Wang S, Zhao Z, Rodal AA. Higher-order assembly of Sorting Nexin 16 controls tubulation and distribution of neuronal endosomes.
J Cell Biol 2019;
218:2600-2618. [PMID:
31253649 PMCID:
PMC6683739 DOI:
10.1083/jcb.201811074]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023] Open
Abstract
Endosomal maturation and distribution, driven by membrane remodeling, are critical for receptor traffic and signaling. Using both in vitro and in vivo approaches, Wang et al. reveal an unexpected coiled-coil–mediated membrane remodeling activity of SNX16 that controls neuronal endosomal tubulation, distribution, and receptor traffic.
The activities of neuronal signaling receptors depend heavily on the maturation state of the endosomal compartments in which they reside. However, it remains unclear how the distribution of these compartments within the uniquely complex morphology of neurons is regulated and how this distribution itself affects signaling. Here, we identified mechanisms by which Sorting Nexin 16 (SNX16) controls neuronal endosomal maturation and distribution. We found that higher-order assembly of SNX16 via its coiled-coil (CC) domain drives membrane tubulation in vitro and endosome association in cells. In Drosophila melanogaster motor neurons, activation of Rab5 and CC-dependent self-association of SNX16 lead to its endosomal enrichment, accumulation in Rab5- and Rab7-positive tubulated compartments in the cell body, and concomitant depletion of SNX16-positive endosomes from the synapse. This results in accumulation of synaptic growth–promoting bone morphogenetic protein receptors in the cell body and correlates with increased synaptic growth. Our results indicate that Rab regulation of SNX16 assembly controls the endosomal distribution and signaling activities of receptors in neurons.
Collapse