101
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
102
|
Graham K, Chandrasekaran A, Wang L, Ladak A, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like VASP condensates drive actin polymerization and dynamic bundling. NATURE PHYSICS 2023; 19:574-585. [PMID: 38405682 PMCID: PMC10887402 DOI: 10.1038/s41567-022-01924-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/15/2022] [Indexed: 02/27/2024]
Abstract
The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin-binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet's surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
Collapse
Affiliation(s)
- Kristin Graham
- University of Texas at Austin, Department of Biomedical Engineering
| | | | - Liping Wang
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Aly Ladak
- University of Texas at Austin, Department of Biomedical Engineering
| | - Eileen M Lafer
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering
| | | |
Collapse
|
103
|
Gupta A, Joshi A, Arora K, Mukhopadhyay S, Guptasarma P. The bacterial nucleoid-associated proteins, HU, and Dps, condense DNA into context-dependent biphasic or multiphasic complex coacervates. J Biol Chem 2023; 299:104637. [PMID: 36963493 PMCID: PMC10141540 DOI: 10.1016/j.jbc.2023.104637] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
The bacterial chromosome, known as its nucleoid, is an amorphous assemblage of globular nucleoprotein domains. It exists in a state of phase separation from the cell's cytoplasm, as an irregularly-shaped, membrane-less, intracellular compartment. This state (the nature of which remains largely unknown) is maintained through bacterial generations ad infinitum. Here, we show that HU, and Dps, two of the most abundant nucleoid-associated proteins (NAPs) of Escherichia coli, undergo spontaneous complex coacervation with different forms of DNA/RNA, both individually and in each other's presence, to cause accretion and compaction of DNA/RNA into liquid-liquid phase separated (LLPS) condensates in vitro. Upon mixing with nucleic acids, HU-A and HU-B form (a) bi-phasic heterotypic mixed condensates in which HU-B helps to lower the Csat of HU-A; and also (b) multi-phasic heterotypic condensates, with Dps, in which de-mixed domains display different contents of HU and Dps. We believe that these modes of complex coacervation that are seen in vitro can serve as models for the in vivo relationships amongst NAPs in nucleoids, involving local and global variations in the relative abundances of the different NAPs, especially in de-mixed sub-domains that are characterized by differing grades of phase separation. Our results clearly demonstrate some quantitative, and some qualitative, differences in the coacervating abilities of different NAPs with DNA, potentially explaining (i) why E. coli has two isoforms of HU, and (ii) why changes in the abundances of HU and Dps facilitate the lag, logarithmic and stationary phases of E. coli growth.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| | - Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
104
|
Ji J, Wang W, Chen C. Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1023-1033. [PMID: 36876423 PMCID: PMC10415186 DOI: 10.3724/abbs.2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Biomolecules forming membraneless structures via liquid-liquid phase separation (LLPS) is a common event in living cells. Some liquid-like condensates can convert into solid-like aggregations, and such a phase transition process is related to some neurodegenerative diseases. Liquid-like condensates and solid-like aggregations usually exhibit distinctive fluidity and are commonly distinguished via their morphology and dynamic properties identified through ensemble methods. Emerging single-molecule techniques are a group of highly sensitive techniques, which can offer further mechanistic insights into LLPS and phase transition at the molecular level. Here, we summarize the working principles of several commonly used single-molecule techniques and demonstrate their unique power in manipulating LLPS, examining mechanical properties at the nanoscale, and monitoring dynamic and thermodynamic properties at the molecular level. Thus, single-molecule techniques are unique tools to characterize LLPS and liquid-to-solid phase transition under close-to-physiological conditions.
Collapse
Affiliation(s)
- Jinyao Ji
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| | - Wenjuan Wang
- School of Life SciencesTechnology Center for Protein SciencesTsinghua UniversityBeijing100084China
| | - Chunlai Chen
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| |
Collapse
|
105
|
Wang XQD, Fan D, Han Q, Liu Y, Miao H, Wang X, Li Q, Chen D, Gore H, Himadewi P, Pfeifer GP, Cierpicki T, Grembecka J, Su J, Chong S, Wan L, Zhang X. Mutant NPM1 Hijacks Transcriptional Hubs to Maintain Pathogenic Gene Programs in Acute Myeloid Leukemia. Cancer Discov 2023; 13:724-745. [PMID: 36455589 PMCID: PMC9975662 DOI: 10.1158/2159-8290.cd-22-0424] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. SIGNIFICANCE NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Xue Qing David Wang
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Dandan Fan
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Qinyu Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Qinglan Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Dong Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Haley Gore
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Pamela Himadewi
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaotian Zhang
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
106
|
Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: From development to cancer. Semin Cell Dev Biol 2023; 136:64-74. [PMID: 35410715 PMCID: PMC9883801 DOI: 10.1016/j.semcdb.2022.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
The nucleolus is a large nuclear membraneless organelle responsible for ribosome biogenesis. Ribosomes are cytoplasmic macromolecular complexes comprising RNA and proteins that link amino acids together to form new proteins. The biogenesis of ribosomes is an intricate multistep process that involves the transcription of ribosomal DNA (rDNA), the processing of ribosomal RNA (rRNA), and the assembly of rRNA with ribosomal proteins to form active ribosomes. Nearly all steps necessary for ribosome production and maturation occur in the nucleolus. Nucleolar shape, size, and number are directly linked to ribosome biogenesis. Errors in the steps of ribosomal biogenesis are sensed by the nucleolus causing global alterations in nucleolar function and morphology. This phenomenon, known as nucleolar stress, can lead to molecular changes such as stabilization of p53, which in turn activates cell cycle arrest or apoptosis. In this review, we discuss recent work on the association of nucleolar stress with degenerative diseases and developmental defects. In addition, we highlight the importance of de novo nucleotide biosynthesis for the enhanced nucleolar activity of cancer cells and discuss targeting nucleotide biosynthesis as a strategy to activate nucleolar stress to specifically target cancer cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
107
|
Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 ( NPM1) Mutation. Int J Mol Sci 2023; 24:3161. [PMID: 36834572 PMCID: PMC9958584 DOI: 10.3390/ijms24043161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
Collapse
Affiliation(s)
| | | | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
108
|
Li H, Ju Y, Liu WW, Ma YY, Ye H, Li N. Phase Separation of Purified Human LSM4 Protein. Mol Biol 2023. [DOI: 10.1134/s0026893323010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
109
|
Tani I, Oikawa Y, Doi S, Janairo JIB, Kamada R, Sakaguchi K. Ribosomal protein uL30 undergoes phase separation with nucleophosmin and regulates nucleolar formation in the absence of RNA. Biochem Biophys Res Commun 2023; 642:35-40. [PMID: 36543022 DOI: 10.1016/j.bbrc.2022.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The nucleolus is a membrane-less structure that exists in the nucleus of cells and plays a crucial role in ribosome biogenesis. It is known to be formed through liquid-liquid phase separation (LLPS) caused by the interaction of various nucleolar proteins and nucleic acids. Recently, many studies on LLPS with nucleolar proteins in the presence of RNA showed the importance of electrostatic interactions and cation-pi interactions among RNA and intrinsically disordered regions of proteins. However, it is reported that the initiation of nucleolar formation is RNA polymerase I-independent. The mechanism of nucleolar formation in the early stage remains obscure. In this study, we showed for the first time that the ribosomal protein uL30 and a major nucleolar protein, nucleophosmin (NPM) formed liquid droplets in vitro in the absence of RNA. The liquid droplet formation with uL30 and NPM may be derived from the interaction between the basic regions of uL30 and acidic regions of the oligomeric NPM. The knockdown of uL30 in cells significantly reduced the number of nucleoli, while it did not alter the protein level of NPM. The results showed that LLPS and nucleolar formation were affected by changes in uL30 levels. Our results suggest that the protein-protein interaction between nucleolar proteins may play an important role in nucleolar formation in the early stages when the rRNA content is very low.
