding of the O2' nucleophile to facilitate its activation. We provide broad evidence of this strategy in the hammerhead, pistol, and VS ribozymes and 8-17 DNAzyme, enabled by a functionally important divalent metal ion that interacts with the scissile phosphate and disrupts nonproductive competitive hydrogen bonding with the O2' nucleophile. This strategy, designated tertiary gamma (3°γ) catalysis, illustrates an additional role for divalent ions in ribozyme catalysis.
Collapse
Affiliation(s)
- Abir Ganguly
- Laboratory
for Biomolecular Simulation Research, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
- Institute
for Quantitative Biomedicine, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
| | - Benjamin P. Weissman
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph A. Piccirilli
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Darrin M. York
- Laboratory
for Biomolecular Simulation Research, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
- Institute
for Quantitative Biomedicine, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
118
|
Wang Y, Vorperian A, Shehabat M, Chaput JC. Evaluating the Catalytic Potential of a General RNA-Cleaving FANA Enzyme. Chembiochem 2019; 21:1001-1006. [PMID: 31680396 DOI: 10.1002/cbic.201900596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Indexed: 12/14/2022]
Abstract
The discovery of synthetic genetic polymers (XNAs) with catalytic activity demonstrates that natural genetic polymers are not unique in their ability to function as enzymes. However, all known examples of in vitro selected XNA enzymes function with lower activity than their natural counterparts, suggesting that XNAs might be limited in their ability to fold into structures with high catalytic activity. To explore this problem, we evaluated the catalytic potential of FANAzyme 12-7, an RNA-cleaving catalyst composed entirely of 2'-fluoroarabino nucleic acid (FANA) that was evolved to cleave RNA at a specific phosphodiester bond located between an unpaired guanine and a paired uracil in the substrate recognition arm. Here, we show that this activity extends to chimeric DNA substrates that contain a central riboguanosine (riboG) residue at the cleavage site. Surprisingly, FANAzyme 12-7 rivals known DNAzymes that were previously evolved to cleave chimeric DNA substrates under physiological conditions. These data provide convincing evidence that FANAzyme 12-7 maintains the catalytic potential of equivalent DNAzymes, which has important implications for the evolution of XNA catalysts and their contributions to future applications in synthetic biology.
Collapse
Affiliation(s)
- Yajun Wang
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| | - Alexander Vorperian
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| | - Mouhamad Shehabat
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| |
Collapse
|
119
|
Rosales-Hurtado M, Meffre P, Szurmant H, Benfodda Z. Synthesis of histidine kinase inhibitors and their biological properties. Med Res Rev 2019; 40:1440-1495. [PMID: 31802520 DOI: 10.1002/med.21651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/11/2022]
Abstract
Infections caused by multidrug-resistant bacteria represent a significant and ever-increasing cause of morbidity and mortality. There is thus an urgent need to develop efficient and well-tolerated antibacterials targeting unique cellular processes. Numerous studies have led to the identification of new biological targets to fight bacterial resistance. Two-component signal transduction systems are widely employed by bacteria to translate external and cellular signals into a cellular response. They are ubiquitous in bacteria, absent in the animal kingdom and are integrated into various virulence pathways. Several chemical series, including isothiazolidones, imidazolium salts, benzoxazines, salicylanilides, thiophenes, thiazolidiones, benzimidazoles, and other derivatives deduced by different approaches have been reported in the literature to have histidine kinase (HK) inhibitory activity. In this review, we report on the design and the synthesis of these HKs inhibitors and their potential to serve as antibacterial agents.
