101
|
Palladino A, Mavaro I, Pizzoleo C, De Felice E, Lucini C, de Girolamo P, Netti PA, Attanasio C. Induced Pluripotent Stem Cells as Vasculature Forming Entities. J Clin Med 2019; 8:E1782. [PMID: 31731464 PMCID: PMC6912734 DOI: 10.3390/jcm8111782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023] Open
Abstract
Tissue engineering (TE) pursues the ambitious goal to heal damaged tissues. One of the most successful TE approaches relies on the use of scaffolds specifically designed and fabricated to promote tissue growth. During regeneration the guidance of biological events may be essential to sustain vasculature neoformation inside the engineered scaffold. In this context, one of the most effective strategies includes the incorporation of vasculature forming cells, namely endothelial cells (EC), into engineered constructs. However, the most common EC sources currently available, intended as primary cells, are affected by several limitations that make them inappropriate to personalized medicine. Human induced Pluripotent Stem Cells (hiPSC), since the time of their discovery, represent an unprecedented opportunity for regenerative medicine applications. Unfortunately, human induced Pluripotent Stem Cells-Endothelial Cells (hiPSC-ECs) still display significant safety issues. In this work, we reviewed the most effective protocols to induce pluripotency, to generate cells displaying the endothelial phenotype and to perform an efficient and safe cell selection. We also provide noteworthy examples of both in vitro and in vivo applications of hiPSC-ECs in order to highlight their ability to form functional blood vessels. In conclusion, we propose hiPSC-ECs as the preferred source of endothelial cells currently available in the field of personalized regenerative medicine.
Collapse
Affiliation(s)
- Antonio Palladino
- CESMA—Centro Servizi Metrologici e Tecnologici Avanzati, University of Naples Federico II, 80146 Naples, Italy
| | - Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
| | - Carmela Pizzoleo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
| | - Paolo A. Netti
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
102
|
Hyttel P, de Figueiredo Pessôa LV, Secher JBM, Dittlau KS, Freude K, Hall VJ, Fair T, Assey RJ, Laurincik J, Callesen H, Greve T, Stroebech LB. Oocytes, embryos and pluripotent stem cells from a biomedical perspective. Anim Reprod 2019; 16:508-523. [PMID: 32435294 PMCID: PMC7234146 DOI: 10.21451/1984-3143-ar2019-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The veterinary and animal science professions are rapidly developing and their inherent and historical connection to agriculture is challenged by more biomedical and medical directions of research. While some consider this development as a risk of losing identity, it may also be seen as an opportunity for developing further and more sophisticated competences that may ultimately feed back to veterinary and animal science in a synergistic way. The present review describes how agriculture-related studies on bovine in vitro embryo production through studies of putative bovine and porcine embryonic stem cells led the way to more sophisticated studies of human induced pluripotent stem cells (iPSCs) using e.g. gene editing for modeling of neurodegeneration in man. However, instead of being a blind diversion from veterinary and animal science into medicine, these advanced studies of human iPSC-derived neurons build a set of competences that allowed us, in a more competent way, to focus on novel aspects of more veterinary and agricultural relevance in the form of porcine and canine iPSCs. These types of animal stem cells are of biomedical importance for modeling of iPSC-based therapy in man, but in particular the canine iPSCs are also important for understanding and modeling canine diseases, as e.g. canine cognitive dysfunction, for the benefit and therapy of dogs.