Collapse
Affiliation(s)
- Itsumi Tani
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yui Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Seiyo Doi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Jose Isagani B Janairo
- Department of Biology, College of Science, De La Salle University, Manila, 0922, Philippines
| | - Rui Kamada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
110
|
André AAM, Yewdall NA, Spruijt E. Crowding-induced phase separation and gelling by co-condensation of PEG in NPM1-rRNA condensates. Biophys J 2023; 122:397-407. [PMID: 36463407 PMCID: PMC9892608 DOI: 10.1016/j.bpj.2022.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The crowdedness of the cell calls for adequate intracellular organization. Biomolecular condensates, formed by liquid-liquid phase separation of intrinsically disordered proteins and nucleic acids, are important organizers of cellular fluids. To underpin the molecular mechanisms of protein condensation, cell-free studies are often used where the role of crowding is not investigated in detail. Here, we investigate the effects of macromolecular crowding on the formation and material properties of a model heterotypic biomolecular condensate, consisting of nucleophosmin (NPM1) and ribosomal RNA (rRNA). We studied the effect of the macromolecular crowding agent poly(ethylene glycol) (PEG), which is often considered an inert crowding agent. We observed that PEG could induce both homotypic and heterotypic phase separation of NPM1 and NPM1-rRNA, respectively. Crowding increases the condensed concentration of NPM1 and decreases its equilibrium dilute phase concentration, although no significant change in the concentration of rRNA in the dilute phase was observed. Interestingly, the crowder itself is concentrated in the condensates, suggesting that co-condensation rather than excluded volume interactions underlie the enhanced phase separation by PEG. Fluorescence recovery after photobleaching measurements indicated that both NPM1 and rRNA become immobile at high PEG concentrations, indicative of a liquid-to-gel transition. Together, these results provide more insight into the role of synthetic crowding agents in phase separation and demonstrate that condensate properties determined in vitro depend strongly on the addition of crowding agents.
Collapse
Affiliation(s)
- Alain A M André
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - N Amy Yewdall
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
111
|
Saluri M, Leppert A, Gese GV, Sahin C, Lama D, Kaldmäe M, Chen G, Elofsson A, Allison TM, Arsenian-Henriksson M, Johansson J, Lane DP, Hällberg BM, Landreh M. A "grappling hook" interaction connects self-assembly and chaperone activity of Nucleophosmin 1. PNAS NEXUS 2023; 2:pgac303. [PMID: 36743470 PMCID: PMC9896144 DOI: 10.1093/pnasnexus/pgac303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.
Collapse
Affiliation(s)
- Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden,Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, 114 19 Stockholm, Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Upper Riccarton, Christchurch 8041, New Zealand
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | |
Collapse
|
112
|
Jin X, Tanaka H, Jin M, Fujita K, Homma H, Inotsume M, Yong H, Umeda K, Kodera N, Ando T, Okazawa H. PQBP5/NOL10 maintains and anchors the nucleolus under physiological and osmotic stress conditions. Nat Commun 2023; 14:9. [PMID: 36599853 PMCID: PMC9813255 DOI: 10.1038/s41467-022-35602-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Polyglutamine binding protein 5 (PQBP5), also called nucleolar protein 10 (NOL10), binds to polyglutamine tract sequences and is expressed in the nucleolus. Using dynamic imaging of high-speed atomic force microscopy, we show that PQBP5/NOL10 is an intrinsically disordered protein. Super-resolution microscopy and correlative light and electron microscopy method show that PQBP5/NOL10 makes up the skeletal structure of the nucleolus, constituting the granule meshwork in the granular component area, which is distinct from other nucleolar substructures, such as the fibrillar center and dense fibrillar component. In contrast to other nucleolar proteins, which disperse to the nucleoplasm under osmotic stress conditions, PQBP5/NOL10 remains in the nucleolus and functions as an anchor for reassembly of other nucleolar proteins. Droplet and thermal shift assays show that the biophysical features of PQBP5/NOL10 remain stable under stress conditions, explaining the spatial role of this protein. PQBP5/NOL10 can be functionally depleted by sequestration with polyglutamine disease proteins in vitro and in vivo, leading to the pathological deformity or disappearance of the nucleolus. Taken together, these findings indicate that PQBP5/NOL10 is an essential protein needed to maintain the structure of the nucleolus.
Collapse
Affiliation(s)
- Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Huang Yong
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenichi Umeda
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
113
|
Ginell GM, Holehouse AS. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. Methods Mol Biol 2023; 2563:95-116. [PMID: 36227469 DOI: 10.1007/978-1-0716-2663-4_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular organization is determined by a combination of membrane-bound and membrane-less biomolecular assemblies that range from clusters of tens of molecules to micrometer-sized cellular bodies. Over the last decade, membrane-less assemblies have come to be referred to as biomolecular condensates, reflecting their ability to condense specific molecules with respect to the remainder of the cell. In many cases, the physics of phase transitions provides a conceptual framework and a mathematical toolkit to describe the assembly, maintenance, and dissolution of biomolecular condensates. Among the various quantitative and qualitative models applied to understand intracellular phase transitions, the stickers-and-spacers framework offers an intuitive yet rigorous means to map biomolecular sequences and structure to the driving forces needed for higher-order assembly. This chapter introduces the fundamental concepts behind the stickers-and-spacers model, considers its application to different biological systems, and discusses limitations and misconceptions around the model.