Collapse
Affiliation(s)
| | | | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | | |
Collapse
|
120
|
McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2019; 92:327-344. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Ioana Cozma
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1.,Department of Surgery, Division of General Surgery , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| |
Collapse
|
121
|
Ekesan Ş, York DM. Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8-17 DNAzyme in solution. Nucleic Acids Res 2019; 47:10282-10295. [PMID: 31511899 PMCID: PMC6821293 DOI: 10.1093/nar/gkz773] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 02/01/2023] Open
Abstract
We perform molecular dynamics simulations, based on recent crystallographic data, on the 8-17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
122
|
Du S, Li Y, Chai Z, Shi W, He J. Functionalization of 8-17 DNAzymes modulates catalytic efficiency and divalent metal ion preference. Bioorg Chem 2019; 94:103401. [PMID: 31711763 DOI: 10.1016/j.bioorg.2019.103401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
8-17 and 17E DNAzyme are being explored as biosensors for metal ions and RNA motifs of interest, more sensitive and efficient DNAzymes are required to meet the practical applications. Their similarity in the catalytic cores and differences in catalytic efficiency and metal ion dependence initiated great interest about the contribution of the catalytic residues. Functionalization of four adenine residues in the catalytic cores of 8-17 DNAzyme and 17E was conducted with amino, guanidinium, and imidazolyl groups. In the bulge loops of 8-17 and 17E, N6-(3-aminopropyl)-2'-deoxyadenosine (residue 1) at A15 led to new DNAzymes 8-17DZ-A15-1 and 17E-A15-1, with much more efficient cleavage ability in the Ca2+-mediated reaction and the greater preference for Ca2+ over Mg2+ than 8-17 DNAzyme and 17E, respectively, especially with a concentration-dependent increase of the selectivity, which is different from most DNAzymes with the similar dependence on both Mg2+ and Ca2+. With this kind of post-selection modification on 8-17 DNAzymes, for the first time, the catalytic efficiency and metal ion selectivity could be positively modulated. It is also helpful for the catalyic mechanistic studies of these DNAzymes, especially, the role of the unconserved A15 should be emphasized.
Collapse
Affiliation(s)
- Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhilong Chai
- School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China
| | - Weiguo Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
123
|
Kostenbader K, York DM. Molecular simulations of the pistol ribozyme: unifying the interpretation of experimental data and establishing functional links with the hammerhead ribozyme. RNA (NEW YORK, N.Y.) 2019; 25:1439-1456. [PMID: 31363004 PMCID: PMC6795133 DOI: 10.1261/rna.071944.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
The pistol ribozyme (Psr) is among the most recently discovered RNA enzymes and has been the subject of experiments aimed at elucidating the mechanism. Recent biochemical studies have revealed exciting clues about catalytic interactions in the active site not apparent from available crystallographic data. The present work unifies the interpretation of the existing body of structural and functional data on Psr by providing a dynamical model for the catalytically active state in solution from molecular simulation. Our results suggest that a catalytic Mg2+ ion makes inner-sphere contact with G33:N7 and outer-sphere coordination to the pro-RP of the scissile phosphate, promoting electrostatic stabilization of the dianionic transition state and neutralization of the developing charge of the leaving group through a metal-coordinated water molecule that is made more acidic by a hydrogen bond donated from the 2'OH of P32. This model is consistent with experimental activity-pH and mutagenesis data, including sensitivity to G33(7cG) and phosphorothioate substitution/metal ion rescue. The model suggests several experimentally testable predictions, including the response of cleavage activity to mutations at G42 and P32 positions in the ribozyme, and thio substitutions of the substrate in the presence of different divalent metal ions. Further, the model identifies striking similarities of Psr to the hammerhead ribozyme (HHr), including similar global fold, organization of secondary structure around an active site three-way junction, catalytic metal ion binding mode, and guanine general base. However, the specific binding mode and role of the Mg2+ ion, as well as a conserved 2'-OH in the active site, are interrelated but subtly different between the ribozymes.
