101
|
Remodelling structure-based drug design using machine learning. Emerg Top Life Sci 2021; 5:13-27. [PMID: 33825834 DOI: 10.1042/etls20200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
To keep up with the pace of rapid discoveries in biomedicine, a plethora of research endeavors had been directed toward Rational Drug Development that slowly gave way to Structure-Based Drug Design (SBDD). In the past few decades, SBDD played a stupendous role in identification of novel drug-like molecules that are capable of altering the structures and/or functions of the target macromolecules involved in different disease pathways and networks. Unfortunately, post-delivery drug failures due to adverse drug interactions have constrained the use of SBDD in biomedical applications. However, recent technological advancements, along with parallel surge in clinical research have led to the concomitant establishment of other powerful computational techniques such as Artificial Intelligence (AI) and Machine Learning (ML). These leading-edge tools with the ability to successfully predict side-effects of a wide range of drugs have eventually taken over the field of drug design. ML, a subset of AI, is a robust computational tool that is capable of data analysis and analytical model building with minimal human intervention. It is based on powerful algorithms that use huge sets of 'training data' as inputs to predict new output values, which improve iteratively through experience. In this review, along with a brief discussion on the evolution of the drug discovery process, we have focused on the methodologies pertaining to the technological advancements of machine learning. This review, with specific examples, also emphasises the tremendous contributions of ML in the field of biomedicine, while exploring possibilities for future developments.
Collapse
|
102
|
Zhang X, Qian J, Wang H, Wang Y, Zhang Y, Qian P, Lou Y, Jin J, Zhu H. Not BCL2 mutation but dominant mutation conversation contributed to acquired venetoclax resistance in acute myeloid leukemia. Biomark Res 2021; 9:30. [PMID: 33933163 PMCID: PMC8088697 DOI: 10.1186/s40364-021-00288-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Venetoclax (VEN) plus azacitidine has become the first-line therapy for elderly patients with acute myeloid leukemia (AML), and has a complete remission (CR) plus CR with incomplete recovery of hemogram rate of ≥70%. However, the 3-year survival rate of these patients is < 40% due to relapse caused by acquired VEN resistance, and this remains the greatest obstacle for the maintenance of long-term remission in VEN-sensitive patients. The underlying mechanism of acquired VEN resistance in AML remains largely unknown. Therefore, in the current study, nine AML patients with acquired VEN resistance were retrospectively analyzed. Our results showed that the known VEN resistance-associated BCL2 mutation was not present in our cohort, indicating that, in contrast to chronic lymphocytic leukemia, this BCL2 mutation is dispensable for acquired VEN resistance in AML. Instead, we found that reconstructed existing mutations, especially dominant mutation conversion (e.g., expanded FLT3-ITD), rather than newly emerged mutations (e.g., TP53 mutation), mainly contributed to VEN resistance in AML. According to our results, the combination of precise mutational monitoring and advanced interventions with targeted therapy or chemotherapy are potential strategies to prevent and even overcome acquired VEN resistance in AML.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Pengxu Qian
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
| |
Collapse
|
103
|
Prado G, Kaestner CL, Licht JD, Bennett RL. Targeting epigenetic mechanisms to overcome venetoclax resistance. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119047. [PMID: 33945824 DOI: 10.1016/j.bbamcr.2021.119047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
The BH-3 mimetic venetoclax overcomes apoptosis and therapy resistance caused by high expression of BCL2 or loss of BH3-only protein function. Although a promising therapy for hematologic malignancies, increased expression of anti-apoptotic MCL-1 or BCL-XL, as well as other resistance mechanisms prevent a durable response to venetoclax. Recent studies demonstrate that agents targeting epigenetic mechanisms such as DNA methyltransferase inhibitors, histone deacetylase (HDAC) inhibitors, histone methyltransferase EZH2 inhibitors, or bromodomain reader protein inhibitors may disable oncogenic gene expression signatures responsible for venetoclax resistance. Combination therapies including venetoclax and epigenetic therapies are effective in preclinical models and the subject of many current clinical trials. Here we review epigenetic strategies to overcome venetoclax resistance mechanisms in hematologic malignancies.
Collapse
Affiliation(s)
- Gabriel Prado
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Charlotte L Kaestner
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Jonathan D Licht
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Richard L Bennett
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America.
| |
Collapse
|
104
|
Krishna S, Kumar SB, Murthy TPK, Murahari M. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy. Comput Biol Med 2021; 134:104455. [PMID: 33962088 DOI: 10.1016/j.compbiomed.2021.104455] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 01/08/2023]
Abstract
B-cell lymphoma 2 (BCL-2) family is one of the chief regulators of cellular apoptosis. The intricate interactions between pro-apoptotic and anti-apoptotic genes of the BCL-2 family dictate the apoptotic balance of the cell. An overexpression of the anti-apoptotic members of BCL-2 is indicative of cell death evasion and cancer metastasis. Among the four BCL-2 homology domains, the BH3 domain plays a key role in the suppression of BCL-2 expression. Therefore, BH3-mimetic drugs are currently investigated for their suitability as BCL-2 inhibitors. In the present study, we followed a structure-based pharmacophore modelling approach to identify BH3-mimetic small molecules, to formulate a more precise and targeted cancer treatment regimen. To identify proteins with similar binding features, a structure-based pharmacophore model was generated based on the structure of Bcl-2 complexed with Venetoclax (PDB-ID:6O0K). Compounds with good fitness score and pharmacophore features, screened from the ZINC database, were subjected to (i) molecular docking studies, (ii) molecular mechanics-generalized Born surface area (MM-GBSA), and (iii) absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction. From the analysis, two molecules were identified: ZINC68728276 and ZINC14166367, with docking scores of -7.323 and -8.649 kcal/mol and free binding energies (MM-GBSA) of -72.913 and -72.291 kcal/mol, respectively. The structural parameters and binding affinity of these complexes were validated through molecular dynamics simulation and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) free energy calculations and compared with Venetoclax. The results indicated stability and good binding affinity of both the compounds. The study identified ZINC68728276 and ZINC14166367 as in silico potential Bcl-2 inhibitors, which can be further considered for in vitro studies.
Collapse
Affiliation(s)
- Swati Krishna
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - S Birendra Kumar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India.
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India.
| |
Collapse
|
105
|
Mushtaq AU, Ådén J, Clifton LA, Wacklin-Knecht H, Campana M, Dingeldein APG, Persson C, Sparrman T, Gröbner G. Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation. Commun Biol 2021; 4:507. [PMID: 33907308 PMCID: PMC8079415 DOI: 10.1038/s42003-021-02032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, ESS, Lund, Sweden
- Department of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Mario Campana
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | | | - Cecilia Persson
- The Swedish NMR Center, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
106
|
Saliba AN, John AJ, Kaufmann SH. Resistance to venetoclax and hypomethylating agents in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:125-142. [PMID: 33796823 PMCID: PMC8011583 DOI: 10.20517/cdr.2020.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the success of the combination of venetoclax with the hypomethylating agents (HMA) decitabine or azacitidine in inducing remission in older, previously untreated patients with acute myeloid leukemia (AML), resistance - primary or secondary - still constitutes a significant roadblock in the quest to prolong the duration of response. Here we review the proposed and proven mechanisms of resistance to venetoclax monotherapy, HMA monotherapy, and the doublet of venetoclax and HMA for the treatment of AML. We approach the mechanisms of resistance to HMAs and venetoclax in the light of the agents' mechanisms of action. We briefly describe potential therapeutic strategies to circumvent resistance to this promising combination, including alternative scheduling or the addition of other agents to the HMA and venetoclax backbone. Understanding the mechanisms of action and evolving resistance in AML remains a priority in order to maximize the benefit from novel drugs and combinations, identify new therapeutic targets, define potential prognostic markers, and avoid treatment failure.
