101
|
Disease Mutation Study Identifies Critical Residues for Phosphatidylserine Flippase ATP11A. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7342817. [PMID: 32596364 PMCID: PMC7288202 DOI: 10.1155/2020/7342817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Phosphatidylserine flippase (P4-ATPase) transports PS from the outer to the inner leaflet of the lipid bilayer in the membrane to maintain PS asymmetry, which is important for biological activities of the cell. ATP11A is expressed in multiple tissues and plays a role in myotube formation. However, the detailed cellular function of ATP11A remains elusive. Mutation analysis revealed that I91, L308, and E897 residues in ATP8A2 are important for flippase activity. In order to investigate the roles of these corresponding amino acid residues in ATP11A protein, we assessed the expression and cellular localization of the respective ATP11A mutant proteins. ATP11A mainly localizes to the Golgi and plasma membrane when coexpressed with the β-subunit of the complex TMEM30A. Y300F mutation causes reduced ATP11A expression, and Y300F and D913K mutations affect correct localization of the Golgi and plasma membrane. In addition, Y300F and D913K mutations also affect PS flippase activity. Our data provides insight into important residues of ATP11A.
Collapse
|
102
|
Caolo V, Debant M, Endesh N, Futers TS, Lichtenstein L, Bartoli F, Parsonage G, Jones EA, Beech DJ. Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. eLife 2020; 9:50684. [PMID: 32484440 PMCID: PMC7295575 DOI: 10.7554/elife.50684] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical force is a determinant of Notch signalling but the mechanism of force detection and its coupling to Notch are unclear. We propose a role for Piezo1 channels, which are mechanically-activated non-selective cation channels. In cultured microvascular endothelial cells, Piezo1 channel activation by either shear stress or a chemical agonist Yoda1 activated a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), a Ca2+-regulated transmembrane sheddase that mediates S2 Notch1 cleavage. Consistent with this observation, we found Piezo1-dependent increase in the abundance of Notch1 intracellular domain (NICD) that depended on ADAM10 and the downstream S3 cleavage enzyme, γ-secretase. Conditional endothelial-specific disruption of Piezo1 in adult mice suppressed the expression of multiple Notch1 target genes in hepatic vasculature, suggesting constitutive functional importance in vivo. The data suggest that Piezo1 is a mechanism conferring force sensitivity on ADAM10 and Notch1 with downstream consequences for sustained activation of Notch1 target genes and potentially other processes.
Collapse
Affiliation(s)
- Vincenza Caolo
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Naima Endesh
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Laeticia Lichtenstein
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona Bartoli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Elizabeth Av Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
103
|
Yoneda A, Kanemaru K, Matsubara A, Takai E, Shimozawa M, Satow R, Yamaguchi H, Nakamura Y, Fukami K. Phosphatidylinositol 4,5-bisphosphate is localized in the plasma membrane outer leaflet and regulates cell adhesion and motility. Biochem Biophys Res Commun 2020; 527:1050-1056. [PMID: 32439160 DOI: 10.1016/j.bbrc.2020.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
Abstract
Phospholipids are distributed asymmetrically in the plasma membrane (PM) of mammalian cells. Phosphatidylinositol (PI) and its phosphorylated forms are primarily located in the inner leaflet of the PM. Among them, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a well-known substrate for phospholipase C (PLC) or phosphoinositide-3 kinase, and is also a regulator for the actin cytoskeleton or ion channels. Although functions of PI(4,5)P2 in the inner leaflet are well characterized, those in the outer leaflet are poorly understood. Here, PI(4,5)P2 was detected in the cell surface of non-permeabilized cells by anti-PI(4,5)P2 antibodies and the pleckstrin-homology (PH) domain of PLCδ1 that specifically binds PI(4,5)P2. Cell surface PI(4,5)P2 signal was universally detected in various cell lines and freshly isolated mouse bone marrow cells and showed a punctate pattern in a cholesterol, sphingomyelin, and actin polymerization-dependent manner. Furthermore, blocking cell surface PI(4,5)P2 by the addition of anti-PI(4,5)P2 antibody or the PH domain of PLCδ1 inhibited cell attachment, spreading, and migration. Taken together, these results indicate a unique localization of PI(4,5)P2 in the outer leaflet that may have a crucial role in cell attachment, spreading, and migration.
