101
|
Karimi M, Steinkühler J, Roy D, Dasgupta R, Lipowsky R, Dimova R. Asymmetric Ionic Conditions Generate Large Membrane Curvatures. NANO LETTERS 2018; 18:7816-7821. [PMID: 30456959 DOI: 10.1021/acs.nanolett.8b03584] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological membranes possess intrinsic asymmetry. This asymmetry is associated not only with leaflet composition in terms of membrane species but also with differences in the cytosolic and periplasmic solutions containing macromolecules and ions. There has been a long quest for understanding the effect of ions on the physical and morphological properties of membranes. Here, we elucidate the changes in the mechanical properties of membranes exposed to asymmetric buffer conditions and the associated curvature generation. As a model system, we used giant unilamellar vesicles (GUVs) with asymmetric salt and sugar solutions on the two sides of the membrane. We aspirated the GUVs into micropipettes and attached small beads to their membranes. An optical tweezer was used to exert a local force on a bead, thereby pulling out a membrane tube from the vesicle. The assay allowed us to measure the spontaneous curvature and the bending rigidity of the bilayer in the presence of different ions and sugar. At low sugar/salt (inside/out) concentrations, the membrane spontaneous curvature generated by NaCl and KCl is close to zero, but negative in the presence of LiCl. In the latter case, the membrane bulges away from the salt solution. At high sugar/salt conditions, the membranes were observed to become more flexible and the spontaneous curvature was enhanced to even more negative values, comparable to those generated by some proteins. Our findings reveal the reshaping role of alkali chlorides on biomembranes.
Collapse
Affiliation(s)
- Marzieh Karimi
- Department of Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Jan Steinkühler
- Department of Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Debjit Roy
- Department of Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Raktim Dasgupta
- Department of Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
- Laser Biomedical Applications Section , Raja Ramanna Centre for Advanced Technology , 452013 Indore , India
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| |
Collapse
|
102
|
Barlow NE, Kusumaatmaja H, Salehi-Reyhani A, Brooks N, Barter LMC, Flemming AJ, Ces O. Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers. J R Soc Interface 2018; 15:rsif.2018.0610. [PMID: 30464059 PMCID: PMC6283991 DOI: 10.1098/rsif.2018.0610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
For the past decade, droplet interface bilayers (DIBs) have had an increased prevalence in biomolecular and biophysical literature. However, much of the underlying physics of these platforms is poorly characterized. To further our understanding of these structures, lipid membrane tension on DIB membranes is measured by analysing the equilibrium shape of asymmetric DIBs. To this end, the morphology of DIBs is explored for the first time using confocal laser scanning fluorescence microscopy. The experimental results confirm that, in accordance with theory, the bilayer interface of a volume-asymmetric DIB is curved towards the smaller droplet and a lipid-asymmetric DIB is curved towards the droplet with the higher monolayer surface tension. Moreover, the DIB shape can be exploited to measure complex bilayer surface energies. In this study, the bilayer surface energy of DIBs composed of lipid mixtures of phosphatidylgylcerol (PG) and phosphatidylcholine are shown to increase linearly with PG concentrations up to 25%. The assumption that DIB bilayer area can be geometrically approximated as a spherical cap base is also tested, and it is discovered that the bilayer curvature is negligible for most practical symmetric or asymmetric DIB systems with respect to bilayer area.