Collapse
Affiliation(s)
- Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - August J John
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
107
|
Takács F, Mikala G, Nagy N, Reszegi A, Czeti Á, Szalóki G, Barna G. Identification of a novel resistance mechanism in venetoclax treatment and its prediction in chronic lymphocytic leukemia. Acta Oncol 2021; 60:528-530. [PMID: 33491510 DOI: 10.1080/0284186x.2021.1878388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The Bcl-2 inhibitor venetoclax has been recently introduced into the treatment of chronic lymphocytic leukemia. Venetoclax is a highly effective drug, however acquired resistance may make long-term treatment challenging. In our study, we present potential novel resistance mechanisms and prognostic markers that are potentially able to predict the early appearance of the resistance. MATERIAL AND METHODS Repeated complete blood counts, flow cytometric measurements, and physical examinations were performed during the patient follow-up. Clinical and laboratory parameters showed that the patient developed clinical resistance to venetoclax on day 450 of therapy. Resistance mutation analysis (D103Y) and apoptosis arrays from samples at the time of resistance were done. RESULTS We were able to identify the resistance mutations just a very low variant allele frequency level from the resistant samples. Furthermore we detected increased Bcl-2 expression in peripheral blood (PB), and XIAP overexpression in bone marrow (BM) that could lead to venetoclax resistance. We examined the immunophenotype of CLL cells and recognized that while the expression of CD86 did not change until day 270 of the treatment, since then its expression steadily increased. Moreover, we compared the expression of CD86 in the resistant PB and BM samples and did not find a notable difference between the compartments. CONCLUSION Our results imply that CLL cells may try to avoid the apoptotic effect of venetoclax through increased CD86 expression by activating antiapoptotic mechanisms. Confirmatory experiments are still required to unequivocally prove that CD86 is a prognostic marker, however, its predictive property during the venetoclax treatment is promising.
Collapse
Affiliation(s)
- Ferenc Takács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Mikala
- South-Pest Central Hospital – National Institute for Hematology and Infectious Diseases, Department of Hematology and Stem Cell Transplantation, Budapest, Hungary
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ágnes Czeti
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Szalóki
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
108
|
Fürstenau M, Eichhorst B. Novel Agents in Chronic Lymphocytic Leukemia: New Combination Therapies and Strategies to Overcome Resistance. Cancers (Basel) 2021; 13:1336. [PMID: 33809580 PMCID: PMC8002361 DOI: 10.3390/cancers13061336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
The approval of Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib and acalabrutinib and the Bcl-2 inhibitor venetoclax have revolutionized the treatment of chronic lymphocytic leukemia (CLL). While these novel agents alone or in combination induce long lasting and deep remissions in most patients with CLL, their use may be associated with the development of clinical resistance. In this review, we elucidate the genetic basis of acquired resistance to BTK and Bcl-2 inhibition and present evidence on resistance mechanisms that are not linked to single genomic alterations affecting these target proteins. Strategies to prevent resistance to novel agents are discussed in this review with a special focus on new combination therapies.
Collapse
Affiliation(s)
- Moritz Fürstenau
- German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Department I of Internal Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Cancer Center Cologne Essen (CCCE)—Partner Site Cologne, University of Cologne, 50937 Cologne, Germany
| | - Barbara Eichhorst
- German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Department I of Internal Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Cancer Center Cologne Essen (CCCE)—Partner Site Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
109
|
Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives. Cancers (Basel) 2021; 13:cancers13061292. [PMID: 33799470 PMCID: PMC8001391 DOI: 10.3390/cancers13061292] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Apoptosis, a programmed form of cell death, represents the main mechanism by which cells die. Such phenomenon is highly regulated by the BCL-2 family of proteins, which includes both pro-apoptotic and pro-survival proteins. The decision whether cells live or die is tightly controlled by a balance between these two classes of proteins. Notably, the pro-survival Bcl-2 proteins are frequently overexpressed in cancer cells dysregulating this balance in favor of survival and also rendering cells more resistant to therapeutic interventions. In this review, we outlined the most important steps in the development of targeting the BCL-2 survival proteins, which laid the ground for the discovery and the development of the selective BCL-2 inhibitor venetoclax as a therapeutic drug in hematological malignancies. The limitations and future directions are also discussed. Abstract The major form of cell death in normal as well as malignant cells is apoptosis, which is a programmed process highly regulated by the BCL-2 family of proteins. This includes the antiapoptotic proteins (BCL-2, BCL-XL, MCL-1, BCLW, and BFL-1) and the proapoptotic proteins, which can be divided into two groups: the effectors (BAX, BAK, and BOK) and the BH3-only proteins (BIM, BAD, NOXA, PUMA, BID, BIK, HRK). Notably, the BCL-2 antiapoptotic proteins are often overexpressed in malignant cells. While this offers survival advantages to malignant cells and strengthens their drug resistance capacity, it also offers opportunities for novel targeted therapies that selectively kill such cells. This review provides a comprehensive overview of the extensive preclinical and clinical studies targeting BCL-2 proteins with various BCL-2 proteins inhibitors with emphasis on venetoclax as a single agent, as well as in combination with other therapeutic agents. This review also discusses recent advances, challenges focusing on drug resistance, and future perspectives for effective targeting the Bcl-2 family of proteins in cancer.
Collapse
|
110
|
Gupta VA, Ackley J, Kaufman JL, Boise LH. BCL2 Family Inhibitors in the Biology and Treatment of Multiple Myeloma. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2021; 11:11-24. [PMID: 33737856 PMCID: PMC7965688 DOI: 10.2147/blctt.s245191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Although much progress has been made in the treatment of multiple myeloma, the majority of patients fail to be cured and require numerous lines of therapy. Inhibitors of the BCL2 family represent an exciting new class of drugs with a novel mechanism of action that are likely to have activity as single agents and in combination with existing myeloma therapies. The BCL2 proteins are oncogenes that promote cell survival and are frequently upregulated in multiple myeloma, making them attractive targets. Venetoclax, a BCL2 specific inhibitor, is furthest along in development and has shown promising results in a subset of myeloma characterized by the t(11;14) translocation. Combining venetoclax with proteasome inhibitors and monoclonal antibodies has improved responses in a broader group of patients, but has come at the expense of a toxicity safety signal that requires additional follow-up. MCL1 inhibitors are likely to be effective in a broader range of patients and are currently in early clinical trials. This review will cover much of what is known about the biology of these drugs, biomarkers that predict response, mechanisms of resistance, and unanswered questions as they pertain to multiple myeloma.
Collapse
Affiliation(s)
- Vikas A Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - James Ackley
- Cancer Biology Graduate Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
111
|
Insight into Functional Membrane Proteins by Solution NMR: The Human Bcl-2 Protein-A Promising Cancer Drug Target. Molecules 2021; 26:molecules26051467. [PMID: 33800399 PMCID: PMC7962812 DOI: 10.3390/molecules26051467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Evasion from programmed cell death (apoptosis) is the main hallmark of cancer and a major cause of resistance to therapy. Many tumors simply ensure survival by over-expressing the cell-protecting (anti-apoptotic) Bcl-2 membrane protein involved in apoptotic regulation. However, the molecular mechanism by which Bcl-2 protein in its mitochondrial outer membrane location protects cells remains elusive due to the absence of structural insight; and current strategies to therapeutically interfere with these Bcl-2 sensitive cancers are limited. Here, we present an NMR-based approach to enable structural insight into Bcl-2 function; an approach also ideal as a fragment-based drug discovery platform for further identification and development of promising molecular Bcl-2 inhibitors. By using solution NMR spectroscopy on fully functional intact human Bcl-2 protein in a membrane-mimicking micellar environment, and constructs with specific functions remaining, we present a strategy for structure determination and specific drug screening of functional subunits of the Bcl-2 protein as targets. Using 19F NMR and a specific fragment library (Bionet) with fluorinated compounds we can successfully identify various binders and validate our strategy in the hunt for novel Bcl-2 selective cancer drug strategies to treat currently incurable Bcl-2 sensitive tumors.