Collapse
Affiliation(s)
- Ken Kostenbader
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
124
|
Moon WJ, Liu J. Replacing Mg2+by Fe2+for RNA‐Cleaving DNAzymes. Chembiochem 2019; 21:401-407. [DOI: 10.1002/cbic.201900344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Woohyun J. Moon
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
125
|
Guo X, Li M, Zhao R, Yang Y, Wang R, Wu F, Jia L, Zhang Y, Wang L, Qu Z, Wang F, Zhu Y, Hao R, Zhang X, Song H. Structural and positional impact on DNAzyme-based electrochemical sensors for metal ions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102035. [DOI: 10.1016/j.nano.2019.102035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
|
126
|
Yamagami R, Huang R, Bevilacqua PC. Cellular Concentrations of Nucleotide Diphosphate-Chelated Magnesium Ions Accelerate Catalysis by RNA and DNA Enzymes. Biochemistry 2019; 58:3971-3979. [PMID: 31512860 DOI: 10.1021/acs.biochem.9b00578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNAs are involved in myriad cellular events. In general, RNA function is affected by cellular conditions. For instance, molecular crowding promotes RNA folding through compaction of the RNA. Metabolites generally destabilize RNA secondary structure, which improves RNA folding cooperativity and increases the fraction of functional RNA. Our recent studies demonstrate that cellular concentrations of amino acid-chelated magnesium (aaCM) stimulate RNA folding and catalysis while protecting RNAs from magnesium ion-induced degradation. However, effects of other cellular magnesium ion chelators on RNA function have not been tested. Herein, we report that nucleotide diphosphate-chelated magnesium, which is of intermediate strength, promotes RNA catalysis much like aaCM. Nucleotides are some of the major metabolites in cells and have one to three phosphates, which have increasingly tight binding of magnesium. On the basis of binding calculations, ∼85% ATP, ∼40% ADP, and only 5% AMP are estimated to possess a magnesium ion under cellular conditions of 0.50 mM Mg2+free. We tested the self-cleaving activity of the hammerhead ribozyme in the presence of these chelated magnesium species. Our results indicate that NTP-chelated magnesium and NMP-chelated magnesium do not appreciably stimulate RNA catalysis, whereas NDP-chelated magnesium promotes RNA catalysis up to 6.5-fold. Inspired by NDP, we observed similar stimulatory effects for several other Mg2+ diphosphate-containing metabolites, including UDP-GlcNAC and UDP-Glc; in addition, we found similar effects for a DNAzyme. Thus, rate stimulatory effects are general with respect to the diphosphate and nucleic acid enzyme. These results implicate magnesium-chelated diphosphate metabolites as general facilitators of RNA function inside cells.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Center for RNA Molecular Biology , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ruochuan Huang
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Philip C Bevilacqua
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Center for RNA Molecular Biology , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Department of Biochemistry and Molecular Biology , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
127
|
Yang J, Zhang J, Xing J, Shi Z, Han H, Li Q. Inhibition of proliferation and migration of tumor cells through phenylboronic acid-functionalized polyamidoamine-mediated delivery of a therapeutic DNAzyme Dz13. Int J Nanomedicine 2019; 14:6371-6385. [PMID: 31496692 PMCID: PMC6691943 DOI: 10.2147/ijn.s211744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/27/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The phenylboronic acid-functionalized polyamidoamine (PP) was employed as a gene carrier for Dz13 delivery, inducing an obvious anticancer response. MATERIALS AND METHODS The Dz13 condensation ability of PP was evaluated through gel retardation assay. The cellular uptake mechanism of PP/Dz13 nanoparticles was studied using confocal laser scanning microscope and flow cytometer. The inhibition ability of cell proliferation, migration and invasion was investigated through MTT assay, flow cytometry, wound healing and Transwell migration assays, using hepatocarcinoma cell line HepG2 as a model. Finally, Western blotting analysis was used to detect the signaling pathway associated with the inhibition of cell apoptosis and migration induced by Dz13 delivery. RESULTS The carrier PP could efficiently condense Dz13 into stable nanoparticles at mass ratios of >1.5. The hydrodynamic diameter and zeta potential of PP/Dz13 nanoparticles were measured to be 204.77 nm and +22.00 mV at a mass ratio of 10.0, respectively. The nanoparticles could realize an efficient cellular uptake in sialic acid-dependent endocytosis manner. Moreover, the nanoparticles exhibited an obvious antiproliferation effect through the induction of cell apoptosis and cell cycle arrest due to the cleavage of c-Jun mRNA. Besides, the suppression of cell migration and invasion could be achieved after the PP/Dz13 transfection, attributing to the decreased expression level of MMP-2 and MMP-9. CONCLUSION The PP provided a potential delivery system to achieve the tumor-targeting gene therapy.