Collapse
Affiliation(s)
- Nathan E Barlow
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Ali Salehi-Reyhani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK.,FABRICELL, Imperial College London, London SW7 2AZ, UK
| | - Nick Brooks
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Laura M C Barter
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Anthony J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell RG42 6EY, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK .,Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK.,FABRICELL, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
103
|
Hill EH, Li J, Lin L, Liu Y, Zheng Y. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13252-13262. [PMID: 30350700 PMCID: PMC6246038 DOI: 10.1021/acs.langmuir.8b01979] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid vesicles are important biological assemblies, which are critical to biological transport processes, and vesicles prepared in the lab are a workhorse for studies of drug delivery, protein unfolding, biomolecular interactions, compartmentalized chemistry, and stimuli-responsive sensing. The current method of using optical tweezers for holding lipid vesicles in place for single-vesicle studies suffers from limitations such as high optical power, rigorous optics, and small difference in the refractive indices of vesicles and water. Herein, we report the use of plasmonic heating to trap vesicles in a temperature gradient, allowing long-range attraction, parallel trapping, and dynamic manipulation. The capabilities and limitations with respect to thermal effects on vesicle structure and optical spectroscopy are discussed. This simple approach allows vesicle manipulation using down to 3 orders of magnitude lower optical power and at least an order of magnitude higher trapping stiffness per unit power than traditional optical tweezers while using a simple optical setup. In addition to the benefit provided by the relaxation of these technical constraints, this technique can complement optical tweezers to allow detailed studies on thermophoresis of optically trapped vesicles and effects of locally generated thermal gradients on the physical properties of lipid vesicles. Finally, the technique itself and the large-scale collection of vesicles have huge potential for future studies of vesicles relevant to detection of exosomes, lipid-raft formation, and other areas relevant to the life sciences.
Collapse
Affiliation(s)
- Eric H. Hill
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Jingang Li
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Linhan Lin
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yaoran Liu
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
104
|
Trantidou T, Dekker L, Polizzi K, Ces O, Elani Y. Functionalizing cell-mimetic giant vesicles with encapsulated bacterial biosensors. Interface Focus 2018; 8:20180024. [PMID: 30443325 PMCID: PMC6227772 DOI: 10.1098/rsfs.2018.0024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The design of vesicle microsystems as artificial cells (bottom-up synthetic biology) has traditionally relied on the incorporation of molecular components to impart functionality. These cell mimics have reduced capabilities compared with their engineered biological counterparts (top-down synthetic biology), as they lack the powerful metabolic and regulatory pathways associated with living systems. There is increasing scope for using whole intact cellular components as functional modules within artificial cells, as a route to increase the capabilities of artificial cells. In this feasibility study, we design and embed genetically engineered microbes (Escherichia coli) in a vesicle-based cell mimic and use them as biosensing modules for real-time monitoring of lactate in the external environment. Using this conceptual framework, the functionality of other microbial devices can be conferred into vesicle microsystems in the future, bridging the gap between bottom-up and top-down synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Linda Dekker
- Department of Life Sciences and Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK
| | - Karen Polizzi
- Department of Life Sciences and Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- fabriCELL, Imperial College London, London SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- fabriCELL, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
105
|
Controlled Construction of Stable Network Structure Composed of Honeycomb-Shaped Microhydrogels. Life (Basel) 2018; 8:life8040038. [PMID: 30241312 PMCID: PMC6316562 DOI: 10.3390/life8040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022] Open
Abstract
Recently, the construction of models for multicellular systems such as tissues has been attracting great interest. These model systems are expected to reproduce a cell communication network and provide insight into complicated functions in living systems./Such network structures have mainly been modelled using a droplet and a vesicle. However, in the droplet and vesicle network, there are difficulties attributed to structural instabilities due to external stimuli and perturbations. Thus, the fabrication of a network composed of a stable component such as hydrogel is desired. In this article, the construction of a stable network composed of honeycomb-shaped microhydrogels is described. We produced the microhydrogel network using a centrifugal microfluidic technique and a photosensitive polymer. In the network, densely packed honeycomb-shaped microhydrogels were observed. Additionally, we successfully controlled the degree of packing of microhydrogels in the network by changing the centrifugal force. We believe that our stable network will contribute to the study of cell communication in multicellular systems.