Collapse
Affiliation(s)
- Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
114
|
Sakthivel D, Brown-Suedel A, Bouchier-Hayes L. The role of the nucleolus in regulating the cell cycle and the DNA damage response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:203-241. [PMID: 37061332 DOI: 10.1016/bs.apcsb.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nucleolus has long been perceived as the site for ribosome biogenesis, but numerous studies suggest that the nucleolus carefully sequesters crucial proteins involved in multiple cellular functions. Among these, the role of nucleolus in cell cycle regulation is the most evident. The nucleolus is the first responder of growth-related signals to mediate normal cell cycle progression. The nucleolus also senses different cellular stress insults by activating diverse pathways that arrest the cell cycle, promote DNA repair, or initiate apoptosis. Here, we review the emerging concepts on how the ribosomal and nonribosomal nucleolar proteins mediate such cellular effects.
Collapse
|
115
|
Chiappetta A, Liao J, Tian S, Trcek T. Structural and functional organization of germ plasm condensates. Biochem J 2022; 479:2477-2495. [PMID: 36534469 PMCID: PMC10722471 DOI: 10.1042/bcj20210815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Reproductive success of metazoans relies on germ cells. These cells develop early during embryogenesis, divide and undergo meiosis in the adult to make sperm and oocytes. Unlike somatic cells, germ cells are immortal and transfer their genetic material to new generations. They are also totipotent, as they differentiate into different somatic cell types. The maintenance of immortality and totipotency of germ cells depends on extensive post-transcriptional and post-translational regulation coupled with epigenetic remodeling, processes that begin with the onset of embryogenesis [1, 2]. At the heart of this regulation lie germ granules, membraneless ribonucleoprotein condensates that are specific to the germline cytoplasm called the germ plasm. They are a hallmark of all germ cells and contain several proteins and RNAs that are conserved across species. Interestingly, germ granules are often structured and tend to change through development. In this review, we describe how the structure of germ granules becomes established and discuss possible functional outcomes these structures have during development.
Collapse
|
116
|
Ballmer D, Tardat M, Ortiz R, Graff-Meyer A, Ozonov E, Genoud C, Peters A, Fanourgakis G. HP1 proteins regulate nucleolar structure and function by secluding pericentromeric constitutive heterochromatin. Nucleic Acids Res 2022; 51:117-143. [PMID: 36533441 PMCID: PMC9841413 DOI: 10.1093/nar/gkac1159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nucleoli are nuclear compartments regulating ribosome biogenesis and cell growth. In embryonic stem cells (ESCs), nucleoli containing transcriptionally active ribosomal genes are spatially separated from pericentromeric satellite repeat sequences packaged in largely repressed constitutive heterochromatin (PCH). To date, mechanisms underlying such nuclear partitioning and the physiological relevance thereof are unknown. Here we show that repressive chromatin at PCH ensures structural integrity and function of nucleoli during cell cycle progression. Loss of heterochromatin proteins HP1α and HP1β causes deformation of PCH, with reduced H3K9 trimethylation (H3K9me3) and HP1γ levels, absence of H4K20me3 and upregulated major satellites expression. Spatially, derepressed PCH aberrantly associates with nucleoli accumulating severe morphological defects during S/G2 cell cycle progression. Hp1α/β deficiency reduces cell proliferation, ribosomal RNA biosynthesis and mobility of Nucleophosmin, a major nucleolar component. Nucleolar integrity and function require HP1α/β proteins to be recruited to H3K9me3-marked PCH and their ability to dimerize. Correspondingly, ESCs deficient for both Suv39h1/2 H3K9 HMTs display similar nucleolar defects. In contrast, Suv4-20h1/2 mutant ESCs lacking H4K20me3 at PCH do not. Suv39h1/2 and Hp1α/β deficiency-induced nucleolar defects are reminiscent of those defining human ribosomopathy disorders. Our results reveal a novel role for SUV39H/HP1-marked repressive constitutive heterochromatin in regulating integrity, function and physiology of nucleoli.
Collapse
Affiliation(s)
- Daniel Ballmer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland,Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Christel Genoud
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | - Grigorios Fanourgakis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
117
|
Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid–liquid phase separation. Essays Biochem 2022; 66:891-900. [DOI: 10.1042/ebc20220148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Abstract
Biomolecular condensate formation via liquid–liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the spatiotemporal organization of biomolecules in the cell. These membraneless condensates form and disperse dynamically in response to environmental stimuli. Growing evidence indicates that the liquid-like condensates not only play functional physiological roles but are also implicated in a wide range of human diseases. As a major component of biomolecular condensates, intrinsically disordered proteins (IDPs) are intimately involved in the LLPS process. During the last decade, great efforts have been made on the macroscopic characterization of the physicochemical properties and biological functions of liquid condensates both in vitro and in the cellular context. However, characterization of the conformations and interactions at the molecular level within phase-separated condensates is still at an early stage. In the present review, we summarize recent biophysical studies investigating the intramolecular conformational changes of IDPs upon LLPS and the intermolecular clustering of proteins undergoing LLPS, with a particular focus on single-molecule fluorescence detection. We also discuss how these microscopic features are linked to the macroscopic phase transitions that are relevant to the physiological and pathological roles of the condensates.
Collapse
|
118
|
Luo Y, Xiang S, Feng J. Protein Phase Separation: New Insights into Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235971. [PMID: 36497453 PMCID: PMC9740862 DOI: 10.3390/cancers14235971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.