Collapse
Affiliation(s)
- Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Zhiyuan Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| |
Collapse
|
128
|
Tessitore G, Maurizio SL, Sabri T, Capobianco JA. Intrinsic Time‐Tunable Emissions in Core–Shell Upconverting Nanoparticle Systems. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gabriella Tessitore
- Department of Chemistry and Biochemistry and Centre for NanoScience ResearchConcordia University 7141 Sherbrooke St. W. Montreal Quebec H4B 1R6 Canada
| | - Steven L. Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience ResearchConcordia University 7141 Sherbrooke St. W. Montreal Quebec H4B 1R6 Canada
| | - Tarek Sabri
- Department of Chemistry and Biochemistry and Centre for NanoScience ResearchConcordia University 7141 Sherbrooke St. W. Montreal Quebec H4B 1R6 Canada
| | - John A. Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience ResearchConcordia University 7141 Sherbrooke St. W. Montreal Quebec H4B 1R6 Canada
| |
Collapse
|
129
|
Nucleic acid enzymes based on functionalized nucleosides. Curr Opin Chem Biol 2019; 52:93-101. [PMID: 31307007 DOI: 10.1016/j.cbpa.2019.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Nucleic acid-based enzymes have recently joined their proteinaceous counterparts as important biocatalysts. While RNA enzymes (ribozymes) are found in nature, deoxyribozymes or DNAzymes are man-made entities. Numerous ribozymes and DNAzymes have been identified by Darwinian selection methods to catalyze a broad array of chemical transformations. Despite these important advances, practical applications involving nucleic acid enzymes are often plagued by relatively poor pharmacokinetic properties and cellular uptake, rapid degradation by nucleases and/or by the limited chemical arsenal carried by natural DNA and RNA. In this review, the two main chemical approaches for the modification of nucleic acid-based catalysts, particularly DNAzymes, are described. These methods aim at improving the functional properties of nucleic acid enzymes by mitigating some of these shortcomings. In this context, recent developments in the post-SELEX processing of existing nucleic acid catalysts as well as efforts for the selection of DNAzymes and ribozymes with modified nucleoside triphosphates are summarized.
Collapse
|
130
|
Liu H, Wang R, Yu X, Shen F, Lan W, Haruehanroengra P, Yao Q, Zhang J, Chen Y, Li S, Wu B, Zheng L, Ma J, Lin J, Cao C, Li J, Sheng J, Gan J. High-resolution DNA quadruplex structure containing all the A-, G-, C-, T-tetrads. Nucleic Acids Res 2019; 46:11627-11638. [PMID: 30285239 PMCID: PMC6265469 DOI: 10.1093/nar/gky902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
DNA can form diverse structures, which predefine their physiological functions. Besides duplexes that carry the genetic information, quadruplexes are the most well-studied DNA structures. In addition to their important roles in recombination, replication, transcription and translation, DNA quadruplexes have also been applied as diagnostic aptamers and antidisease therapeutics. Herein we further expand the sequence and structure complexity of DNA quadruplex by presenting a high-resolution crystal structure of DNA1 (5′-AGAGAGATGGGTGCGTT-3′). This is the first quadruplex structure that contains all the internal A-, G-, C-, T-tetrads, A:T:A:T tetrads and bulged nucleotides in one single structure; as revealed by site-specific mutagenesis and biophysical studies, the central ATGGG motif plays important role in the quadruplex formation. Interestingly, our structure also provides great new insights into cation recognition, including the first-time reported Pb2+, by tetrad structures.