Collapse
|
112
|
Sachithanandam V, Lalitha P, Parthiban A, Muthukumaran J, Jain M, Misra R, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. A comprehensive in silico and in vitro studies on quinizarin: a promising phytochemical derived from Rhizophora mucronata Lam. J Biomol Struct Dyn 2021; 40:7218-7229. [PMID: 33682626 DOI: 10.1080/07391102.2021.1894983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mangrove plants are a great source of phytomedicines, since from the beginning of human civilization and the origin of traditional medicines. In the present study, ten different mangrove leaf methanolic extracts were screened for the type of phytochemicals followed by assessing antimicrobial, anti-oxidant and anti-cancer activities. The efficient methanolic crude extract of Rhizospora mucornata was further purified and characterized for the presence of the bioactive compound. Based on UV-visible spectroscopy, FTIR, NMR and HRMS analysis, the bioactive compound was 1,4-dihydroanthraquinone; also termed as Quinizarin. This identified compound was potential in exhibiting antimicrobial, antioxidant, and cytotoxic activity. Quinizarin inhibited the growth of Bacillus cereus and Klebsiella aerogenes with minimum inhibitory concentration (MIC) of 0.78 and 1.5 mg/ml. The DPPH free radical scavenging assay revealed the maximum activity of 99.8% at the concentration of 200 µg/ml with an IC50 value of 12.67 ± 0.41 µg/ml. Cytotoxic assay against HeLa (cervical) and MDA-MB231(breast) cancer cell lines revealed IC50 values to be 4.60 ± 0.26 and 3.89 ± 0.15 µg/ml. Together the results of molecular docking and molecular dynamics simulation studies explained that Quinizarin molecule showed stronger binding affinity (-6.2 kcal/mol) and significant structural stability towards anti-apoptotic Bcl-2 protein. Thus, the study put forth the promising role of the natural molecule - Quinizarin isolated from R. mucornata in the formulation of therapeutic drugs against bacterial infections and cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| |
Collapse
|
113
|
Nagy MI, Darwish KM, Kishk SM, Tantawy MA, Nasr AM, Qushawy M, Swidan SA, Mostafa SM, Salama I. Design, Synthesis, Anticancer Activity, and Solid Lipid Nanoparticle Formulation of Indole- and Benzimidazole-Based Compounds as Pro-Apoptotic Agents Targeting Bcl-2 Protein. Pharmaceuticals (Basel) 2021; 14:ph14020113. [PMID: 33535550 PMCID: PMC7912796 DOI: 10.3390/ph14020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer is a multifactorial disease necessitating identification of novel targets for its treatment. Inhibition of Bcl-2 for triggered pro-apoptotic signaling is considered a promising strategy for cancer treatment. Within the current work, we aimed to design and synthesize a new series of benzimidazole- and indole-based derivatives as inhibitors of Bcl-2 protein. The market pan-Bcl-2 inhibitor, obatoclax, was the lead framework compound for adopted structural modifications. The obatoclax’s pyrrolylmethine linker was replaced with straight alkylamine or carboxyhydrazine methylene linkers providing the new compounds. This strategy permitted improved structural flexibility of synthesized compounds adopting favored maneuvers for better fitting at the Bcl-2 major hydrophobic pocket. Anti-cancer activity of the synthesized compounds was further investigated through MTT-cytotoxic assay, cell cycle analysis, RT-PCR, ELISA and DNA fragmentation. Cytotoxic results showed compounds 8a, 8b and 8c with promising cytotoxicity against MDA-MB-231/breast cancer cells (IC50 = 12.69 ± 0.84 to 12.83 ± 3.50 µM), while 8a and 8c depicted noticeable activities against A549/lung adenocarcinoma cells (IC50 = 23.05 ± 1.45 and 11.63 ± 2.57 µM, respectively). The signaling Bcl-2 inhibition pathway was confirmed by molecular docking where significant docking energies and interactions with key Bcl-2 pocket residues were depicted. Moreover, the top active compound, 8b, showed significant upregulated expression levels of pro-apoptotic/anti-apoptotic of genes; Bax, Bcl-2, caspase-3, -8, and -9 through RT-PCR assay. Improving the compound’s pharmaceutical profile was undertaken by introducing 8b within drug-solid/lipid nanoparticle formulation prepared by hot melting homogenization technique and evaluated for encapsulation efficiency, particle size, and zeta potential. Significant improvement was seen at the compound’s cytotoxic activity. In conclusion, 8b is introduced as a promising anti-cancer lead candidate that worth future fine-tuned lead optimization and development studies while exploring its potentiality through in-vivo preclinical investigation.
Collapse
Affiliation(s)
- Manar I. Nagy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Safaa M. Kishk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Mohamed A. Tantawy
- National Research Center, Hormones Department, Medical Research Division, Dokki, Giza 12622, Egypt;
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt;
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shady A. Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt;
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Samia M. Mostafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Ismail Salama
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
- Correspondence: ; Tel.: +20-102-225-7643
| |
Collapse
|
114
|
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma (MCL) is a heterogenous disease with a variety of morphologic and genetic features, some of which are associated with high risk disease. Here we critically analyze the current state of the understanding of MCL's biology and its implications in therapy, with a focus on chemotherapy-free and targeted therapy regimens. RECENT FINDINGS Mantle cell lymphoma (MCL) is a rare subtype of non-Hodgkin's lymphoma, defined by a hallmark chromosomal translocation t(11;14) which leads to constitutive expression of cyclin D1. Recent discoveries in the biology of MCL have identified a number of factors, including TP53 mutations and complex karyotype, that lead to unresponsiveness to traditional chemoimmunotherapy and poor outcomes. Bruton tyrosine kinase inhibitors, BH3-mimetics and other novel agents thwart survival of the neoplastic B-cells in a manner independent of high-risk mutations and have shown promising activity in relapsed/refractory MCL. These therapies are being investigated in the frontline setting, while optimal responses to chemotherapy-free regimens, particularly in high-risk disease, might require combination approaches. High-risk MCL does not respond well to chemoimmunotherapy. Targeted agents are highly active in the relapsed refractory setting and show promise in high-risk disease. Novel approaches may soon replace the current standard of care in both relapsed and frontline settings.
Collapse
|
115
|
Skånland SS, Mato AR. Overcoming resistance to targeted therapies in chronic lymphocytic leukemia. Blood Adv 2021; 5:334-343. [PMID: 33570649 PMCID: PMC7805313 DOI: 10.1182/bloodadvances.2020003423] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Insight into the critical role of B-cell receptor signaling for the pathogenesis of chronic lymphocytic leukemia (CLL) led to the development of targeted therapies directed at key regulators of cell survival. Agents targeting B-cell lymphoma-2 protein, Bruton's tyrosine kinase (BTK), and phosphatidylinositol 3-kinase are approved for treatment of CLL, and have significantly improved the disease management. Nevertheless, acquired resistance to the targeted therapies is a challenge still to be resolved. The mechanisms underlying resistance are becoming clearer, and include secondary mutations within the drug target and activation of bypass pathways. This knowledge has allowed development of strategies to prevent and overcome treatment resistance. Approaches to prevent resistance include targeting bypass mechanisms by combination therapies, temporally sequencing of therapies, improved clinical trial designs, and real-time monitoring of patient response. A rational design of drug sequencing may secure effective treatment options at the relapsed setting. Next-generation inhibitors and bispecific antibodies have the potential to overcome resistance to the BTK inhibitor ibrutinib. Immunotherapy, including chimeric antigen receptor-modified T-cell therapy, is explored for relapsed CLL. Here, recent advances that have contributed to the understanding of resistance to targeted therapies in CLL are discussed. Strategies for managing resistance are reviewed, including translational, real-world, and clinical perspectives.