Collapse
|
119
|
Amankwaa B, Schoborg T, Labrador M. Drosophila insulator proteins exhibit in vivo liquid-liquid phase separation properties. Life Sci Alliance 2022; 5:5/12/e202201536. [PMID: 35853678 PMCID: PMC9297610 DOI: 10.26508/lsa.202201536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Drosophila insulator proteins and the cohesin subunit Rad21 coalesce in vivo to form liquid-droplet condensates, suggesting that liquid–liquid phase separation mediates their function in 3D genome organization. Mounting evidence implicates liquid–liquid phase separation (LLPS), the condensation of biomolecules into liquid-like droplets in the formation and dissolution of membraneless intracellular organelles (MLOs). Cells use MLOs or condensates for various biological processes, including emergency signaling and spatiotemporal control over steady-state biochemical reactions and heterochromatin formation. Insulator proteins are architectural elements involved in establishing independent domains of transcriptional activity within eukaryotic genomes. In Drosophila, insulator proteins form nuclear foci known as insulator bodies in response to osmotic stress. However, the mechanism through which insulator proteins assemble into bodies is yet to be investigated. Here, we identify signatures of LLPS by insulator bodies, including high disorder tendency in insulator proteins, scaffold–client–dependent assembly, extensive fusion behavior, sphericity, and sensitivity to 1,6-hexanediol. We also show that the cohesin subunit Rad21 is a component of insulator bodies, adding to the known insulator protein constituents and γH2Av. Our data suggest a concerted role of cohesin and insulator proteins in insulator body formation and under physiological conditions. We propose a mechanism whereby these architectural proteins modulate 3D genome organization through LLPS.
Collapse
Affiliation(s)
- Bright Amankwaa
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
120
|
Chromatin localization of nucleophosmin organizes ribosome biogenesis. Mol Cell 2022; 82:4443-4457.e9. [PMID: 36423630 PMCID: PMC9949351 DOI: 10.1016/j.molcel.2022.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Ribosome biogenesis takes place in the nucleolus, a nuclear membrane-less organelle. Although well studied, it remains unknown how nascent ribosomal subunits separate from the central chromatin compartment and move to the outer granular component, where maturation occurs. We find that the Schizosaccharomyces pombe nucleophosmin-like protein Fkbp39 localizes to rDNA sites encoding the 60S subunit rRNA, and this localization contributes to its specific association with nascent 60S subunits. Fkbp39 dissociates from chromatin to bind nascent 60S subunits, causing the latter to partition away from chromatin and from nascent 40S subunits through liquid-liquid phase separation. In vivo, Fkbp39 binding directs the translocation of nascent 60S subunits toward the nucleophosmin-rich granular component. This process increases the efficiency of 60S subunit assembly, facilitating the incorporation of 60S RNA domain III. Thus, chromatin localization determines the specificity of nucleophosmin in sorting nascent ribosomal subunits and coordinates their movement into specialized assembly compartments within the nucleolus.
Collapse
|
121
|
Florio D, La Manna S, Di Natale C, Leone M, Mercurio FA, Napolitano F, Malfitano AM, Marasco D. Insights into Network of Hot Spots of Aggregation in Nucleophosmin 1. Int J Mol Sci 2022; 23:14704. [PMID: 36499032 PMCID: PMC9736328 DOI: 10.3390/ijms232314704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
In a protein, point mutations associated with diseases can alter the native structure and provide loss or alteration of functional levels, and an internal structural network defines the connectivity among domains, as well as aggregate/soluble states' equilibria. Nucleophosmin (NPM)1 is an abundant nucleolar protein, which becomes mutated in acute myeloid leukemia (AML) patients. NPM1-dependent leukemogenesis, which leads to its aggregation in the cytoplasm (NPMc+), is still obscure, but the investigations have outlined a direct link between AML mutations and amyloid aggregation. Protein aggregation can be due to the cooperation among several hot spots located within the aggregation-prone regions (APR), often predictable with bioinformatic tools. In the present study, we investigated potential APRs in the entire NPM1 not yet investigated. On the basis of bioinformatic predictions and experimental structures, we designed several protein fragments and analyzed them through typical aggrsegation experiments, such as Thioflavin T (ThT), fluorescence and scanning electron microscopy (SEM) experiments, carried out at different times; in addition, their biocompatibility in SHSY5 cells was also evaluated. The presented data clearly demonstrate the existence of hot spots of aggregation located in different regions, mostly in the N-terminal domain (NTD) of the entire NPM1 protein, and provide a more comprehensive view of the molecular details potentially at the basis of NPMc+-dependent AML.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, 80125 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), 80145 Naples, Italy
| | | | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging (CNR), 80145 Naples, Italy
| |
Collapse
|
122
|
La Manna S, Florio D, Panzetta V, Roviello V, Netti PA, Di Natale C, Marasco D. Hydrogelation tunability of bioinspired short peptides. SOFT MATTER 2022; 18:8418-8426. [PMID: 36300826 DOI: 10.1039/d2sm01385a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular assemblies of short peptides are experiencing a stimulating flowering. Herein, we report a novel class of bioinspired pentapeptides, not bearing Phe, that form hydrogels with fibrillar structures. The inherent sequence comes from the fragment 269-273 of nucleophosmin 1 protein, that is normally involved in liquid-liquid phase separation processes into the nucleolus. By means of rheology, spectroscopy, and scanning microscopy the crucial roles of the extremities in the modulation of the mechanical properties of hydrogels were elucidated. Three of four peptide showed a typical shear-thinning profile and a self-assembly into hierarchical nanostructures fibers and two of them resulted biocompatible in MCF7 cells. The presence of an amide group at C-terminal extremity caused the fastest aggregation and the major content of structured intermediates during gelling process. The tunable mechanical and structural features of this class of hydrogels render derived supramolecular systems versatile and suitable for future biomedical applications.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Roviello
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
123
|
Schmidt HB, Jaafar ZA, Wulff BE, Rodencal JJ, Hong K, Aziz-Zanjani MO, Jackson PK, Leonetti MD, Dixon SJ, Rohatgi R, Brandman O. Oxaliplatin disrupts nucleolar function through biophysical disintegration. Cell Rep 2022; 41:111629. [PMID: 36351392 PMCID: PMC9749789 DOI: 10.1016/j.celrep.2022.111629] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/28/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Platinum (Pt) compounds such as oxaliplatin are among the most commonly prescribed anti-cancer drugs. Despite their considerable clinical impact, the molecular basis of platinum cytotoxicity and cancer specificity remain unclear. Here we show that oxaliplatin, a backbone for the treatment of colorectal cancer, causes liquid-liquid demixing of nucleoli at clinically relevant concentrations. Our data suggest that this biophysical defect leads to cell-cycle arrest, shutdown of Pol I-mediated transcription, and ultimately cell death. We propose that instead of targeting a single molecule, oxaliplatin preferentially partitions into nucleoli, where it modifies nucleolar RNA and proteins. This mechanism provides a general approach for drugging the increasing number of cellular processes linked to biomolecular condensates.