Collapse
Affiliation(s)
- Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xiang Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fusheng Shen
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Suhua Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lina Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
131
|
Tessitore G, Maurizio SL, Sabri T, Capobianco JA. Intrinsic Time-Tunable Emissions in Core-Shell Upconverting Nanoparticle Systems. Angew Chem Int Ed Engl 2019; 58:9742-9751. [PMID: 31161694 DOI: 10.1002/anie.201904445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Color-tunable luminescence has been extensively investigated in upconverting nanoparticles for diverse applications, each exploiting emissions in different spectral regions. Manipulation of the emission wavelength is accomplished by varying the composition of the luminescent material or the characteristics of the excitation source. Herein, we propose core-shell β-NaGdF4 : Tm3+ , Yb3+ /β-NaGdF4 : Tb3+ nanoparticles as intrinsic time-tunable luminescent materials. The time dependency of the emission wavelength only depends on the different decay time of the two emitters, without additional variation of the dopant concentration or pumping source. The time-tunable emission was recorded with a commercially available camera. The dynamics of the emissions is thoroughly investigated, and we established that the energy transfer from the 1 D2 excited state of Tm3+ ions to the higher energy excited states of Tb3+ ions to be the principal mechanism to the population of the 5 D4 level for the Tb3+ ions.
Collapse
Affiliation(s)
- Gabriella Tessitore
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| | - Tarek Sabri
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
132
|
A Novel Small RNA-Cleaving Deoxyribozyme with a Short Binding Arm. Sci Rep 2019; 9:8224. [PMID: 31160698 PMCID: PMC6546695 DOI: 10.1038/s41598-019-44750-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/17/2019] [Indexed: 01/12/2023] Open
Abstract
Deoxyribozymes capable of catalyzing sequence-specific RNA cleavage have found broad applications in biotechnology, DNA computing and environmental sensing. Among these, deoxyribozyme 8–17 is the most common small DNA motif capable of catalyzing RNA cleavage. However, the extent to which other DNA molecules with similar catalytic motifs exist remains elusive. Here we report a novel RNA-cleaving deoxyribozyme called 10–12opt that functions with an equally small catalytic motif and an unusually short binding arm. This deoxyribozyme contains a 14-nucleotide catalytic core that preferentially catalyzes RNA cleavage at UN dinucleotide junctions (kobs = 0.9 h−1 for UU cleavage). Surprisingly, the left binding arm contains only three nucleotides and forms two canonical base pairs with the RNA substrate. Mutational analysis reveals that a riboguanosine residue 3-nucleotide downstream of cleavage site must not form canonical base pairing for the optimal catalysis, and this nucleobase likely participates in catalysis with its carbonyl O6 atom. Furthermore, we demonstrate that deoxyribozyme 10–12opt can be utilized to cleave certain microRNA sequences which are not preferentially cleaved by 8–17. Together, these results suggest that this novel RNA-cleaving deoxyribozyme forms a distinct catalytic structure than 8–17 and that sequence space may contain additional examples of DNA molecules that can cleave RNA at site-specific locations.
Collapse
|
133
|
Banno A, Higashi S, Shibata A, Ikeda M. A stimuli-responsive DNAzyme displaying Boolean logic-gate responses. Chem Commun (Camb) 2019; 55:1959-1962. [PMID: 30681683 DOI: 10.1039/c8cc09345h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introducing a desired stimuli-responsive function into catalytically active biomacromolecules is potentially useful in developing molecular tools for various bio-applications. In this paper, we discuss the development of a stimuli-responsive DNAzyme (catalytic deoxyribozyme) capable of displaying Boolean logic-gate responses.