Collapse
Affiliation(s)
- Atsuko Yoneda
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kaori Kanemaru
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Ai Matsubara
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Erika Takai
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Makoto Shimozawa
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Reiko Satow
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideki Yamaguchi
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
104
|
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
105
|
Sun Y, Li M, Liu G, Zhang X, Zhi L, Zhao J, Wang G. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. J Cancer Res Clin Oncol 2020; 146:1139-1152. [PMID: 32152662 PMCID: PMC7142063 DOI: 10.1007/s00432-020-03179-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Increasing evidence has revealed that mechanical stress and elevated mechanical signals promote malignant tumor transformation and metastasis. This study aimed to explore the function of the mechanically activated ion-channel Piezo1 in the colon cancer metastasis and its potential regulatory mechanism. METHODS First, we examined the expression levels of Piezo1 and mitochondrial calcium uniporter (MCU) both in colon cancer tissues and assessed the prognostic value of Piezo1 and MCU in a colon cancer cohort (n = 110). Second, functional assays were performed to investigate the effects of Piezo1 and MCU on colon cancer cell migration, invasion, and mitochondrial membrane potential. Third, we analyzed the expression of Piezo1, MCU, and HIF-1α by overexpressing/silencing each other's expression. RESULTS We found that Piezo1 was up-regulated and MCU was down-regulated in colon cancer tissues. Piezo1 and MCU were both correlated with poor prognosis of patients with colon cancer. Overexpressing Piezo1 and silencing MCU could promote colon cancer cell migration and metastasis, reduce mitochondrial membrane potential, and promote each other's expression. We also found that HIF-1α was up-regulated in colon cancer tissues. Additionally, silencing Piezo1 inhibited the expression of HIF-1α and VEGF, which was contrary to MCU silencing. Intriguingly, Piezo1-overexpressing cells did not regain their migration behaviors when HIF-1α expression was inhibited, which was accompanied with the re-expression of MCU and VEGF. CONCLUSION In our study, Piezo1 is involved in colon cancer cell metastasis. Furthermore, our findings indicated a possible Piezo1-MCU-HIF-1α-VEGF axis, which still need further exploration.
Collapse
Affiliation(s)
- Yanhua Sun
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, No. 12 Health Road, Shijiazhuang, 050011, Hebei, China.,Department of Gastrointestinal Hernia Surgery, Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Ming Li
- Department of Gastrointestinal Hernia Surgery, Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, Shijiazhuang, Hebei, China
| | - Xue Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, Shijiazhuang, Hebei, China
| | - Lianghui Zhi
- Department of General Surgery, 980th Hospital of Joint Logistic Support Force, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Department of Anorectal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guiying Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, No. 12 Health Road, Shijiazhuang, 050011, Hebei, China. .,Department of General Surgery, Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
106
|
Amphipathic molecules modulate PIEZO1 activity. Biochem Soc Trans 2020; 47:1833-1842. [PMID: 31754715 DOI: 10.1042/bst20190372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
PIEZO proteins are large eukaryotic mechanically-gated channels that function as homotrimers. The basic PIEZO1 structure has been elucidated by CryoEM and it assembles into a protein-lipid dome. A curved lipid region allows for the transition to the lipid bilayer from the dome (footprint). Gating PIEZO1 is mediated by bilayer tension that induces an area change in the lipid dome. The footprint region is thought to be energetically important for changes in lateral tension. Amphipathic molecules can modulate channel function beyond the intrinsic gating properties of PIEZO1. As a result, molecules that modify lipid properties within the lipid-channel complex (footprint and dome) will profoundly affect channel kinetics. In this review, we summarize the effects some amphipathic molecules have on the lipid bilayer and PIEZO1 function. PIEZO1 has three states, closed, open and inactivated and amphipathic molecules influence these transitions. The amphipathic peptide, GsMTx4, inhibits the closed to open transition. While saturated fatty acids also prevent PIEZO1 gating, the effect is mediated by stiffening the lipids, presumably in both the dome and footprint region. Polyunsaturated fatty acids can increase disorder within the lipid-protein complex affecting channel kinetics. PIEZO1 can also form higher-ordered structures that confers new kinetic properties associated with clustered channels. Cholesterol-rich domains house PIEZO1 channels, and depletion of cholesterol causes a breakdown of those domains with changes to channel kinetics and channel diffusion. These examples underscore the complex effects lipophilic molecules can have on the PIEZO1 lipid dome structure and thus on the mechanical response of the cell.