Collapse
Affiliation(s)
- H Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Zane A Jaafar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - B Erik Wulff
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kibeom Hong
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad O Aziz-Zanjani
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Onn Brandman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
124
|
Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21:841-862. [PMID: 35974095 PMCID: PMC9380678 DOI: 10.1038/s41573-022-00505-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.
Collapse
|
125
|
NOP53 undergoes liquid-liquid phase separation and promotes tumor radio-resistance. Cell Death Dis 2022; 8:436. [PMCID: PMC9622906 DOI: 10.1038/s41420-022-01226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Aberrant DNA damage response (DDR) axis remains the major molecular mechanism for tumor radio-resistance. We recently characterized liquid-liquid phase separation (LLPS) as an essential mechanism of DDR, and identified several key DDR factors as potential LLPS proteins, including nucleolar protein NOP53. In this study, we found that NOP53 formed highly concentrated droplets in vivo and in vitro, which had liquid-like properties including the fusion of adjacent condensates, rapid fluorescence recovery after photobleaching and the sensitivity to 1,6-hexanediol. Moreover, the intrinsically disordered region 1 (IDR1) is required for NOP53 phase separation. In addition, multivalent-arginine-rich linear motifs (M-R motifs), which are enriched in NOP53, were essential for its nucleolar localization, but were dispensable for the LLPS of NOP53. Functionally, NOP53 silencing diminished tumor cell growth, and significantly sensitized colorectal cancer (CRC) cells to radiotherapy. Mechanically, NOP53 negatively regulated p53 pathway in CRC cells treated with or without radiation. Importantly, data from clinical samples confirmed a correlation between NOP53 expression and tumor radio-resistance. Together, these results indicate an important role of NOP53 in radio-resistance, and provide a potential target for tumor radio-sensitization.
Collapse
|
126
|
Fu Y, Liu Y, Wen T, Fang J, Chen Y, Zhou Z, Gu X, Wu H, Sheng J, Xu Z, Zou W, Chen B. Real-time imaging of RNA polymerase I activity in living human cells. J Biophys Biochem Cytol 2022; 222:213608. [PMID: 36282216 PMCID: PMC9606689 DOI: 10.1083/jcb.202202110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
RNA polymerase I (Pol I) synthesizes about 60% of cellular RNA by transcribing multiple copies of the ribosomal RNA gene (rDNA). The transcriptional activity of Pol I controls the level of ribosome biogenesis and cell growth. However, there is currently a lack of methods for monitoring Pol I activity in real time. Here, we develop LiveArt (live imaging-based analysis of rDNA transcription) to visualize and quantify the spatiotemporal dynamics of endogenous ribosomal RNA (rRNA) synthesis. LiveArt reveals mitotic silencing and reactivation of rDNA transcription, as well as the transcriptional kinetics of interphase rDNA. Using LiveArt, we identify SRFBP1 as a potential regulator of rRNA synthesis. We show that rDNA transcription occurs in bursts and can be altered by modulating burst duration and amplitude. Importantly, LiveArt is highly effective in the screening application for anticancer drugs targeting Pol I transcription. These approaches pave the way for a deeper understanding of the mechanisms underlying nucleolar functions.
Collapse
Affiliation(s)
- Yujuan Fu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yaxin Liu
- Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tanye Wen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yalong Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziying Zhou
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Gu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China,Insititute of Translational Medicine, Zhejiang University, Hangzhou, China,Wei Zou:
| | - Baohui Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China,Correspondence to Baohui Chen:
| |
Collapse
|
127
|
Rai SK, Mukhopadhyay S. Small molecules playing big roles: Tuning material properties of nucleolar condensates. Biophys J 2022; 121:3768-3770. [PMID: 36108626 PMCID: PMC9674976 DOI: 10.1016/j.bpj.2022.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, and Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, and Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
128
|
Courchaine E, Gelles-Watnick S, Machyna M, Straube K, Sauyet S, Enright J, Neugebauer KM. The coilin N-terminus mediates multivalent interactions between coilin and Nopp140 to form and maintain Cajal bodies. Nat Commun 2022; 13:6005. [PMID: 36224177 PMCID: PMC9556525 DOI: 10.1038/s41467-022-33434-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Cajal bodies (CBs) are ubiquitous nuclear membraneless organelles (MLOs) that concentrate and promote efficient biogenesis of snRNA-protein complexes involved in splicing (snRNPs). Depletion of the CB scaffolding protein coilin disperses snRNPs, making CBs a model system for studying the structure and function of MLOs. Although it is assumed that CBs form through condensation, the biomolecular interactions responsible remain elusive. Here, we discover the unexpected capacity of coilin’s N-terminal domain (NTD) to form extensive fibrils in the cytoplasm and discrete nuclear puncta in vivo. Single amino acid mutational analysis reveals distinct molecular interactions between coilin NTD proteins to form fibrils and additional NTD interactions with the nuclear Nopp140 protein to form puncta. We provide evidence that Nopp140 has condensation capacity and is required for CB assembly. From these observations, we propose a model in which coilin NTD–NTD mediated assemblies make multivalent contacts with Nopp140 to achieve biomolecular condensation in the nucleus. Cajal bodies are membraneless organelles scaffolded by coilin protein. Here, coilin–coilin and coilin–Nopp140 interaction sites are identified and perturbed, revealing coilin’s capacity to form long fibrils and be remodeled into spherical structures.
Collapse
Affiliation(s)
- Edward Courchaine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sara Gelles-Watnick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sarah Sauyet
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jade Enright
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
129
|
Nucleus-translocated mitochondrial cytochrome c liberates nucleophosmin-sequestered ARF tumor suppressor by changing nucleolar liquid–liquid phase separation. Nat Struct Mol Biol 2022; 29:1024-1036. [DOI: 10.1038/s41594-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
|
130
|
Jeilani M, Billington K, Sunter JD, Dean S, Wheeler RJ. Nucleolar targeting in an early-branching eukaryote suggests a general mechanism for ribosome protein sorting. J Cell Sci 2022; 135:jcs259701. [PMID: 36052646 PMCID: PMC9659390 DOI: 10.1242/jcs.259701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalised eukaryotic cell demands accurate targeting of proteins to the organelles in which they function, whether membrane-bound (like the nucleus) or non-membrane-bound (like the nucleolus). Nucleolar targeting relies on positively charged localisation signals and has received rejuvenated interest since the widespread recognition of liquid-liquid phase separation (LLPS) as a mechanism contributing to nucleolus formation. Here, we exploit a new genome-wide analysis of protein localisation in the early-branching eukaryote Trypanosoma brucei to analyse general nucleolar protein properties. T. brucei nucleolar proteins have similar properties to those in common model eukaryotes, specifically basic amino acids. Using protein truncations and addition of candidate targeting sequences to proteins, we show both homopolymer runs and distributed basic amino acids give nucleolar partition, further aided by a nuclear localisation signal (NLS). These findings are consistent with phase separation models of nucleolar formation and physical protein properties being a major contributing mechanism for eukaryotic nucleolar targeting, conserved from the last eukaryotic common ancestor. Importantly, cytoplasmic ribosome proteins, unlike mitochondrial ribosome proteins, have more basic residues - pointing to adaptation of physicochemical properties to assist segregation.