Collapse
Affiliation(s)
- Ayaka Banno
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
134
|
Bu Y, Zhao M, Zhang G, Zhang X, Gao W, Jiang Q. Electroreduction of CO
2
on Cu Clusters: The Effects of Size, Symmetry, and Temperature. ChemElectroChem 2019. [DOI: 10.1002/celc.201801830] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi‐Fan Bu
- Key Laboratory of Automobile Materials Department of Materials Science and EngineeringJilin University 130022 Changchun China
| | - Ming Zhao
- Key Laboratory of Automobile Materials Department of Materials Science and EngineeringJilin University 130022 Changchun China
| | - Guo‐Xu Zhang
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology 150001 Harbin China
| | - Xinge Zhang
- School of Mechanical and Aerospace EngineeringJilin University 130022 Changchun China
| | - Wang Gao
- Key Laboratory of Automobile Materials Department of Materials Science and EngineeringJilin University 130022 Changchun China
| | - Qing Jiang
- Key Laboratory of Automobile Materials Department of Materials Science and EngineeringJilin University 130022 Changchun China
| |
Collapse
|
135
|
Giambasu GM, Case DA, York DM. Predicting Site-Binding Modes of Ions and Water to Nucleic Acids Using Molecular Solvation Theory. J Am Chem Soc 2019; 141:2435-2445. [PMID: 30632365 PMCID: PMC6574206 DOI: 10.1021/jacs.8b11474] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Site binding of ions and water shapes nucleic acids folding, dynamics, and biological function, complementing the more diffuse, nonspecific "territorial" ion binding. Unlike territorial binding, prediction of site-specific binding to nucleic acids remains an unsolved challenge in computational biophysics. This work presents a new toolset based on the 3D-RISM molecular solvation theory and topological analysis that predicts cation and water site binding to nucleic acids. 3D-RISM is shown to accurately capture alkali cations and water binding to the central channel, transversal loops, and grooves of the Oxytricha nova's telomeres' G-quadruplex ( Oxy-GQ), in agreement with high-resolution crystallographic data. To improve the computed cation occupancy along the Oxy-GQ central channel, it was necessary to refine and validate new cation-oxygen parameters using structural and thermodynamic data available for crown ethers and ion channels. This single set of parameters that describes both localized and delocalized binding to various biological systems is used to gain insight into cation occupancy along the Oxy-GQ channel under various salt conditions. The paper concludes with prospects for extending the method to predict divalent cation binding to nucleic acids. This work advances the forefront of theoretical methods able to provide predictive insight into ion atmosphere effects on nucleic acids function.
Collapse
Affiliation(s)
- George M. Giambasu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Darrin M. York
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
- Laboratory for Biomolecular Simulation Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
- Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
136
|
He Y, Zhou Y, Chen D, Liu J. Global Folding of a Na
+
‐Specific DNAzyme Studied by FRET. Chembiochem 2018; 20:385-393. [DOI: 10.1002/cbic.201800548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Zhou
- School of Chemistry and Biological EngineeringChangsha University of Science and Technology Changsha 410114 P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
137
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
138
|
RNA-Cleaving DNAzymes: Old Catalysts with New Tricks for Intracellular and In Vivo Applications. Catalysts 2018. [DOI: 10.3390/catal8110550] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNAzymes are catalytically active DNA molecules that are normally isolated through in vitro selection methods, among which RNA-cleaving DNAzymes that catalyze the cleavage of a single RNA linkage embedded within a DNA strand are the most studied group of this DNA enzyme family. Recent advances in DNA nanotechnology and engineering have generated many RNA-cleaving DNAzymes with unique recognition and catalytic properties. Over the past decade, numerous RNA-cleaving, DNAzymes-based functional probes have been introduced into many research areas, such as in vitro diagnostics, intracellular imaging, and in vivo therapeutics. This review focus on the fundamental insight into RNA-Cleaving DNAzymes and technical tricks for their intracellular and in vivo applications, highlighting the recent progress in the clinical trial of RNA-Cleaving DNAzymes with selected examples. The challenges and opportunities for the future translation of RNA-cleaving DNAzymes for biomedicine are also discussed.
Collapse
|
139
|
Abstract
The growing understanding of the immunopathogenesis of inflammatory bowel diseases (IBDs) has contributed to the identification of new targets whose expression/activity can be modulated for therapeutic purposes. Several approaches have been employed to develop selective pharmaceutical compounds; among these, antisense oligonucleotides (ASOs) or synthetic oligonucleotides represent a valid option for inhibiting or enhancing, respectively, the expression/function of molecules that have been implicated in the control of IBD-related inflammation. In this context, data have been accumulated for the following compounds: alicaforsen, an ASO targeting intercellular adhesion molecule-1, a transmembrane glycoprotein that regulates rolling and adhesion of leukocytes to inflamed intestine; DIMS0150 and BL-7040, two oligonucleotides that enhance Toll-like receptor-9 activity; Mongersen, an ASO that inhibits Smad7, thereby restoring transforming growth factor-β1/Smad-associated signaling; STNM01, a double-stranded RNA oligonucleotide silencing carbohydrate sulfotransferase, an enzyme involved in fibrogenic processes, and hgd40, a specific DNAzyme inhibiting expression of the transcription factor GATA3. In this article, we review the rationale and the available data relative to the use of these agents in IBD. Although pre-clinical and phase II trials in IBD support the use of oligonucleotide-based therapies for treating the pathogenic process occurring in the gut of patients with these disorders, further work is needed to establish whether and which patients can benefit from specific ASOs and identify biomarkers that could help optimize treatment.