Collapse
|
107
|
Wanderley JLM, DaMatta RA, Barcinski MA. Apoptotic mimicry as a strategy for the establishment of parasitic infections: parasite- and host-derived phosphatidylserine as key molecule. Cell Commun Signal 2020; 18:10. [PMID: 31941500 PMCID: PMC6964003 DOI: 10.1186/s12964-019-0482-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
The establishment of parasitic infection is dependent on the development of efficient strategies to evade the host defense mechanisms. Phosphatidylserine (PS) molecules are pivotal for apoptotic cell recognition and clearance by professional phagocytes. Moreover, PS receptors are able to trigger anti-inflammatory and immunosuppressive responses by phagocytes, either by coupled enzymes or through the induction of regulatory cytokine secretion. These PS-dependent events are exploited by parasites in a mechanism called apoptotic mimicry. Generally, apoptotic mimicry refers to the effects of PS recognition for the initiation and maintenance of pathogenic infections. However, in this context, PS molecules can be recognized on the surface of the infectious agent or in the surface of apoptotic host debris, leading to the respective denomination of classical and non-classical apoptotic mimicry. In this review, we discuss the role of PS in the pathogenesis of several human infections caused by protozoan parasites. Video Abstract
Collapse
Affiliation(s)
- João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Campus UFRJ Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual Norte-Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marcello André Barcinski
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
108
|
Xiao B. Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention. Annu Rev Pharmacol Toxicol 2020; 60:195-218. [DOI: 10.1146/annurev-pharmtox-010919-023703] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanically activated Piezo channels, including Piezo1 and Piezo2 in mammals, function as key mechanotransducers for converting mechanical force into electrochemical signals. This review highlights key evidence for the potential of Piezo channel drug discovery. First, both mouse and human genetic studies have unequivocally demonstrated the prominent role of Piezo channels in various mammalian physiologies and pathophysiologies, validating their potential as novel therapeutic targets. Second, the cryo-electron microscopy structure of the 2,547-residue mouse Piezo1 trimer has been determined, providing a solid foundation for studying its structure-function relationship and drug action mechanisms and conducting virtual drug screening. Third, Piezo1 chemical activators, named Yoda1 and Jedi1/2, have been identified through high-throughput screening assays, demonstrating the drugability of Piezo channels. However, the pharmacology of Piezo channels is in its infancy. By establishing an integrated drug discovery platform, we may hopefully discover and develop a fleet of Jedi masters for battling Piezo-related human diseases.
Collapse
Affiliation(s)
- Bailong Xiao
- State Key Laboratory of Membrane Biology; Tsinghua-Peking Joint Center for Life Sciences; IDG/McGovern Institute for Brain Research; Beijing Advanced Innovation Center for Structural Biology; and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
109
|
Beech DJ, Kalli AC. Force Sensing by Piezo Channels in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol 2019; 39:2228-2239. [PMID: 31533470 PMCID: PMC6818984 DOI: 10.1161/atvbaha.119.313348] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Mechanical forces are fundamental in cardiovascular biology, and deciphering the mechanisms by which they act remains a testing frontier in cardiovascular research. Here, we raise awareness of 2 recently discovered proteins, Piezo1 and Piezo2, which assemble as transmembrane triskelions to combine exquisite force sensing with regulated calcium influx. There is emerging evidence for their importance in endothelial shear stress sensing and secretion, NO generation, vascular tone, angiogenesis, atherosclerosis, vascular permeability and remodeling, blood pressure regulation, insulin sensitivity, exercise performance, and baroreceptor reflex, and there are early suggestions of relevance to cardiac fibroblasts and myocytes. Human genetic analysis points to significance in lymphatic disease, anemia, varicose veins, and potentially heart failure, hypertension, aneurysms, and stroke. These channels appear to be versatile force sensors, used creatively to inform various force-sensing situations. We discuss emergent concepts and controversies and suggest that the potential for new important understanding is substantial.