Collapse
Affiliation(s)
- Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | | | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Vanessa J Hall
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Remmy John Assey
- Department of Anatomy and Pathology, Sokoine University of Agriculture, Tanzania
| | - Jozef Laurincik
- Constantine the Philosopher University in Nitra, Nitra, Slovakia.,The Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Liběchov, Czech Republic
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | | | | |
Collapse
|
103
|
CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv 2019; 37:107447. [PMID: 31513841 DOI: 10.1016/j.biotechadv.2019.107447] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
CRISPR/Cas9 system exploits the concerted action of Cas9 nuclease and programmable single guide RNA (sgRNA), and has been widely used for genome editing. The Cas9 nuclease activity can be abolished by mutation to yield the catalytically deactivated Cas9 (dCas9). Coupling with the customizable sgRNA for targeting, dCas9 can be fused with transcription repressors to inhibit specific gene expression (CRISPR interference, CRISPRi) or fused with transcription activators to activate the expression of gene of interest (CRISPR activation, CRISPRa). Here we introduce the principles and recent advances of these CRISPR technologies, their delivery vectors and review their applications in stem cell engineering and regenerative medicine. In particular, we focus on in vitro stem cell fate manipulation and in vivo applications such as prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, as well as treatment of diseases in blood, skin and liver. Finally, the challenges to translate CRISPR to regenerative medicine and future perspectives are discussed and proposed.
Collapse
|
104
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
105
|
Kang JG, Park JS, Ko JH, Kim YS. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep 2019; 9:11960. [PMID: 31427598 PMCID: PMC6700181 DOI: 10.1038/s41598-019-48130-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Despite the increased interest in epigenetic research, its progress has been hampered by a lack of satisfactory tools to control epigenetic factors in specific genomic regions. Until now, many attempts to manipulate DNA methylation have been made using drugs but these drugs are not target-specific and have global effects on the whole genome. However, due to new genome editing technologies, potential epigenetic factors can now possibly be regulated in a site-specific manner. Here, we demonstrate the utility of CRISPR/Cas9 to modulate methylation at specific CpG sites and to elicit gene expression. We targeted the murine Oct4 gene which is transcriptionally locked due to hypermethylation at the promoter region in NIH3T3 cells. To induce site-specific demethylation at the Oct4 promoter region and its gene expression, we used the CRISPR/Cas9 knock-in and CRISPR/dCas9-Tet1 systems. Using these two approaches, we induced site-specific demethylation at the Oct4 promoter and confirmed the up-regulation of Oct4 expression. Furthermore, we confirmed that the synergistic effect of DNA demethylation and other epigenetic regulations increased the expression of Oct4 significantly. Based on our research, we suggest that our proven epigenetic editing methods can selectively modulate epigenetic factors such as DNA methylation and have promise for various applications in epigenetics.
Collapse
Affiliation(s)
- Jeong Gu Kang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jin Suk Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
| | - Jeong-Heosn Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea.
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea.
| |
Collapse
|
106
|
Hsu MN, Liao HT, Truong VA, Huang KL, Yu FJ, Chen HH, Nguyen TKN, Makarevich P, Parfyonova Y, Hu YC. CRISPR-based Activation of Endogenous Neurotrophic Genes in Adipose Stem Cell Sheets to Stimulate Peripheral Nerve Regeneration. Theranostics 2019; 9:6099-6111. [PMID: 31534539 PMCID: PMC6735509 DOI: 10.7150/thno.36790] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Peripheral nerve regeneration requires coordinated functions of neurotrophic factors and neuronal cells. CRISPR activation (CRISPRa) is a powerful tool that exploits inactive Cas9 (dCas9), single guide RNA (sgRNA) and transcription activator for gene activation, but has yet to be harnessed for tissue regeneration. Methods: We developed a hybrid baculovirus (BV) vector to harbor and deliver the CRISPRa system for multiplexed activation of 3 neurotrophic factor genes (BDNF, GDNF