Collapse
Affiliation(s)
- Milad Jeilani
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Karen Billington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Samuel Dean
- Warwick Medical School, Warwick University, Warwick CV4 7AL, UK
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
131
|
Liquid–Liquid Phase Separation of Biomacromolecules and Its Roles in Metabolic Diseases. Cells 2022; 11:cells11193023. [PMID: 36230986 PMCID: PMC9562192 DOI: 10.3390/cells11193023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) compartmentalizes and concentrates biomacromolecules into liquid-like condensates, which underlies membraneless organelles (MLOs) formation in eukaryotic cells. With increasing evidence of the LLPS concept and methods, this phenomenon as a novel principle accounts for explaining the precise spatial and temporal regulation of cellular functions. Moreover, the phenomenon that LLPS tends to concentrate proteins is often accompanied by several abnormal signals for human diseases. It is reported that multiple metabolic diseases are strongly associated with the deposition of insoluble proteinaceous aggregating termed amyloids. At present, recent studies have observed the roles of LLPS in several metabolic diseases, including type 2 diabetes mellitus (T2DM), Alzheimer’s disease (AD), and metabolic bone diseases (MBDs). This review aims to expound on the current concept and methods of LLPS and summarize its vital roles in T2DM, AD, and MBDs, uncover novel mechanisms of these metabolic diseases, and thus provide powerful potential therapeutic strategies and targets for ameliorating these metabolic diseases.
Collapse
|
132
|
Heckert A, Dahal L, Tjian R, Darzacq X. Recovering mixtures of fast-diffusing states from short single-particle trajectories. eLife 2022; 11:e70169. [PMID: 36066004 PMCID: PMC9451534 DOI: 10.7554/elife.70169] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) directly measures the dynamics of proteins in living cells and is a powerful tool to dissect molecular mechanisms of cellular regulation. Interpretation of SPT with fast-diffusing proteins in mammalian cells, however, is complicated by technical limitations imposed by fast image acquisition. These limitations include short trajectory length due to photobleaching and shallow depth of field, high localization error due to the low photon budget imposed by short integration times, and cell-to-cell variability. To address these issues, we investigated methods inspired by Bayesian nonparametrics to infer distributions of state parameters from SPT data with short trajectories, variable localization precision, and absence of prior knowledge about the number of underlying states. We discuss the advantages and disadvantages of these approaches relative to other frameworks for SPT analysis.
Collapse
Affiliation(s)
- Alec Heckert
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Liza Dahal
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, University of California, BerkeleyBerkeleyUnited States
- CIRM Center of Excellence, University of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- CIRM Center of Excellence, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
133
|
Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022; 36:2351-2367. [PMID: 36008542 PMCID: PMC9522592 DOI: 10.1038/s41375-022-01666-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Collapse
|
134
|
Kapitonova AA, Tugaeva KV, Varfolomeeva LA, Boyko KM, Cooley RB, Sluchanko NN. Structural basis for the recognition by 14-3-3 proteins of a conditional binding site within the oligomerization domain of human nucleophosmin. Biochem Biophys Res Commun 2022; 627:176-183. [PMID: 36041327 DOI: 10.1016/j.bbrc.2022.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Nucleophosmin 1 (NPM1) is a multifunctional protein regulating ribosome biogenesis, centrosome duplication and chromatin remodeling. Being a major nucleolar protein, NPM1 can migrate to the nucleus and the cytoplasm, which is controlled by changes of NPM1 oligomerization and interaction with other cell factors. NPM1 forms a stable pentamer with its N-terminal structured domain, where two nuclear export signals and several phosphorylation sites reside. This domain undergoes dissociation and disordering upon Ser48 phosphorylation in the subunit interface. Recent studies indicated that Ser48 is important for NPM1 interaction with other proteins including 14-3-3, the well-known phosphoserine/phosphothreonine binders, but the structural basis for 14-3-3/NPM1 interaction remained unaddressed. By fusing human 14-3-3ζ with an NPM1 segment surrounding Ser48, which was phosphorylated inside Escherichia coli cells by co-expressed protein kinase A, here we obtained the desired protein/phosphopeptide complex and determined its crystal structure. While biochemical data indicated that the interaction is driven by Ser48 phosphorylation, the crystallographic 14-3-3/phosphopeptide interface reveals an NPM1 conformation distinctly different from that in the NPM1 pentamer. Given the canonical phosphopeptide-binding mode observed in our crystal structure, Ser48 emerges as a conditional binding site whose recognition by 14-3-3 proteins is enabled by NPM1 phosphorylation, disassembly and disordering under physiological circumstances.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
135
|
Maity H, Baidya L, Reddy G. Salt-Induced Transitions in the Conformational Ensembles of Intrinsically Disordered Proteins. J Phys Chem B 2022; 126:5959-5971. [PMID: 35944496 DOI: 10.1021/acs.jpcb.2c03476] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salts modulate the behavior of intrinsically disordered proteins (IDPs) and influence the formation of membraneless organelles through liquid-liquid phase separation (LLPS). In low ionic strength solutions, IDP conformations are perturbed by the screening of electrostatic interactions, independent of the salt identity. In this regime, insight into the IDP behavior can be obtained using the theory for salt-induced transitions in charged polymers. However, salt-specific interactions with the charged and uncharged residues, known as the Hofmeister effect, influence IDP behavior in high ionic strength solutions. There is a lack of reliable theoretical models in high salt concentration regimes to predict the salt effect on IDPs. We propose a simulation methodology using a coarse-grained IDP model and experimentally measured water to salt solution transfer free energies of various chemical groups that allowed us to study the salt-specific transitions induced in the IDPs conformational ensemble. We probed the effect of three different monovalent salts on five IDPs belonging to various polymer classes based on charged residue content. We demonstrate that all of the IDPs of different polymer classes behave as self-avoiding walks (SAWs) at physiological salt concentration. In high salt concentrations, the transitions observed in the IDP conformational ensembles are dependent on the salt used and the IDP sequence and composition. Changing the anion with the cation fixed can result in the IDP transition from a SAW-like behavior to a collapsed globule. An important implication of these results is that a suitable salt can be identified to induce condensation of an IDP through LLPS.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
136
|