Collapse
Affiliation(s)
- David J. Beech
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| | - Antreas C. Kalli
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| |
Collapse
|
110
|
Pino MF, Stephens NA, Eroshkin AM, Yi F, Hodges A, Cornnell HH, Pratley RE, Smith SR, Wang M, Han X, Coen PM, Goodpaster BH, Sparks LM. Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with Type 2 diabetes. Physiol Genomics 2019; 51:586-595. [PMID: 31588872 DOI: 10.1152/physiolgenomics.00014.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.
Collapse
Affiliation(s)
- Maria F Pino
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Miao Wang
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Xianlin Han
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| |
Collapse
|
111
|
Botello-Smith WM, Jiang W, Zhang H, Ozkan AD, Lin YC, Pham CN, Lacroix JJ, Luo Y. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat Commun 2019; 10:4503. [PMID: 31582801 PMCID: PMC6776524 DOI: 10.1038/s41467-019-12501-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel's mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Collapse
Affiliation(s)
- Wesley M Botello-Smith
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Han Zhang
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Alper D Ozkan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Yi-Chun Lin
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Christine N Pham
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Jérôme J Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA.
| | - Yun Luo
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA.
| |
Collapse
|
112
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
113
|
Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A, Gyobu S, Segawa K, Arai H, Taguchi T, Nagata S, Fujimoto T. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc Natl Acad Sci U S A 2019; 116:13368-13373. [PMID: 31217287 PMCID: PMC6613088 DOI: 10.1073/pnas.1822025116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TMEM16K, a membrane protein carrying 10 transmembrane regions, has phospholipid scramblase activity. TMEM16K is localized to intracellular membranes, but whether it actually scrambles phospholipids inside cells has not been demonstrated, due to technical difficulties in studying intracellular lipid distributions. Here, we developed a freeze-fracture electron microscopy method that enabled us to determine the phosphatidylserine (PtdSer) distribution in the individual leaflets of cellular membranes. Using this method, we found that the endoplasmic reticulum (ER) of mammalian cells harbored abundant PtdSer in its cytoplasmic leaflet and much less in the luminal leaflet, whereas the outer and inner nuclear membranes (NMs) had equivalent amounts of PtdSer in both leaflets. The ER and NMs of budding yeast also harbored PtdSer in their cytoplasmic leaflet, but asymmetrical distribution in the ER was not observed. Treating mouse embryonic fibroblasts with the Ca2+ ionophore A23187 compromised the cytoplasmic leaflet-dominant PtdSer asymmetry in the ER and increased PtdSer in the NMs, especially in the nucleoplasmic leaflet of the inner NM. This Ca2+-induced PtdSer redistribution was not observed in TMEM16K-null fibroblasts, but was recovered in these cells by reexpressing TMEM16K. These results indicate that, similar to the plasma membrane, PtdSer in the ER of mammalian cells is predominantly localized to the cytoplasmic leaflet, and that TMEM16K directly or indirectly mediates Ca2+-dependent phospholipid scrambling in the ER.