Collapse
Affiliation(s)
- Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; and
| | - Anthony R Mato
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
116
|
Fuchs O, Bokorova R. Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovasc Hematol Disord Drug Targets 2021; 21:7-22. [PMID: 33687890 DOI: 10.2174/1871529x21666210308111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Incorrectly expressed or mutated proteins associated with hematologic malignancies have been generally targeted by chemotherapy using small-molecule inhibitors or monoclonal antibodies. But the majority of these intracellular proteins are without active sites and antigens. PROTACs, proteolysis targeting chimeras, are bifunctional molecules designed to polyubiquitinate and degrade specific pathological proteins of interest (POIs) by hijacking the activity of E3-ubiquitin ligases for POI polyubiquitination and subsequent degradation by the proteasome. This strategy utilizes the ubiquitin-proteasome system for the degradation of specific proteins in the cell. In many cases, including hematologic malignancies, inducing protein degradation as a therapeutic strategy offers therapeutic benefits over classical enzyme inhibition connected with resistance to inhibitors. Limitations of small-molecule inhibitors are shown. PROTACs can polyubiquitinate and mark for degradation of "undruggable"proteins, e.g. transcription factor STAT3 and scaffold proteins. Today, this technology is used in preclinical studies in various hematologic malignancies, mainly for targeting drug-resistant bromodomain and extraterminal proteins and Bruton tyrosine kinase. Several mechanisms limiting selectivity and safety of PROTAC molecules function are also discussed.
Collapse
Affiliation(s)
- Ota Fuchs
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Radka Bokorova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
117
|
Bohler S, Afreen S, Fernandez-Orth J, Demmerath EM, Molnar C, Wu Y, Weiss JM, Mittapalli VR, Konstantinidis L, Schmal H, Kunze M, Erlacher M. Inhibition of the anti-apoptotic protein MCL-1 severely suppresses human hematopoiesis. Haematologica 2020; 106:3136-3148. [PMID: 33241675 PMCID: PMC8634190 DOI: 10.3324/haematol.2020.252130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/16/2022] Open
Abstract
BH3-mimetics inhibiting anti-apoptotic BCL-2 proteins represent a novel and promising class of antitumor drugs. While the BCL-2 inhibitor venetoclax is already approved by the Food and Drug Administration, BCL-XL and MCL-1 inhibitors are currently in early clinical trials. To predict side effects of therapeutic MCL-1 inhibition on the human hematopoietic system, we used RNA interference and the small molecule inhibitor S63845 on cord blood-derived CD34+ cells. Both approaches resulted in almost complete depletion of human hematopoietic stem and progenitor cells. As a consequence, maturation into the different hematopoietic lineages was severely restricted and CD34+ cells expressing MCL-1 shRNA showed a very limited engraftment potential upon xenotransplantation. In contrast, mature blood cells survived normally in the absence of MCL-1. Combined inhibition of MCL-1 and BCL-XL resulted in synergistic effects with relevant loss of colony-forming hematopoietic stem and progenitor cells already at inhibitor concentrations of 0.1 mM each, indicating “synthetic lethality” of the two BH3- mimetics in the hematopoietic system.
Collapse
Affiliation(s)
- Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg
| | - Sehar Afreen
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Juncal Fernandez-Orth
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Eva-Maria Demmerath
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Christian Molnar
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg
| | - Ying Wu
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg
| | - Julia Miriam Weiss
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Venugopal Rao Mittapalli
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Lukas Konstantinidis
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg
| |
Collapse
|
118
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
119
|
Lin VS, Xu ZF, Huang DCS, Thijssen R. BH3 Mimetics for the Treatment of B-Cell Malignancies-Insights and Lessons from the Clinic. Cancers (Basel) 2020; 12:cancers12113353. [PMID: 33198338 PMCID: PMC7696913 DOI: 10.3390/cancers12113353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary B-cell malignancies, including chronic lymphocytic leukemia (CLL), non-Hodgkin lymphoma (NHL), and plasma cell dyscrasias, are significant contributors to cancer morbidity and mortality worldwide. The pathogenesis of many B-cell malignancies involves perturbations in the intrinsic pathway of apoptosis that allow cells to evade cell death. BH3 mimetics represent a class of anti-cancer agents that can restore the ability of cancer cells to undergo apoptosis. Venetoclax, a recently approved BH3 mimetic, has transformed the therapeutic landscape for CLL. Other BH3 mimetics are currently under development. This review summarizes the available data on existing BH3 mimetics and highlights both the rapidly expanding role of BH3 mimetics in the treatment of B-cell malignancies and the clinical challenges of their use. Abstract The discovery of the link between defective apoptotic regulation and cancer cell survival engendered the idea of targeting aberrant components of the apoptotic machinery for cancer therapy. The intrinsic pathway of apoptosis is tightly controlled by interactions amongst members of three distinct subgroups of the B-cell lymphoma 2 (BCL2) family of proteins. The pro-survival BCL2 proteins prevent apoptosis by keeping the pro-apoptotic effector proteins BCL2-associated X protein (BAX) and BCL2 homologous antagonist/killer (BAK) in check, while the BH3-only proteins initiate apoptosis by either neutralizing the pro-survival BCL2 proteins or directly activating the pro-apoptotic effector proteins. This tripartite regulatory mechanism is commonly perturbed in B-cell malignancies facilitating cell death evasion. Over the past two decades, structure-based drug discovery has resulted in the development of a series of small molecules that mimic the function of BH3-only proteins called the BH3 mimetics. The most clinically advanced of these is venetoclax, which is a highly selective inhibitor of BCL2 that has transformed the treatment landscape for chronic lymphocytic leukemia (CLL). Other BH3 mimetics, which selectively target myeloid cell leukemia 1 (MCL1) and B-cell lymphoma extra large (BCLxL), are currently under investigation for use in diverse malignancies. Here, we review the current role of BH3 mimetics in the treatment of CLL and other B-cell malignancies and address open questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Victor S. Lin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 3000 Melbourne, Australia
| | - Zhuo-Fan Xu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- School of Medicine, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
- Correspondence:
| |
Collapse
|
120
|
Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. Current Challenges and Opportunities in Designing Protein-Protein Interaction Targeted Drugs. Adv Appl Bioinform Chem 2020; 13:11-25. [PMID: 33209039 PMCID: PMC7669531 DOI: 10.2147/aabc.s235542] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
It has been noticed that the efficiency of drug development has been decreasing in the past few decades. To overcome the situation, protein-protein interactions (PPIs) have been identified as new drug targets as early as 2000. PPIs are more abundant in human cells than single proteins and play numerous important roles in cellular processes including diseases. However, PPIs have very different physicochemical features from the conventional drug targets, which make targeting PPIs challenging. Therefore, as of now, only a small number of PPI inhibitors have been approved or progressed to a stage of clinical trial. In this article, we first overview previous works that analyzed differences between PPIs with PPI targeting ligands and conventional drugs with their binding pockets. Then, we constructed an up-to-date list of PPI targeting drugs that have been approved or are currently under clinical trial and have bound drug-target structures available. Using the dataset, we analyzed the PPIs and their ligands using several scores of druggability. Druggability scores showed that PPI sites and their drugs targeting PPIs are less druggable than conventional binding pockets and drugs, which also indicates that PPI drugs do not follow the conventional rules for drug design, such as Lipinski's rule of five. Our analyses suggest that developing a new rule would be beneficial for guiding PPI-drug discovery.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Chemical Science Education, Sunchon National University, Suncheon57922, Republic of Korea
| | - Keiko Kumazawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo191-8512, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo135-0064, Japan
| | - Takatsugu Hirokawa
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo135-0064, Japan