and NGF). The hybrid BV was used to transduce rat adipose-derived stem cells (ASC) and functionalize the ASC sheets. We further implanted the ASC sheets into sciatic nerve injury sites in rats. Results: Transduction of rat ASC with the hybrid BV vector enabled robust, simultaneous and prolonged activation of the 3 neurotrophic factors for at least 21 days. The CRISPRa-engineered ASC sheets were able to promote Schwann cell (SC) migration, neuron proliferation and neurite outgrowth in vitro. The CRISPRa-engineered ASC sheets further enhanced in vivo functional recovery, nerve reinnervation, axon regeneration and remyelination. Conclusion: These data collectively implicated the potentials of the hybrid BV-delivered CRISPRa system for multiplexed activation of endogenous neurotrophic factor genes in ASC sheets to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan, 333
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, 333
- Department of Plastic surgery, Xiamen Chang Gung hospital, China 361028
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Kai-Lun Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Fu-Jen Yu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, 350
| | - Thi Kieu Nuong Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Pavel Makarevich
- Laboratory of Gene and Cell Therapy, Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia 119192
| | - Yelena Parfyonova
- Laboratory of Angiogenesis, National Medical Research Center for Cardiology, Moscow, Russia 121152
- Laboratory of Postgenomic Technologies in Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia 119192
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan 300
| |
Collapse
|
107
|
Lee DH, Kim TM, Kim JK, Park C. ETV2/ER71 Transcription Factor as a Therapeutic Vehicle for Cardiovascular Disease. Theranostics 2019; 9:5694-5705. [PMID: 31534512 PMCID: PMC6735401 DOI: 10.7150/thno.35300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases have long been the leading cause of mortality and morbidity in the United States as well as worldwide. Despite numerous efforts over the past few decades, the number of the patients with cardiovascular disease still remains high, thereby necessitating the development of novel therapeutic strategies equipped with a better understanding of the biology of the cardiovascular system. Recently, the ETS transcription factor, ETV2 (also known as ER71), has been recognized as a master regulator of the development of the cardiovascular system and plays an important role in pathophysiological angiogenesis and the endothelial cell reprogramming. Here, we discuss the detailed mechanisms underlying ETV2/ER71-regulated cardiovascular lineage development. In addition, recent reports on the novel functions of ETV2/ER71 in neovascularization and direct cell reprogramming are discussed with a focus on its therapeutic potential for cardiovascular diseases.
Collapse
|
108
|
Truong VA, Hsu MN, Kieu Nguyen NT, Lin MW, Shen CC, Lin CY, Hu YC. CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res 2019; 47:e74. [PMID: 30997496 PMCID: PMC6648329 DOI: 10.1093/nar/gkz267] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Calvarial bone healing remains difficult but may be improved by stimulating chondrogenesis of implanted stem cells. To simultaneously promote chondrogenesis and repress adipogenesis of stem cells, we built a CRISPRai system that comprised inactive Cas9 (dCas9), two fusion proteins as activation/repression complexes and two single guide RNA (sgRNA) as scaffolds for recruiting activator (sgRNAa) or inhibitor (sgRNAi). By plasmid transfection and co-expression in CHO cells, we validated that dCas9 coordinated with sgRNAa to recruit the activator for mCherry activation and also orchestrated with sgRNAi to recruit the repressor for d2EGFP inhibition, without cross interference. After changing the sgRNA sequence to target endogenous Sox9/PPAR-γ, we packaged the entire CRISPRai system into an all-in-one baculovirus for efficient delivery into rat bone marrow-derived mesenchymal stem cells (rBMSC) and verified simultaneous Sox9 activation and PPAR-γ repression. The activation/inhibition effects were further enhanced/prolonged by using the Cre/loxP-based hybrid baculovirus. The CRISPRai system delivered by the hybrid baculovirus stimulated chondrogenesis and repressed adipogenesis of rBMSC in 2D culture and promoted the formation of engineered cartilage in 3D culture. Importantly, implantation of the rBMSC engineered by the CRISPRai improved calvarial bone healing. This study paves a new avenue to translate the CRISPRai technology to regenerative medicine.