Collapse
Affiliation(s)
- Takuma Tsuji
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Aoi Ebata
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Hiroki Kamikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 890-0065 Kagoshima, Japan
| | - Sayuri Gyobu
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Katsumori Segawa
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Shigekazu Nagata
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan;
| |
Collapse
|
114
|
Linke P, Suzuki R, Yamamoto A, Nakahata M, Kengaku M, Fujiwara T, Ohzono T, Tanaka M. Dynamic Contact Guidance of Myoblasts by Feature Size and Reversible Switching of Substrate Topography: Orchestration of Cell Shape, Orientation, and Nematic Ordering of Actin Cytoskeletons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7538-7551. [PMID: 30376342 DOI: 10.1021/acs.langmuir.8b02972] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological cells in tissues alter their shapes, positions, and orientations in response to dynamic changes in their physical microenvironments. Here, we investigated the dynamic response of myoblast cells by fabricating substrates displaying microwrinkles that can reversibly change their direction within 60 s by axial compression and relaxation. To quantitatively assess the collective order of cells, we introduced the nematic order parameter of cells that takes not only the distribution of cell-wrinkle angles but also the degree of cell elongation into account. On the subcellular level, we also calculated the nematic order parameter of actin cytoskeletons that takes the rearrangement of actin filaments into consideration. The results obtained on substrates with different wrinkle wavelengths implied the presence of a characteristic wavelength beyond which the order parameters of both cells and actin cytoskeletons level off. Immunofluorescence labeling of vinculin showed that the focal adhesions were all concentrated on the peaks of wrinkles when the wavelength is below the characteristic value. On the other hand, we found focal adhesions on both the peaks and the troughs of wrinkles when the wavelength exceeds the characteristic level. The emergence of collective ordering of cytoskeletons and the adaptation of cell shapes and orientations were monitored by live cell imaging after the seeding of cells from suspensions. After the cells had reached the steady state, the orientation of wrinkles was abruptly changed by 90°. The dynamic response of myoblasts to the drastic change in surface topography was monitored, demonstrating the coordination of the shape and orientation of cells and the nematic ordering of actin cytoskeletons. The "dynamic" substrates established in this study can be used as a powerful tool in mechanobiology that helps us understand how cytoskeletons, cells, and cell ensembles respond to dynamic contact guidance cues.
Collapse
Affiliation(s)
- Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | | | | | - Masaki Nakahata
- Department of Material Engineering Science, Graduate School of Engineering Science , Osaka University , 560-8531 Osaka , Japan
| | | | | | - Takuya Ohzono
- Electronics and Photonics Research Institute , National Institute for Advanced Industrial Science and Technology , 305-8505 Tsukuba , Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| |
Collapse
|
115
|
Chubinskiy-Nadezhdin VI, Vasileva VY, Vassilieva IO, Sudarikova AV, Morachevskaya EA, Negulyaev YA. Agonist-induced Piezo1 activation suppresses migration of transformed fibroblasts. Biochem Biophys Res Commun 2019; 514:173-179. [DOI: 10.1016/j.bbrc.2019.04.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
|
116
|
Piezo1 mediates neuron oxygen-glucose deprivation/reoxygenation injury via Ca2+/calpain signaling. Biochem Biophys Res Commun 2019; 513:147-153. [DOI: 10.1016/j.bbrc.2019.03.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/24/2019] [Indexed: 12/27/2022]
|
117
|
Collagen XXV promotes myoblast fusion during myogenic differentiation and muscle formation. Sci Rep 2019; 9:5878. [PMID: 30971718 PMCID: PMC6458142 DOI: 10.1038/s41598-019-42296-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Fusion of myoblasts into multinucleated myofibers is crucial for skeletal muscle development and regeneration. However, the mechanisms controlling this process remain to be determined. Here we identified the involvement of a new extracellular matrix protein in myoblast fusion. Collagen XXV is a transmembrane-type collagen highly transcribed during early myogenesis when primary myofibers form. Limb muscles of E12.5 and E14.5 Col25a1−/− embryos show a clear defect in the formation of multinucleated myofibers. In cell culture, the cleaved soluble extracellular domain of the collagen XXV is sufficient to promote the formation of highly multinucleated myofibers. Col25a1 is transiently expressed during myogenic differentiation and Col25a1 transcripts are down-regulated in multinucleated myofibers by a muscle-specific microRNA, miR-499. Altogether, these findings indicate that collagen XXV is required in vivo and in vitro for the fusion of myoblasts into myofibers and give further evidence that microRNAs participate to the regulation of this process.
Collapse
|
118
|
Best JT, Xu P, Graham TR. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Curr Opin Cell Biol 2019; 59:8-15. [PMID: 30897446 DOI: 10.1016/j.ceb.2019.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
Abstract
Molecular mechanisms underlying the formation of multiple classes of transport carriers or vesicles from Golgi and endosomal membranes remain poorly understood. However, one theme that has emerged over three decades is the dramatic influence of membrane lipid remodeling on transport mechanisms. A large cohort of lipid transfer proteins, lipid transporters, and lipid modifying enzymes are linked to protein sorting, carrier formation and SNARE-mediated fusion events. Here, we focus on one type of lipid transporter, phospholipid flippases in the type IV P-type ATPase (P4-ATPase) family, and discuss recent advances in defining P4-ATPase influences on membrane remodeling and vesicular transport.