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN47906, USA
- Department of Computer Science, Purdue University, West Lafayette, IN47906, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN47906, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Care, University of Cincinnati, Cincinnati, OH45229, USA
| |
Collapse
|
121
|
Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 2020; 11:941. [PMID: 33139702 PMCID: PMC7608616 DOI: 10.1038/s41419-020-03144-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Defects in apoptosis can promote tumorigenesis and impair responses of malignant B cells to chemotherapeutics. Members of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins are key regulators of the intrinsic, mitochondrial apoptotic pathway. Overexpression of antiapoptotic BCL-2 family proteins is associated with treatment resistance and poor prognosis. Thus, inhibition of BCL-2 family proteins is a rational therapeutic option for malignancies that are dependent on antiapoptotic BCL-2 family proteins. Venetoclax (ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor that represents the first approved agent of this class and is currently widely used in the treatment of chronic lymphocytic leukemia (CLL) as well as acute myeloid leukemia (AML). Despite impressive clinical activity, venetoclax monotherapy for a prolonged duration can lead to drug resistance or loss of dependence on the targeted protein. In this review, we provide an overview of the mechanism of action of BCL-2 inhibition and the role of this approach in the current treatment paradigm of B-cell malignancies. We summarize the drivers of de novo and acquired resistance to venetoclax that are closely associated with complex clonal shifts, interplay of expression and interactions of BCL-2 family members, transcriptional regulators, and metabolic modulators. We also examine how tumors initially resistant to venetoclax become responsive to it following prior therapies. Here, we summarize preclinical data providing a rationale for efficacious combination strategies of venetoclax to overcome therapeutic resistance by a targeted approach directed against alternative antiapoptotic BCL-2 family proteins (MCL-1, BCL-xL), compensatory prosurvival pathways, epigenetic modifiers, and dysregulated cellular metabolism/energetics for durable clinical remissions.
Collapse
|
122
|
Yue X, Chen Q, He J. Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell Int 2020; 20:524. [PMID: 33292251 PMCID: PMC7597043 DOI: 10.1186/s12935-020-01614-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Venetoclax has been approved by the United States Food and Drug Administration since 2016 as a monotherapy for treating patients with relapsed/refractory chronic lymphocytic leukemia having 17p deletion. It has led to a breakthrough in the treatment of hematologic malignancies in recent years. However, unfortunately, resistance to venetoclax is inevitable. Multiple studies confirmed that the upregulation of the anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family mediated by various mechanisms, such as tumor microenvironment, and the activation of intracellular signaling pathways were the major factors leading to resistance to venetoclax. Therefore, only targeting BCL2 often fails to achieve the expected therapeutic effect. Based on the mechanism of resistance in specific hematologic malignancies, the combination of specific drugs with venetoclax was a clinically optional treatment strategy for overcoming resistance to venetoclax. This study aimed to summarize the possible resistance mechanisms of various hematologic tumors to venetoclax and the corresponding clinical strategies to overcome resistance to venetoclax in hematologic malignancies.
Collapse
Affiliation(s)
- XiaoYan Yue
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China
| | - JingSong He
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
123
|
Multiple BCL2 mutations cooccurring with Gly101Val emerge in chronic lymphocytic leukemia progression on venetoclax. Blood 2020; 135:773-777. [PMID: 31951646 DOI: 10.1182/blood.2019004205] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The BCL2 inhibitor venetoclax has complete response rates of up to 50% in chronic lymphocytic leukemia patients, but secondary resistance reflecting acquired mutations in BCL2 can lead to treatment failure. Blombery et al report that an unexpectedly large number of patients carry multiple BCL2 mutations with subclonal variation in their occurrence.
Collapse
|
124
|
Zou HS, Yi SH, Qiu LG. [Resistance mechanisms and treatment strategies of Venetoclax in chronic lymphocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:783-787. [PMID: 33113617 PMCID: PMC7595867 DOI: 10.3760/cma.j.issn.0253-2727.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/17/2022]
Affiliation(s)
- H S Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S H Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L G Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
125
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
126
|
Barillé-Nion S, Lohard S, Juin PP. Targeting of BCL-2 Family Members during Anticancer Treatment: A Necessary Compromise between Individual Cell and Ecosystemic Responses? Biomolecules 2020; 10:E1109. [PMID: 32722518 PMCID: PMC7464802 DOI: 10.3390/biom10081109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023] Open
Abstract
The imbalance between BCL-2 homologues and pro-death counterparts frequently noted in cancer cells endows them with a cell autonomous survival advantage. To eradicate ectopic cells, inhibitors of these homologues (BH3 mimetics) were developed to trigger, during anticancer treatment, full activation of the canonical mitochondrial apoptotic pathway and related caspases. Despite efficiency in some clinical settings, these compounds do not completely fulfill their initial promise. We herein put forth that a growing body of evidence indicates that mitochondrial integrity, controlled by BCL-2 family proteins, and downstream caspases regulate other cell death modes and influence extracellular signaling by committed cells. Moreover, intercellular communications play a key role in spreading therapeutic response across cancer cell populations and in engaging an immune response. We thus advocate that BH3 mimetics administration would be more efficient in the long term if it did not induce apoptosis in all sensitive cells at the same time, but if it could instead allow (or trigger) death signal production by non-terminally committed dying cell populations. The development of such a trade-off strategy requires to unravel the effects of BH3 mimetics not only on each individual cancer cell but also on homotypic and heterotypic cell interactions in dynamic tumor ecosystems.
Collapse
Affiliation(s)
- Sophie Barillé-Nion
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERMU1232, Université de Nantes, F-44000 Nantes, France; (S.B.-N.); (S.L.)
- SIRIC ILIAD, 44000 Nantes, France
| | - Steven Lohard
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERMU1232, Université de Nantes, F-44000 Nantes, France; (S.B.-N.); (S.L.)
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Philippe P. Juin
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERMU1232, Université de Nantes, F-44000 Nantes, France; (S.B.-N.); (S.L.)
- SIRIC ILIAD, 44000 Nantes, France
- Institut de Cancérologie de l’Ouest, 15 Rue André Boquel, 49055 Angers, France
| |
Collapse
|
127
|
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 2020; 121:3297-3351. [PMID: 32692162 DOI: 10.1021/acs.chemrev.0c00383] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.
Collapse
Affiliation(s)
- Richard A Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
128
|
Žigart N, Časar Z. Development of a Stability-Indicating Analytical Method for Determination of Venetoclax Using AQbD Principles. ACS OMEGA 2020; 5:17726-17742. [PMID: 32715260 PMCID: PMC7377371 DOI: 10.1021/acsomega.0c02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 06/01/2023]
Abstract
Venetoclax is an emerging drug for the treatment of various types of blood cancers. It was first approved in 2016 for the treatment of relapsed and refractory chronic lymphocytic leukemia. Later, the indications expanded, and multiple research as well as clinical studies are still conducted involving venetoclax. No analytical method for the determination of venetoclax can currently be found in the literature. We developed a mass spectrometry-compatible stability-indicating ultrahigh-performance liquid chromatography (LC) method for venetoclax. The LC method was developed using analytical quality by design principles. The developed method is able to separate venetoclax and its degradation products. The method was validated in the working point where a linearity range was established and accuracy, repeatability, and selectivity were assessed. Venetoclax is the only Bcl-2 protein inhibitor on the market. It is very effective in combinational therapy, so future drug development involving venetoclax may be expected. A stability-indicating method could aid in the development of new pharmaceutical products with venetoclax.