Somasundaram K, Gupta B, Jain N, Jana S. LncRNAs divide and rule: The master regulators of phase separation. Front Genet 2022; 13:930792. [PMID: 36035193 PMCID: PMC9399341 DOI: 10.3389/fgene.2022.930792] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Most of the human genome, except for a small region that transcribes protein-coding RNAs, was considered junk. With the advent of RNA sequencing technology, we know that much of the genome codes for RNAs with no protein-coding potential. Long non-coding RNAs (lncRNAs) that form a significant proportion are dynamically expressed and play diverse roles in physiological and pathological processes. Precise spatiotemporal control of their expression is essential to carry out various biochemical reactions inside the cell. Intracellular organelles with membrane-bound compartments are known for creating an independent internal environment for carrying out specific functions. The formation of membrane-free ribonucleoprotein condensates resulting in intracellular compartments is documented in recent times to execute specialized tasks such as DNA replication and repair, chromatin remodeling, transcription, and mRNA splicing. These liquid compartments, called membrane-less organelles (MLOs), are formed by liquid–liquid phase separation (LLPS), selectively partitioning a specific set of macromolecules from others. While RNA binding proteins (RBPs) with low complexity regions (LCRs) appear to play an essential role in this process, the role of RNAs is not well-understood. It appears that short nonspecific RNAs keep the RBPs in a soluble state, while longer RNAs with unique secondary structures promote LLPS formation by specifically binding to RBPs. This review will update the current understanding of phase separation, physio-chemical nature and composition of condensates, regulation of phase separation, the role of lncRNA in the phase separation process, and the relevance to cancer development and progression.
Collapse
|
137
|
Banani SF, Afeyan LK, Hawken SW, Henninger JE, Dall'Agnese A, Clark VE, Platt JM, Oksuz O, Hannett NM, Sagi I, Lee TI, Young RA. Genetic variation associated with condensate dysregulation in disease. Dev Cell 2022; 57:1776-1788.e8. [PMID: 35809564 PMCID: PMC9339523 DOI: 10.1016/j.devcel.2022.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 03/11/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022]
Abstract
A multitude of cellular processes involve biomolecular condensates, which has led to the suggestion that diverse pathogenic mutations may dysregulate condensates. Although proof-of-concept studies have identified specific mutations that cause condensate dysregulation, the full scope of the pathological genetic variation that affects condensates is not yet known. Here, we comprehensively map pathogenic mutations to condensate-promoting protein features in putative condensate-forming proteins and find over 36,000 pathogenic mutations that plausibly contribute to condensate dysregulation in over 1,200 Mendelian diseases and 550 cancers. This resource captures mutations presently known to dysregulate condensates, and experimental tests confirm that additional pathological mutations do indeed affect condensate properties in cells. These findings suggest that condensate dysregulation may be a pervasive pathogenic mechanism underlying a broad spectrum of human diseases, provide a strategy to identify proteins and mutations involved in pathologically altered condensates, and serve as a foundation for mechanistic insights into disease and therapeutic hypotheses.
Collapse
Affiliation(s)
- Salman F Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susana W Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Victoria E Clark
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ido Sagi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
138
|
Flipping the switch. Nat Chem Biol 2022; 18:1041-1042. [PMID: 35864334 DOI: 10.1038/s41589-022-01075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
139
|
Ng WS, Sielaff H, Zhao ZW. Phase Separation-Mediated Chromatin Organization and Dynamics: From Imaging-Based Quantitative Characterizations to Functional Implications. Int J Mol Sci 2022; 23:8039. [PMID: 35887384 PMCID: PMC9316379 DOI: 10.3390/ijms23148039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
As an effective and versatile strategy to compartmentalize cellular components without the need for lipid membranes, phase separation has been found to underpin a wide range of intranuclear processes, particularly those involving chromatin. Many of the unique physico-chemical properties of chromatin-based phase condensates are harnessed by the cell to accomplish complex regulatory functions in a spatially and temporally controlled manner. Here, we survey key recent findings on the mechanistic roles of phase separation in regulating the organization and dynamics of chromatin-based molecular processes across length scales, packing states and intranuclear functions, with a particular emphasis on quantitative characterizations of these condensates enabled by advanced imaging-based approaches. By illuminating the complex interplay between chromatin and various chromatin-interacting molecular species mediated by phase separation, this review sheds light on an emerging multi-scale, multi-modal and multi-faceted landscape that hierarchically regulates the genome within the highly crowded and dynamic nuclear space. Moreover, deficiencies in existing studies also highlight the need for mechanism-specific criteria and multi-parametric approaches for the characterization of chromatin-based phase separation using complementary techniques and call for greater efforts to correlate the quantitative features of these condensates with their functional consequences in close-to-native cellular contexts.
Collapse
Affiliation(s)
- Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
140
|
Tong X, Tang R, Xu J, Wang W, Zhao Y, Yu X, Shi S. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
141
|
Choi S, Meyer MO, Bevilacqua PC, Keating CD. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles. Nat Chem 2022; 14:1110-1117. [PMID: 35773489 DOI: 10.1038/s41557-022-00980-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
Liquid-liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles.
Collapse
Affiliation(s)
- Saehyun Choi
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - McCauley O Meyer
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA. .,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA. .,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
142
|
Niu J, Qiu C, Abbott NL, Gellman SH. Formation of versus Recruitment to RNA-Rich Condensates: Controlling Effects Exerted by Peptide Side Chain Identity. J Am Chem Soc 2022; 144:10386-10395. [PMID: 35639776 PMCID: PMC9746169 DOI: 10.1021/jacs.2c02222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liquid-liquid phase separation (LLPS), the spontaneous formation of contiguous liquid phases with distinct compositions, has been long known in chemical systems and more recently recognized as a ubiquitous feature of cell biology. We describe a system involving biologically relevant components, synthetic peptides, and total yeast RNA, that has enabled us to explore factors that underlie phase separation. Coulombic complementarity between a cationic peptide and anionic RNA is necessary but not sufficient for formation of a condensed phase in our system. In addition to a net positive charge, the peptide must present the proper type of cationic moiety. Guanidinium groups, as found in the Arg side chain, support phase separation, but ammonium groups, as found in the Lys side chain, or dimethylguanidinium groups, as found in post-translationally modified Arg side chains, do not support phase separation in our system. However, the cationic groups that do not support phase separation via interaction with RNA can nevertheless enable recruitment to a condensed phase, which reveals that the network of forces governing condensed phase formation can differ from the network of forces governing recruitment to such a phase. We introduce a new method for measuring the concentrations of components in condensed phases based on fluorine-containing additives and 19F NMR.