Collapse
|
140
|
Sednev MV, Mykhailiuk V, Choudhury P, Halang J, Sloan KE, Bohnsack MT, Höbartner C. N 6 -Methyladenosine-Sensitive RNA-Cleaving Deoxyribozymes. Angew Chem Int Ed Engl 2018; 57:15117-15121. [PMID: 30276938 DOI: 10.1002/anie.201808745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/22/2018] [Indexed: 12/31/2022]
Abstract
Deoxyribozymes are synthetic enzymes made of DNA that can catalyze the cleavage or formation of phosphodiester bonds and are useful tools for RNA biochemistry. Herein, we report new RNA-cleaving deoxyribozymes to interrogate the methylation status of target RNAs, thereby providing an alternative method for the biochemical validation of RNA methylation sites containing N6 -methyladenosine, which is the most wide-spread and extensively investigated natural RNA modification. The developed deoxyribozymes are sensitive to the presence of N6 -methyladenosine in RNA near the cleavage site. One class of these DNA enzymes shows faster cleavage of methylated RNA, while others are strongly inhibited by the modified nucleotide. The general applicability of the new deoxyribozymes is demonstrated for several examples of natural RNA sequences, including a lncRNA and a set of C/D box snoRNAs, which have been suggested to contain m6 A as a regulatory element that influences RNA folding and protein binding.
Collapse
Affiliation(s)
- Maksim V Sednev
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Volodymyr Mykhailiuk
- International Max Planck Research School Molecular Biology, University of Göttingen, Göttingen, Germany.,Present address: Department of Physics, Technische Universität München, München, Germany
| | - Priyanka Choudhury
- International Max Planck Research School Molecular Biology, University of Göttingen, Göttingen, Germany.,Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Julia Halang
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Markus T Bohnsack
- International Max Planck Research School Molecular Biology, University of Göttingen, Göttingen, Germany.,Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Claudia Höbartner
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany.,International Max Planck Research School Molecular Biology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
141
|
Sednev MV, Mykhailiuk V, Choudhury P, Halang J, Sloan KE, Bohnsack MT, Höbartner C. N
6
‐Methyladenosine‐Sensitive RNA‐Cleaving Deoxyribozymes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maksim V. Sednev
- Universität WürzburgInstitut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Volodymyr Mykhailiuk
- International Max Planck Research School Molecular BiologyUniversity of Göttingen Göttingen Germany
- Present address: Department of PhysicsTechnische Universität München München Germany
| | - Priyanka Choudhury
- International Max Planck Research School Molecular BiologyUniversity of Göttingen Göttingen Germany
- Department of Molecular BiologyUniversity Medical Center Göttingen Humboldtallee 23 37073 Göttingen Germany
| | - Julia Halang
- Universität WürzburgInstitut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Katherine E. Sloan
- Department of Molecular BiologyUniversity Medical Center Göttingen Humboldtallee 23 37073 Göttingen Germany
| | - Markus T. Bohnsack
- International Max Planck Research School Molecular BiologyUniversity of Göttingen Göttingen Germany
- Department of Molecular BiologyUniversity Medical Center Göttingen Humboldtallee 23 37073 Göttingen Germany
| | - Claudia Höbartner
- Universität WürzburgInstitut für Organische Chemie Am Hubland 97074 Würzburg Germany
- International Max Planck Research School Molecular BiologyUniversity of Göttingen Göttingen Germany
| |
Collapse
|
142
|