Collapse
Affiliation(s)
- Nina Žigart
- Sandoz
Development Center Slovenia, Analytics Department, Lek Pharmaceuticals d.d., SI-1526 Ljubljana, Slovenia
- Faculty
of Pharmacy, Chair of Medicinal Chemistry, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Zdenko Časar
- Sandoz
Development Center Slovenia, Analytics Department, Lek Pharmaceuticals d.d., SI-1526 Ljubljana, Slovenia
- Faculty
of Pharmacy, Chair of Medicinal Chemistry, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
129
|
On the Stability and Degradation Pathways of Venetoclax under Stress Conditions. Pharmaceutics 2020; 12:pharmaceutics12070639. [PMID: 32645956 PMCID: PMC7407384 DOI: 10.3390/pharmaceutics12070639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Venetoclax is an orally bioavailable, B-cell lymphoma-2 (BCL-2) selective inhibitor, used for the treatment of various types of blood cancers, such as chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). In this study we investigated the degradation of venetoclax under various stress conditions including acidic, basic, oxidative, photolytic and thermolytic conditions. We isolated and identified six of its main degradation products produced in forced degradation studies. The structures of the isolated degradation products were determined by using nuclear magnetic resonance (NMR) spectroscopy, high resolution mass spectrometry (HRMS) and infrared (IR) spectroscopy. Additionally, one oxidation degradation product was identified with comparison to a commercially obtained venetoclax impurity. We proposed the key degradation pathways of venetoclax in solution. To the best of our knowledge, no structures of degradation products of venetoclax have been previously published. The study provides novel and primary knowledge of the stability characteristics of venetoclax under stress conditions. Venetoclax is currently the only BCL-2 protein inhibitor on the market. In addition to single agent treatment, it is effective in combinational therapy, so future drug development involving venetoclax can be expected. A better insight into the stability properties of the therapeutic can facilitate future studies involving venetoclax and aid in the search of new similar therapeutics.
Collapse
|
130
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
131
|
Lee J, Wang YL. Prognostic and Predictive Molecular Biomarkers in Chronic Lymphocytic Leukemia. J Mol Diagn 2020; 22:1114-1125. [PMID: 32615167 DOI: 10.1016/j.jmoldx.2020.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of B cells with a variable clinical course. Prognostication is important to place patients into different risk categories for guiding decisions on clinical management, to treat or not to treat. Although several clinical, cytogenetic, and molecular parameters have been established, in the past decade, a tremendous understanding of molecular lesions has been obtained with the advent of high-throughput sequencing. Meanwhile, rapid advances in the understanding of the CLL oncogenic pathways have led to the development of small-molecule targeting signal transducers, Bruton tyrosine kinase and phosphatidylinositol 3-kinase, as well as anti-apoptotic protein BCL2 apoptosis regulator. After an initial response to these targeted therapies, some patients develop resistance and experience disease progression. Novel gene mutations have been identified that account for some of the drug resistance mechanisms. This article focuses on the prognostic and predictive molecular biomarkers in CLL relevant to the molecular pathology practice, beginning with a review of well-established prognostic markers that have already been incorporated into major clinical guidelines, which will be followed by a discussion of emerging biomarkers that are expected to impact clinical practice soon in the future. Special emphasis will be put on predictive biomarkers related to newer targeted therapies in hopes that this review will serve as a useful reference for molecular diagnostic professionals, clinicians, as well as laboratory investigators and trainees.
Collapse
Affiliation(s)
- Jimmy Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Y Lynn Wang
- Department of Pathology, Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
132
|
Zhao S, Kanagal‐Shamanna R, Navsaria L, Ok CY, Zhang S, Nomie K, Han G, Hao D, Hill HA, Jiang C, Yao Y, Nastoupil L, Westin J, Fayad L, Nair R, Steiner R, Ahmed S, Samaniego F, Iyer SP, Oriabure O, Chen W, Song X, Zhang J, Badillo M, Moghrabi O, Aranda J, Tang G, Yin CC, Patel K, Medeiros LJ, Li S, Vega F, Thirumurthi S, Xu G, Neelapu S, Flowers CR, Romaguera J, Fowler N, Wang L, Wang ML, Jain P. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma (MCL) - outcomes and mutation profile from venetoclax resistant MCL patients. Am J Hematol 2020; 95:623-629. [PMID: 32239765 DOI: 10.1002/ajh.25796] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Venetoclax is effective in relapsed patients with mantle cell lymphoma (MCL). Mechanisms of resistance to venetoclax in MCL are poorly understood. We describe the clinical outcomes and genomic characteristics of 24 multiply relapsed patients (median of five prior lines of therapy) who received venetoclax-based therapies; 67% had progressed on BTK inhibitors (BTKi) and 54% had blastoid or pleomorphic histology. Median follow up after venetoclax treatment was 17 months. The overall response rate was 50% and complete response (CR) rate was 21%, 16 patients had progressed and 15 died. The median progression free, overall and post venetoclax survival were 8, 13.5 and 7.3 months respectively. Whole-exome sequencing (WES) was performed on samples collected from seven patients (including five pairs; before starting venetoclax and after progression on venetoclax). The SMARCA4 and BCL2 alterations were noted only after progression, while TP53, CDKN2A, KMT2D, CELSR3, CCND1, NOTCH2 and ATM were altered 2-4-fold more frequently after progression. In two patients with serial samples, we demonstrated clonal evolution of novel SMARCA4 and KMT2C/D mutations at progression. Mutation dynamics in venetoclax resistant MCL is demonstrated. Our data indicates that venetoclax resistance in MCL is predominantly associated with non-BCL2 gene mutations. Further studies are ongoing in MCL patients to evaluate the efficacy of venetoclax in combination with other agents and understand the biology of venetoclax resistance in MCL.
Collapse
|
133
|
Lew TE, Anderson MA, Seymour JF. Promises and pitfalls of targeted agents in chronic lymphocytic leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:415-444. [PMID: 35582452 PMCID: PMC8992498 DOI: 10.20517/cdr.2019.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 11/12/2022]
Abstract
Targeted agents have significantly improved outcomes for patients with chronic lymphocytic leukemia, particularly high-risk subgroups for whom chemoimmunotherapy previously offered limited efficacy. Two classes of agent in particular, the Bruton tyrosine kinase inhibitors (e.g., ibrutinib) and the B-cell lymphoma 2 inhibitor, venetoclax, induce high response rates and durable remissions in the relapsed/refractory and frontline settings. However, maturing clinical data have revealed promises and pitfalls for both agents. These drugs induce remissions and disease control in the majority of patients, often in situations where modest efficacy would be expected with traditional chemoimmunotherapy approaches. Unfortunately, in the relapsed and refractory setting, both agents appear to be associated with an inevitable risk of disease relapse and progression. Emerging patterns of resistance are being described for both agents but a common theme appears to be multiple sub-clonal drivers of disease progression. Understanding these mechanisms and developing effective and safe methods to circumvent the emergence of resistance will determine the longer-term utility of these agents to improve patients' quality and length of life. Rational drug combinations, optimised scheduling and sequencing of therapy will likely hold the key to achieving these important goals.