Collapse
Affiliation(s)
- Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Cindy Qiu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, New York 14853, USA
| | - Nicholas L. Abbott
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, New York 14853, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
143
|
Vicioso-Mantis M, Fueyo R, Navarro C, Cruz-Molina S, van Ijcken WFJ, Rebollo E, Rada-Iglesias Á, Martínez-Balbás MA. JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation. Nat Commun 2022; 13:3263. [PMID: 35672304 PMCID: PMC9174158 DOI: 10.1038/s41467-022-30614-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFβ-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFβ pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFβ pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFβ-driven response during mammalian neurogenesis. Here the authors demonstrate that TGFβ drives multi-enhancer contacts and ultimately gene activation during neuronal commitment, and that this requires the intrinsically disordered region (IDR) of the histone demethylase JMJD3 likely through its role in promoting phase-separated biomolecular condensates.
Collapse
|
144
|
Ide S, Tamura S, Maeshima K. Chromatin behavior in living cells: Lessons from single‐nucleosome imaging and tracking. Bioessays 2022; 44:e2200043. [DOI: 10.1002/bies.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| |
Collapse
|
145
|
La Manna S, Florio D, Di Natale C, Lagreca E, Sibillano T, Giannini C, Marasco D. Type C mutation of nucleophosmin 1 acute myeloid leukemia: Consequences of intrinsic disorder. Biochim Biophys Acta Gen Subj 2022; 1866:130173. [PMID: 35597503 DOI: 10.1016/j.bbagen.2022.130173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Elena Lagreca
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
146
|
Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. MOLECULAR BIOMEDICINE 2022; 3:13. [PMID: 35543798 PMCID: PMC9092326 DOI: 10.1186/s43556-022-00075-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has received significant attention in recent biological studies. It refers to a phenomenon that biomolecule exceeds the solubility, condensates and separates itself from solution in liquid like droplets formation. Our understanding of it has also changed from memebraneless organelles to compartmentalization, muti-functional crucibles, and reaction regulators. Although this phenomenon has been employed for a variety of biological processes, recent studies mainly focus on its physiological significance, and the comprehensive research of the underlying physical mechanism is limited. The characteristics of side chains of amino acids and the interaction tendency of proteins function importantly in regulating LLPS thus should be pay more attention on. In addition, the importance of post-translational modifications (PTMs) has been underestimated, despite their abundance and crucial functions in maintaining the electrostatic balance. In this review, we first introduce the driving forces and protein secondary structures involved in LLPS and their different physical functions in cell life processes. Subsequently, we summarize the existing reports on PTM regulation related to LLPS and analyze the underlying basic principles, hoping to find some common relations between LLPS and PTM. Finally, we speculate several unreported PTMs that may have a significant impact on phase separation basing on the findings.
Collapse
Affiliation(s)
- Jingxian Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengdi Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Weirui Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Huasong Lu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
147
|
KLF16 enhances stress tolerance of colorectal carcinomas by modulating nucleolar homeostasis and translational reprogramming. Mol Ther 2022; 30:2828-2843. [PMID: 35524408 PMCID: PMC9372374 DOI: 10.1016/j.ymthe.2022.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions. But the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-Like Factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis, nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance stress tolerance of CRC cells and provides a potential therapeutic vulnerability.
Collapse
|
148
|
Chong S, Graham TGW, Dugast-Darzacq C, Dailey GM, Darzacq X, Tjian R. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol Cell 2022; 82:2084-2097.e5. [PMID: 35483357 DOI: 10.1016/j.molcel.2022.04.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023]
Abstract
Gene activation by mammalian transcription factors (TFs) requires multivalent interactions of their low-complexity domains (LCDs), but how such interactions regulate transcription remains unclear. It has been proposed that extensive LCD-LCD interactions culminating in liquid-liquid phase separation (LLPS) of TFs is the dominant mechanism underlying transactivation. Here, we investigated how tuning the amount and localization of LCD-LCD interactions in vivo affects transcription of endogenous human genes. Quantitative single-cell and single-molecule imaging reveals that the oncogenic TF EWS::FLI1 requires a narrow optimum of LCD-LCD interactions to activate its target genes associated with GGAA microsatellites. Increasing LCD-LCD interactions toward putative LLPS represses transcription of these genes in patient-derived cells. Likewise, ectopically creating LCD-LCD interactions to sequester EWS::FLI1 into a well-documented LLPS compartment, the nucleolus, inhibits EWS::FLI1-driven transcription and oncogenic transformation. Our findings show how altering the balance of LCD-LCD interactions can influence transcriptional regulation and suggest a potential therapeutic strategy for targeting disease-causing TFs.
Collapse
Affiliation(s)
- Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas G W Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
149
|
Abstract
Immune signalling pathways convert pathogenic stimuli into cytosolic events that lead to the resolution of infection. Upon ligand engagement, immune receptors together with their downstream adaptors and effectors undergo substantial conformational changes and spatial reorganization. During this process, nanometre-to-micrometre-sized signalling clusters have been commonly observed that are believed to be hotspots for signal transduction. Because of their large size and heterogeneous composition, it remains a challenge to fully understand the mechanisms by which these signalling clusters form and their functional consequences. Recently, phase separation has emerged as a new biophysical principle for organizing biomolecules into large clusters with fluidic properties. Although the field is still in its infancy, studies of phase separation in immunology are expected to provide new perspectives for understanding immune responses. Here, we present an up-to-date view of how liquid-liquid phase separation drives the formation of signalling condensates and regulates immune signalling pathways, including those downstream of T cell receptor, B cell receptor and the innate immune receptors cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene I protein (RIG-I). We conclude with a summary of the current challenges the field is facing and outstanding questions for future studies.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ceara K McAtee
- Yale Combined Program in the Biological and Biomedical Sciences, New Haven, CT, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
150
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|