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract encompassing two main clinical entities: Crohn's disease (CD) and ulcerative colitis (UC). These disorders are characterized by various grades of tissue damage and development of local complications and extra-intestinal manifestations. The cause of IBD remains unknown but accumulating evidence indicates that both CD and UC arise in genetically predisposed individuals as a result of the action of multiple environmental factors, which ultimately trigger excessive and poorly controlled immune response against antigens of the luminal flora. Despite this realization, a full understanding of IBD pathogenesis is still out of reach and, consequently, treatment is far from optimal. However, in recent years, several pathways of intestinal damage have been delineated and the improved knowledge has contributed to the development of new therapies. Various approaches have been used to either inhibit the expression and/or function of inflammatory molecules or enhance counter-regulatory mechanisms. This review summarizes the available pre-clinical and clinical data for antisense oligonucleotides and oligonucleotide-based therapy to provide a comprehensive understanding of the rationale and mechanism of action of these compounds in IBD. Key messages Preclinical studies and clinical trials show that antisense oligonucleotide (ASO)-based therapy could be of benefit in inflammatory bowel diseases. ASOs have an excellent safety profile. Technical issues emerged from clinical trials suggest that changes in drug formulation and/or route of administration could improve ASO efficacy.
Collapse
Affiliation(s)
- Irene Marafini
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| | - Giovanni Monteleone
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| |
Collapse
|
143
|
Cepeda-Plaza M, McGhee CE, Lu Y. Evidence of a General Acid-Base Catalysis Mechanism in the 8-17 DNAzyme. Biochemistry 2018; 57:1517-1522. [PMID: 29389111 PMCID: PMC5879137 DOI: 10.1021/acs.biochem.7b01096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNAzymes are catalytic DNA molecules that can perform a variety of reactions. Although advances have been made in obtaining DNAzymes via in vitro selection and many of them have been developed into sensors and imaging agents for metal ions, bacteria, and other molecules, the structural features responsible for these enzymatic reactions are still not well understood. Previous studies of the 8-17 DNAzyme have suggested conserved guanines close to the phosphodiester transfer site may play a role in the catalytic reaction. To identify the specific guanine and functional group of the guanine responsible for the reaction, we herein report the effects of replacing G1.1 and G14 (G; p Ka,N1 = 9.4) with analogues with a different p Ka at the N1 position, such as inosine (G14I; p Ka,N1 = 8.7), 2,6-diaminopurine (G14diAP; p Ka,N1 = 5.6), and 2-aminopurine (G14AP; p Ka,N1 = 3.8) on pH-dependent reaction rates. A comparison of the pH dependence of the reaction rates of these DNAzymes demonstrated that G14 in the bulge loop next to the cleavage site, is involved in proton transfer at the catalytic site. In contrast, we did not find any evidence of G1.1 being involved in acid-base catalysis. These results support general acid-base catalysis as a feasible strategy used in DNA catalysis, as in RNA and protein enzymes.
Collapse
Affiliation(s)
- Marjorie Cepeda-Plaza
- Department of Chemical Sciences, School of Exact Sciences, Universidad Andres Bello, República 275, Santiago, Chile
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| |
Collapse
|
144
|
Wang D, Ge C, Lv K, Zou Q, Liu Q, Liu L, Yang Q, Bao S. A simple lateral flow biosensor for rapid detection of lead(ii) ions based on G-quadruplex structure-switching. Chem Commun (Camb) 2018; 54:13718-13721. [PMID: 30452026 DOI: 10.1039/c8cc06810k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strip biosensor equipped with a colorimetric card shows great promise for in-field Pb2+ detection.
Collapse
Affiliation(s)
- Dou Wang
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Chenchen Ge
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Kongpeng Lv
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Qingshuang Zou
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Quan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
| | - Qinhe Yang
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
- China
- School of Traditional Chinese Medicine, Jinan University
- Guangzhou, 510632
| | - Shiyun Bao
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
| |
Collapse
|