Collapse
|
106
|
Trantidou T, Friddin MS, Salehi-Reyhani A, Ces O, Elani Y. Droplet microfluidics for the construction of compartmentalised model membranes. LAB ON A CHIP 2018; 18:2488-2509. [PMID: 30066008 DOI: 10.1039/c8lc00028j] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The design of membrane-based constructs with multiple compartments is of increasing importance given their potential applications as microreactors, as artificial cells in synthetic-biology, as simplified cell models, and as drug delivery vehicles. The emergence of droplet microfluidics as a tool for their construction has allowed rapid scale-up in generation throughput, scale-down of size, and control over gross membrane architecture. This is true on several levels: size, level of compartmentalisation and connectivity of compartments can all be programmed to various degrees. This tutorial review explains and explores the reasons behind this. We discuss microfluidic strategies for the generation of a family of compartmentalised systems that have lipid membranes as the basic structural motifs, where droplets are either the fundamental building blocks, or are precursors to the membrane-bound compartments. We examine the key properties associated with these systems (including stability, yield, encapsulation efficiency), discuss relevant device fabrication technologies, and outline the technical challenges. In doing so, we critically review the state-of-play in this rapidly advancing field.
Collapse
Affiliation(s)
- T Trantidou
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
107
|
Karamdad K, Hindley JW, Bolognesi G, Friddin MS, Law RV, Brooks NJ, Ces O, Elani Y. Engineering thermoresponsive phase separated vesicles formed via emulsion phase transfer as a content-release platform. Chem Sci 2018; 9:4851-4858. [PMID: 29910937 PMCID: PMC5982195 DOI: 10.1039/c7sc04309k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/22/2018] [Indexed: 01/20/2023] Open
Abstract
Elucidation of cholesterol insertion efficiency into phase-transfer vesicles enables the rational design of phase-separated membranes as thermally-responsive platforms for artificial cell construction.
Giant unilamellar vesicles (GUVs) are a well-established tool for the study of membrane biophysics and are increasingly used as artificial cell models and functional units in biotechnology. This trend is driven by the development of emulsion-based generation methods such as Emulsion Phase Transfer (EPT), which facilitates the encapsulation of almost any water-soluble compounds (including biomolecules) regardless of size or charge, is compatible with droplet microfluidics, and allows GUVs with asymmetric bilayers to be assembled. However, the ability to control the composition of membranes formed via EPT remains an open question; this is key as composition gives rise to an array of biophysical phenomena which can be used to add functionality to membranes. Here, we evaluate the use of GUVs constructed via this method as a platform for phase behaviour studies and take advantage of composition-dependent features to engineer thermally-responsive GUVs. For the first time, we generate ternary GUVs (DOPC/DPPC/cholesterol) using EPT, and by compensating for the lower cholesterol incorporation efficiencies, show that these possess the full range of phase behaviour displayed by electroformed GUVs. As a demonstration of the fine control afforded by this approach, we demonstrate release of dye and peptide cargo when ternary GUVs are heated through the immiscibility transition temperature, and show that release temperature can be tuned by changing vesicle composition. We show that GUVs can be individually addressed and release triggered using a laser beam. Our findings validate EPT as a suitable method for generating phase separated vesicles and provide a valuable proof-of-concept for engineering content release functionality into individually addressable vesicles, which could have a host of applications in the development of smart synthetic biosystems.
Collapse
Affiliation(s)
- Kaiser Karamdad
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK . ; .,Institute of Chemical Biology , Imperial College London , Exhibition Road , London , SW7 2AZ , UK
| | - James W Hindley
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK . ; .,Institute of Chemical Biology , Imperial College London , Exhibition Road , London , SW7 2AZ , UK
| | - Guido Bolognesi
- Department of Chemical Engineering , Loughborough University , Loughborough , LE11 3TU , UK
| | - Mark S Friddin
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK . ;
| | - Robert V Law
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK . ; .,Institute of Chemical Biology , Imperial College London , Exhibition Road , London , SW7 2AZ , UK
| | - Nicholas J Brooks
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK . ; .,Institute of Chemical Biology , Imperial College London , Exhibition Road , London , SW7 2AZ , UK
| | - Oscar Ces
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK . ; .,Institute of Chemical Biology , Imperial College London , Exhibition Road , London , SW7 2AZ , UK.,FABRICELL , Imperial College London , Exhibition Road , London , SW7 2AZ , UK
| | - Yuval Elani
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK . ; .,Institute of Chemical Biology , Imperial College London , Exhibition Road , London , SW7 2AZ , UK.,FABRICELL , Imperial College London , Exhibition Road , London , SW7 2AZ , UK
| |
Collapse
|