Collapse
Affiliation(s)
- Thomas E. Lew
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville 3050, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville 3050, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | - John F. Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville 3050, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3050, Australia
| |
Collapse
|
134
|
D’Aguanno S, Del Bufalo D. Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells 2020; 9:cells9051287. [PMID: 32455818 PMCID: PMC7291206 DOI: 10.3390/cells9051287] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
The dynamic interplay between pro-death and pro-survival Bcl-2 family proteins is responsible for a cell’s fate. Due to the recognized relevance of this family in cancer progression and response to therapy, different efforts have made in recent years in order to develop small molecules able to target anti-apoptotic proteins such as Bcl-2, Bcl-xL and Mcl-1. The limitations of the first Bcl-2 family targeted drugs, regarding on-target and off-target toxicities, have been overcome with the development of venetoclax (ABT-199), the first BH3 mimetic inhibitor approved by the FDA. The purpose of this review is to discuss the state-of-the-art in the development of drugs targeting Bcl-2 anti-apoptotic proteins and to highlight the potential of their application as single agents or in combination for improving anti-cancer therapy, focusing in particular on solid tumors.
Collapse
|
135
|
Donoso-Bustamante V, Borrego EA, Schiaffino-Bustamante Y, Gutiérrez DA, Millas-Vargas JP, Fuentes-Retamal S, Correa P, Carrillo I, Aguilera RJ, Miranda D, Chávez-Báez I, Pulgar R, Urra FA, Varela-Ramírez A, Araya-Maturana R. An acylhydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorg Chem 2020; 100:103935. [PMID: 32454391 DOI: 10.1016/j.bioorg.2020.103935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial β-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.
Collapse
Affiliation(s)
- Viviana Donoso-Bustamante
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile
| | - Edgar A Borrego
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | | | - Denisse A Gutiérrez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Pablo Correa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renato J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Dante Miranda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Chávez-Báez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Rodrigo Pulgar
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Armando Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| |
Collapse
|
136
|
Harvey EP, Hauseman ZJ, Cohen DT, Rettenmaier TJ, Lee S, Huhn AJ, Wales TE, Seo HS, Luccarelli J, Newman CE, Guerra RM, Bird GH, Dhe-Paganon S, Engen JR, Wells JA, Walensky LD. Identification of a Covalent Molecular Inhibitor of Anti-apoptotic BFL-1 by Disulfide Tethering. Cell Chem Biol 2020; 27:647-656.e6. [PMID: 32413285 DOI: 10.1016/j.chembiol.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
The BCL-2 family is composed of anti- and pro-apoptotic members that respectively protect or disrupt mitochondrial integrity. Anti-apoptotic overexpression can promote oncogenesis by trapping the BCL-2 homology 3 (BH3) "killer domains" of pro-apoptotic proteins in a surface groove, blocking apoptosis. Groove inhibitors, such as the relatively large BCL-2 drug venetoclax (868 Da), have emerged as cancer therapies. BFL-1 remains an undrugged oncogenic protein and can cause venetoclax resistance. Having identified a unique C55 residue in the BFL-1 groove, we performed a disulfide tethering screen to determine if C55 reactivity could enable smaller molecules to block BFL-1's BH3-binding functionality. We found that a disulfide-bearing N-acetyltryptophan analog (304 Da adduct) effectively targeted BFL-1 C55 and reversed BFL-1-mediated suppression of mitochondrial apoptosis. Structural analyses implicated the conserved leucine-binding pocket of BFL-1 as the interaction site, resulting in conformational remodeling. Thus, therapeutic targeting of BFL-1 may be achievable through the design of small, cysteine-reactive drugs.
Collapse
Affiliation(s)
- Edward P Harvey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Zachary J Hauseman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Daniel T Cohen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - T Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, 1700 Fourth Street, San Francisco, CA 94143, USA
| | - Susan Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Annissa J Huhn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 412 The Fenway, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - James Luccarelli
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Catherine E Newman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Rachel M Guerra
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 412 The Fenway, Boston, MA 02115, USA
| | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, 1700 Fourth Street, San Francisco, CA 94143, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
137
|
Structure-based virtual screening, biological evaluation and biophysical study of novel Mcl-1 inhibitors. Future Med Chem 2020; 12:1293-1304. [PMID: 32397829 DOI: 10.4155/fmc-2020-0114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aim: Targeting the protein-protein interactions (PPIs) associated with Mcl-1 has become a promising therapeutic approach for cancer. Herein, we reported the discovery of novel Mcl-1 inhibitors using an integrated computational approach. Results: Among 30 virtual screening hits, five compounds show inhibitory activities against Mcl-1. The most potent inhibitors M02 (K i = 5.4 μM) and M08 (Ki = 0.53 μM) exhibit good selectivity against Bcl-2 and Bcl-xL. Compound M08 exhibits anti-proliferation activity and induces caspase-3 activation in Jurkat cancer cells. Moreover, 1H⁄15N HSQC NMR experiments suggested that compound M08 likely binds in the P2 pocket of Mcl-1 and engages R263 in a salt bridge. Conclusion: Our study provides a good starting point for future discovery of more potent Mcl-1 selective inhibitors.
Collapse
|
138
|
Westbrook JD, Soskind R, Hudson BP, Burley SK. Impact of the Protein Data Bank on antineoplastic approvals. Drug Discov Today 2020; 25:837-850. [PMID: 32068073 PMCID: PMC7305983 DOI: 10.1016/j.drudis.2020.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Open access to 3D structure information from the Protein Data Bank (PDB) facilitated discovery and development of >90% of the 79 new antineoplastic agents (54 small molecules, 25 biologics) with known molecular targets approved by the FDA 2010-2018. Analyses of PDB holdings, the scientific literature and related documents for each drug-target combination revealed that the impact of public-domain 3D structure data was broad and substantial, ranging from understanding target biology (∼95% of all targets) to identifying a given target as probably druggable (∼95% of all targets) to structure-guided lead optimization (>70% of all small-molecule drugs). In addition to aggregate impact assessments, illustrative case studies are presented for three protein kinase inhibitors, an allosteric enzyme inhibitor and seven advanced-stage melanoma therapeutics.
Collapse
Affiliation(s)
- John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rose Soskind
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian P Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
139
|
Tutumlu G, Dogan B, Avsar T, Orhan MD, Calis S, Durdagi S. Integrating Ligand and Target-Driven Based Virtual Screening Approaches With in vitro Human Cell Line Models and Time-Resolved Fluorescence Resonance Energy Transfer Assay to Identify Novel Hit Compounds Against BCL-2. Front Chem 2020; 8:167. [PMID: 32328476 PMCID: PMC7160371 DOI: 10.3389/fchem.2020.00167] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Antiapoptotic members of B-cell leukemia/lymphoma-2 (BCL-2) family proteins are one of the overexpressed proteins in cancer cells that are oncogenic targets. As such, targeting of BCL-2 family proteins raises hopes for new therapeutic discoveries. Thus, we used multistep screening and filtering approaches that combine structure and ligand-based drug design to identify new, effective BCL-2 inhibitors from a small molecule database (Specs SC), which includes more than 210,000 compounds. This database is first filtered based on binary “cancer-QSAR” model constructed with 886 training and 167 test set compounds and common 26 toxicity quantitative structure-activity relationships (QSAR) models. Predicted non-toxic compounds are considered for target-driven studies. Here, we applied two different approaches to filter and select hit compounds for further in vitro biological assays and human cell line experiments. In the first approach, a molecular docking and filtering approach is used to rank compounds based on their docking scores and only a few top-ranked molecules are selected for further long (100-ns) molecular dynamics (MD) simulations and in vitro tests. While docking algorithms are promising in predicting binding poses, they can be less prone to precisely predict ranking of compounds leading to decrease in the success rate of in silico studies. Hence, in the second approach, top-docking poses of each compound filtered through QSAR studies are subjected to initially short (1 ns) MD simulations and their binding energies are calculated via molecular mechanics generalized Born surface area (MM/GBSA) method. Then, the compounds are ranked based on their average MM/GBSA energy values to select hit molecules for further long MD simulations and in vitro studies. Additionally, we have applied text-mining approaches to identify molecules that contain “indol” phrase as many of the approved drugs contain indole and indol derivatives. Around 2700 compounds are filtered based on “cancer-QSAR” model and are then docked into BCL-2. Short MD simulations are performed for the top-docking poses for each compound in complex with BCL-2. The complexes are again ranked based on their MM/GBSA values to select hit molecules for further long MD simulations and in vitro studies. In total, seven molecules are subjected to biological activity tests in various human cancer cell lines as well as Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay. Inhibitory concentrations are evaluated, and biological activities and apoptotic potentials are assessed by cell culture studies. Four molecules are found to be limiting the proliferation capacity of cancer cells while increasing the apoptotic cell fractions.