Collapse
Affiliation(s)
- Jordan T Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
119
|
Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF, Vásquez V. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun 2019; 10:1200. [PMID: 30867417 PMCID: PMC6416271 DOI: 10.1038/s41467-019-09055-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. The Piezo1 channel mediates mechanoelectrical transduction and regulates crucial physiological processes, including vascular architecture and remodeling, cell migration, and erythrocyte volume. The identity of the membrane components that modulate Piezo1 function remain largely unknown. Using lipid profiling analyses, we here identify dietary fatty acids that tune Piezo1 mechanical response. We find that margaric acid, a saturated fatty acid present in dairy products and fish, inhibits Piezo1 activation and polyunsaturated fatty acids (PUFAs), present in fish oils, modulate channel inactivation. Force measurements reveal that margaric acid increases membrane bending stiffness, whereas PUFAs decrease it. We use fatty acid supplementation to abrogate the phenotype of gain-of-function Piezo1 mutations causing human dehydrated hereditary stomatocytosis. Beyond Piezo1, our findings demonstrate that cell-intrinsic lipid profile and changes in the fatty acid metabolism can dictate the cell's response to mechanical cues.
Collapse
Affiliation(s)
- Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
| | - Andrew E Massey
- Department of Pharmaceutical Sciences and Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave., Memphis, TN, 38163, USA
| | - Alejandro D Mata-Daboin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
| | - Francisco J Sierra-Valdez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
- Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, Ave. Batallon de San Patricio 112, 66278, San Pedro Garza García, Nuevo León, Mexico
- Tecnólogico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Nuevo León, Mexico
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave., Memphis, TN, 38163, USA
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 71S. Manassas St., Memphis, TN, 38163, USA.
| |
Collapse
|
120
|
Zhao C, Sun Q, Tang L, Cao Y, Nourse JL, Pathak MM, Lu X, Yang Q. Mechanosensitive Ion Channel Piezo1 Regulates Diet-Induced Adipose Inflammation and Systemic Insulin Resistance. Front Endocrinol (Lausanne) 2019; 10:373. [PMID: 31263454 PMCID: PMC6584899 DOI: 10.3389/fendo.2019.00373] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
Adipocytes function as an energy buffer and undergo significant size and volume changes in response to nutritional cues. This adipocyte plasticity is important for systemic lipid metabolism and insulin sensitivity. Accompanying the adipocyte size and volume changes, the mechanical pressure against cell membrane also changes. However, the role that mechanical pressure plays in lipid metabolism and insulin sensitivity remains to be elucidated. Here we show that Piezo1, a mechanically-activated cation channel stimulated by membrane tension and stretch, was highly expressed in adipocytes. Adipose Piezo1 expression was increased in obese mice. Adipose-specific piezo1 knockout mice (adipose-Piezo1-/-) developed insulin resistance, especially when challenged with a high-fat diet (HFD). Perigonadal white adipose tissue (pgWAT) weight was reduced while pro-inflammatory and lipolysis genes were increased in the pgWAT of HFD-fed adipose-Piezo1-/- mice. The adipose-Piezo1-/- mice also developed hepatic steatosis with elevated expression of fatty acid synthesis genes. In cultured adipocytes, Piezo1 activation decreased, while Piezo1 inhibition elevated pro-inflammatory gene expression. TLR4 antagonist TAK-242 abolished adipocyte inflammation induced by Piezo1 inhibition. Thus, adipose Piezo1 may serve as an adaptive mechanism for adipocyte plasticity restraining pro-inflammatory response in obesity.