Collapse
Affiliation(s)
- Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Nuong Thi Kieu Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
109
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
110
|
Ebrahimi A, Keske E, Mehdipour A, Ebrahimi-Kalan A, Ghorbani M. Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomed Pharmacother 2019; 112:108663. [DOI: 10.1016/j.biopha.2019.108663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 12/21/2022] Open
|
111
|
Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming. Stem Cell Reports 2019; 12:757-771. [PMID: 30905739 PMCID: PMC6450436 DOI: 10.1016/j.stemcr.2019.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/03/2023] Open
Abstract
Primed epiblast stem cells (EpiSCs) can be reverted to a pluripotent embryonic stem cell (ESC)-like state by expression of single reprogramming factor. We used CRISPR activation to perform a genome-scale, reprogramming screen in EpiSCs and identified 142 candidate genes. Our screen validated a total of 50 genes, previously not known to contribute to reprogramming, of which we chose Sall1 for further investigation. We show that Sall1 augments reprogramming of mouse EpiSCs and embryonic fibroblasts and that these induced pluripotent stem cells are indeed fully pluripotent including formation of chimeric mice. We also demonstrate that Sall1 synergizes with Nanog in reprogramming and that overexpression in ESCs delays their conversion back to EpiSCs. Lastly, using RNA sequencing, we identify and validate Klf5 and Fam189a2 as new downstream targets of Sall1 and Nanog. In summary, our work demonstrates the power of using CRISPR technology in understanding molecular mechanisms that mediate complex cellular processes such as reprogramming. Genome-scale CRISPRa screen in mouse EpiSCs identifies novel reprogramming factors 50 novel genes, including Sall1 and Fam189a2, identified to mediate reprogramming Sall1 synergizes with Nanog to increase reprogramming efficiency in EpiSCs and MEFs RNA-seq provides insight into downstream pathways of Sall1 and Nanog-mediated reprogramming
Collapse
|
112
|
Dolatshad H, Tatwavedi D, Ahmed D, Tegethoff JF, Boultwood J, Pellagatti A. Application of induced pluripotent stem cell technology for the investigation of hematological disorders. Adv Biol Regul 2019; 71:19-33. [PMID: 30341008 DOI: 10.1016/j.jbior.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Induced pluripotent stem cells (iPSCs) were first described over a decade ago and are currently used in various basic biology and clinical research fields. Recent advances in the field of human iPSCs have opened the way to a better understanding of the biology of human diseases. Disease-specific iPSCs provide an unparalleled opportunity to establish novel human cell-based disease models, with the potential to enhance our understanding of the molecular mechanisms underlying human malignancies, and to accelerate the identification of effective new drugs. When combined with genome editing technologies, iPSCs represent a new approach to study single or multiple disease-causing mutations and model specific diseases in vitro. In addition, genetically corrected patient-specific iPSCs could potentially be used for stem cell based therapy. Furthermore, the reprogrammed cells share patient-specific genetic background, offering a new platform to develop personalized therapy/medicine for patients. In this review we discuss the recent advances in iPSC research technology and their potential applications in hematological diseases. Somatic cell reprogramming has presented new routes for generating patient-derived iPSCs, which can be differentiated to hematopoietic stem cells and the various downstream hematopoietic lineages. iPSC technology shows promise in the modeling of both inherited and acquired hematological disorders. A direct reprogramming and differentiation strategy is able to recapitulate hematological disorder progression and capture the earliest molecular alterations that underlie the initiation of hematological malignancies.
Collapse
Affiliation(s)
- Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Dharamveer Tatwavedi
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Doaa Ahmed
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK; Clinical Pathology Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt
| | - Jana F Tegethoff
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
113
|
Lau CH, Suh Y. In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res 2018; 27:489-509. [PMID: 30284145 PMCID: PMC6261694 DOI: 10.1007/s11248-018-0096-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023]
Abstract
The rapid advancement of CRISPR technology has enabled targeted epigenome editing and transcriptional modulation in the native chromatin context. However, only a few studies have reported the successful editing of the epigenome in adult animals in contrast to the rapidly growing number of in vivo genome editing over the past few years. In this review, we discuss the challenges facing in vivo epigenome editing and new strategies to overcome the huddles. The biggest challenge has been the difficulty in packaging dCas9 fusion proteins required for manipulation of epigenome into the adeno-associated virus (AAV) delivery vehicle. We review the strategies to address the AAV packaging issue, including small dCas9 orthologues, truncated dCas9 mutants, a split-dCas9 system, and potent truncated effector domains. We discuss the dCas9 conjugation strategies to recruit endogenous chromatin modifiers and remodelers to specific genomic loci, and recently developed methods to recruit multiple copies of the dCas9 fusion protein, or to simultaneous express multiple gRNAs for robust epigenome editing or synergistic transcriptional modulation. The use of Cre-inducible dCas9-expressing mice or a genetic cross between dCas9- and sgRNA-expressing flies has also helped overcome the transgene delivery issue. We provide perspective on how a combination use of these strategies can facilitate in vivo epigenome editing and transcriptional modulation.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
114
|
Lau CH. Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR J 2018; 1:379-404. [PMID: 31021245 DOI: 10.1089/crispr.2018.0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CRISPR technology is rapidly evolving, and the scope of CRISPR applications is constantly expanding. CRISPR was originally employed for genome editing. Its application was then extended to epigenome editing, karyotype engineering, chromatin imaging, transcriptome, and metabolic pathway engineering. Now, CRISPR technology is being harnessed for genetic circuits engineering, cell signaling sensing, cellular events recording, lineage information reconstruction, gene drive, DNA genotyping, miRNA quantification, in vivo cloning, site-directed mutagenesis, genomic diversification, and proteomic analysis in situ. It has also been implemented in the translational research of human diseases such as cancer immunotherapy, antiviral therapy, bacteriophage therapy, cancer diagnosis, pathogen screening, microbiota remodeling, stem-cell reprogramming, immunogenomic engineering, vaccine development, and antibody production. This review aims to summarize the key concepts of these CRISPR applications in order to capture the current state of play in this fast-moving field. The key mechanisms, strategies, and design principles for each technological advance are also highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong , Hong Kong, SAR, China
| |
Collapse
|
115
|
Phylogenetic and mutational analyses of human LEUTX, a homeobox gene implicated in embryogenesis. Sci Rep 2018; 8:17421. [PMID: 30479355 PMCID: PMC6258689 DOI: 10.1038/s41598-018-35547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, human PAIRED-LIKE homeobox transcription factor (TF) genes were discovered whose expression is limited to the period of embryo genome activation up to the 8-cell stage. One of these TFs is LEUTX, but its importance for human embryogenesis is still subject to debate. We confirmed that human LEUTX acts as a TAATCC-targeting transcriptional activator, like other K50-type PAIRED-LIKE TFs. Phylogenetic comparisons revealed that Leutx proteins are conserved across Placentalia and comprise two conserved domains, the homeodomain, and a Leutx-specific domain containing putative transcriptional activation motifs (9aaTAD). Examination of human genotype resources revealed 116 allelic variants in LEUTX. Twenty-four variants potentially affect function, but they occur only heterozygously at low frequency. One variant affects a DNA-specificity determining residue, mutationally reachable by a one-base transition. In vitro and in silico experiments showed that this LEUTX mutation (alanine to valine at position 54 in the homeodomain) results in a transactivational loss-of-function to a minimal TAATCC-containing promoter and a 36 bp motif enriched in genes involved in embryo genome activation. A compensatory change in residue 47 restores function. The results support the notion that human LEUTX functions as a transcriptional activator important for human embryogenesis.
Collapse
|
116
|
Liu H, Wang L, Luo Y. Blossom of CRISPR technologies and applications in disease treatment. Synth Syst Biotechnol 2018; 3:217-228. [PMID: 30370342 PMCID: PMC6199817 DOI: 10.1016/j.synbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023] Open
Abstract
Since 2013, the CRISPR-based bacterial antiviral defense systems have revolutionized the genome editing field. In addition to genome editing, CRISPR has been developed as a variety of tools for gene expression regulations, live cell chromatin imaging, base editing, epigenome editing, and nucleic acid detection. Moreover, in the context of further boosting the usability and feasibility of CRISPR systems, novel CRISPR systems and engineered CRISPR protein mutants have been explored and studied actively. With the flourish of CRISPR technologies, they have been applied in disease treatment recently, as in gene therapy, cell therapy, immunotherapy, and antimicrobial therapy. Here we present the developments of CRISPR technologies and describe the applications of these CRISPR-based technologies in disease treatment.
Collapse
Affiliation(s)
- Huayi Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lian Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Yunzi Luo
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| |
Collapse
|