Collapse
Affiliation(s)
- Can Zhao
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, United States
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qiushi Sun
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, United States
| | - Lingyi Tang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, United States
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Cao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, United States
| | - Jamison L. Nourse
- Department of Physiology and Biophysics, Sue and Bill Gross Stem Cell Research Center, Center for Complex Systems Biology, University of California at Irvine, Irvine, CA, United States
| | - Medha M. Pathak
- Department of Physiology and Biophysics, Sue and Bill Gross Stem Cell Research Center, Center for Complex Systems Biology, University of California at Irvine, Irvine, CA, United States
| | - Xiang Lu
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiang Lu
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, United States
- Qin Yang
| |
Collapse
|
121
|
Shin HW, Takatsu H. Substrates of P4‐ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine). FASEB J 2018; 33:3087-3096. [DOI: 10.1096/fj.201801873r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical SciencesKyoto University Kyoto Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical SciencesKyoto University Kyoto Japan
| |
Collapse
|
122
|
Yang Q, Zhou Y, Wang J, Fu W, Li X. Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shRNA-Piezo1 under abnormal mechanical stretch stress. J Cell Biochem 2018; 120:3989-3997. [PMID: 30260030 DOI: 10.1002/jcb.27683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of the study was to explore the mechanism of excessive apoptosis of nucleus pulposus cells induced by short hairpin RNA (shRNA) Piezo type mechanosensitive ion channel component 1 (Piezo1) under abnormal mechanical stretch stress. METHODS In vitro mechanical stretch stress model of nucleus pulposus cells in vitro was established, in which the expression of Piezo1 was interfered by transfection of shRNA-Piezo1 interfering vector. Both messenger RNA and protein level of Piezo1 were measured by reverse-transcription polymerase chain reaction and Western blot analysis, respectively. Cytoplasmic Ca2+ was detected by Fluo3-AM kit, and changes of mitochondrial membrane potential in cells were detected using Cell Meter Assay kit. Finally, the apoptosis was evaluated with annexin V-fluorescein isothiocyanate kit. RESULTS The highest transfection efficiency of lentivirus titer was 1 × 10 TU/mL and the nucleus pulposus cells were transfected with plural multiplicity of infection = 50. Homo-3201 sequence exhibited the most effective silencing effect and was used in subsequent experiments as the default sequence of shRNA-Piezo1. The calcium content in the cytoplasm of the tension stress group increased significantly compared with that in the blank control group ( q = 3.773; P < 0.05). The level of cytosolic calcium in shRNA-interference group was significantly lower than that in stretch stress group ( q = 5.159; P < 0.05). Stretch stress treatment resulted in an elevated ratio of mitochondrial membrane potential turnover as opposed to blank control group ( q = 4.332; P < 0.05), while shRNA-interference group showed smaller ratio of mitochondrial membrane potential turnover than that in stretch stress group ( q = 4.974; P < 0.05). Similar results were also observed in apoptosis rate analysis ( q = 3.175; P < 0.05). CONCLUSION ShRNA-Piezo1 can protect cells by reducing the level of intracellular Ca2+ and the change of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Qining Yang
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Yongwei Zhou
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Jinhua Wang
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Weicong Fu
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Xiaofei Li
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| |
Collapse
|
123
|
Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, Rohde PR, Bavi O. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev 2018; 10:1377-1384. [PMID: 30182202 DOI: 10.1007/s12551-018-0450-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/04/2023] Open
Abstract
Mechanical stimuli acting on the cellular membrane are linked to intracellular signaling events and downstream effectors via different mechanoreceptors. Mechanosensitive (MS) ion channels are the fastest known primary mechano-electrical transducers, which convert mechanical stimuli into meaningful intracellular signals on a submillisecond time scale. Much of our understanding of the biophysical principles that underlie and regulate conversion of mechanical force into conformational changes in MS channels comes from studies based on MS channel reconstitution into lipid bilayers. The bilayer reconstitution methods have enabled researchers to investigate the structure-function relationship in MS channels and probe their specific interactions with their membrane lipid environment. This brief review focuses on close interactions between MS channels and the lipid bilayer and emphasizes the central role that the transbilayer pressure profile plays in mechanosensitivity and gating of these fascinating membrane proteins.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Pietro Ridone
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
| | - Yury A Nikolaev
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- Dept. of Cellular & Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520-8026, USA
| | - Adam D Martinac
- NeuRA, Margarete Ainsworth Building, Barker St, Randwick, NSW, 2031, Australia
| | - Yoshitaka Nakayama
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Paul R Rohde
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Omid Bavi
- Institute for Nanoscience and Nanotechnology, Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, 7155713876, Iran
| |
Collapse
|