Collapse
Affiliation(s)
- Gurbet Tutumlu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Timucin Avsar
- Department of Medical Biology, Bahcesehir University, School of Medicine, Istanbul, Turkey.,Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey.,Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Muge Didem Orhan
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey.,Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Seyma Calis
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey.,Molecular Biology, Genetics and Biotechnology Graduate Program, Istanbul Technical University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.,Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
140
|
Abstract
Venetoclax (Venclyxto®; Venclexta®) is a first-in-class, oral, selective B cell lymphoma-2 (BCL-2) inhibitor. The drug is approved in numerous countries, including those of the EU and in the USA, for the treatment of adults with relapsed or refractory (RR) chronic lymphocytic leukemia (CLL); the specific indication(s) for venetoclax may vary between individual countries. Venetoclax monotherapy or combination therapy with rituximab was an effective treatment, provided durable responses, and had a manageable safety profile in pivotal clinical trials in adults with RR CLL, including in patients with adverse prognostic factors. In combination with 6 cycles of rituximab, venetoclax (fixed 24 months' treatment) was more effective than bendamustine plus rituximab (6 cycles) in prolonging progression-free survival (PFS) and inducing undetectable minimal residual disease (uMRD) in peripheral blood (PB) and bone marrow (BM), with these benefits sustained during 36 months' follow-up. Hence, with its novel mechanism of action and convenient oral once-daily regimen, venetoclax monotherapy or fixed 24-month combination therapy with rituximab represents an important option for treating RR CLL, including in patients with del(17p) or TP53 mutation and those failing a B cell receptor (BCR) inhibitor and/or chemotherapy.
Collapse
|
141
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW This review highlights the importance of the Bcl-2 family members in lymphoma cell survival and discusses the approaches to modulate their function, directly or indirectly, to advance lymphoma therapeutics. RECENT FINDINGS The balance of cell death versus survival is ultimately leveraged at the mitochondria. Mitochondrial outer membrane permeabilization (MOMP) is the critical event that governs the release of pro-apoptotic molecules from the intermembrane mitochondrial space. MOMP is achieved through the coordinated actions of pro- and anti-apoptotic Bcl-2 family member proteins. Recognition of functional alterations among the Bcl-2 family member proteins led to identification of tractable targets to combat hematologic malignancies. A new class of drugs, termed BH3 mimetics, was introduced in the clinic. Venetoclax, a Bcl-2 inhibitor, received regulatory approvals in therapy of chronic lymphocytic leukemia and acute myeloid leukemia. Alternative pro-survival Bcl-2 family proteins, in particular Mcl-1, have been successfully targeted in preclinical studies using novel-specific BH3 mimetics. Finally, anti-apoptotic Bcl-2 family members may be targeted indirectly, via interference with the pro-survival signaling pathways, e.g., phosphoinotiside-3 kinase, B-cell receptor signaling, and NF-κB.
Collapse
|
143
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
144
|
Allen SJ, Lumb KJ. Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:253-303. [PMID: 32312425 DOI: 10.1016/bs.apcsb.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| |
Collapse
|
145
|
Abstract
Apoptosis is a highly conserved programme for removing damaged and unwanted cells. Apoptosis in most cells is coordinated on mitochondria by the Bcl-2 family of proteins. The balance between pro- and anti-apoptotic Bcl-2 family proteins sets a threshold for mitochondrial apoptosis, a balance that is altered during cancer progression. Consequently, avoidance of cell death is an established cancer hallmark. Although there is a general perception that tumour cells are more resistant to apoptosis than their normal counterparts, the realities of cell death regulation in cancer are more nuanced. In this review we discuss how a profound understanding of this control has led to new therapeutic approaches, including the new class of BH3-mimetics, which directly target apoptosis as a vulnerability in cancer. We discuss recent findings that highlight the current limitations in our understanding of apoptosis and how these novel therapeutics work.
Collapse
Affiliation(s)
- Andrew Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Louise King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
146
|
Denis C, Sopková-de Oliveira Santos J, Bureau R, Voisin-Chiret AS. Hot-Spots of Mcl-1 Protein. J Med Chem 2019; 63:928-943. [DOI: 10.1021/acs.jmedchem.9b00983] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Camille Denis
- Normandie Univiversité, UNICAEN, CERMN, 14000 Caen, France
| | | | - Ronan Bureau
- Normandie Univiversité, UNICAEN, CERMN, 14000 Caen, France
| | | |
Collapse
|
147
|
Blombery P. Mechanisms of intrinsic and acquired resistance to venetoclax in B-cell lymphoproliferative disease. Leuk Lymphoma 2019; 61:257-262. [PMID: 31533509 DOI: 10.1080/10428194.2019.1660974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Venetoclax is an oral selective BCL2 inhibitor which is highly efficacious in a variety of B-cell lymphoproliferative diseases (B-LPDs) due to their collective dependency on BCL2 over-expression as a central feature of their pathogenesis. However, despite its general efficacy across the spectrum of B-LPDs, certain subtypes are characterized by significantly higher response rates (RRs) to venetoclax (e.g. chronic lymphocytic leukemia) than others (e.g. diffuse large B-cell lymphoma). This variation in RR is the result of an underlying spectrum of primary (intrinsic) resistance to venetoclax mediated by numerous intracellular and microenvironmental mechanisms. Moreover, despite an initial response, most patients will experience disease progression on venetoclax therapy thus manifesting secondary (acquired) resistance. This review describes the molecular mechanisms in B-LPDs that drive both of these types of clinical resistance, the understanding of which is central to optimizing outcomes using this therapy.
Collapse
Affiliation(s)
- Piers Blombery
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
148
|
Seo JH, Agarwal E, Chae YC, Lee YG, Garlick DS, Storaci AM, Ferrero S, Gaudioso G, Gianelli U, Vaira V, Altieri DC. Mitochondrial fission factor is a novel Myc-dependent regulator of mitochondrial permeability in cancer. EBioMedicine 2019; 48:353-363. [PMID: 31542392 PMCID: PMC6838406 DOI: 10.1016/j.ebiom.2019.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondrial functions are exploited in cancer and provide a validated therapeutic target. However, how this process is regulated has remained mostly elusive and the identification of new pathways that control mitochondrial integrity in cancer is an urgent priority. Methods We studied clinically-annotated patient series of primary and metastatic prostate cancer, representative cases of multiple myeloma (MM) and publicly available genetic databases. Gene regulation studies involved chromatin immunoprecipitation, PCR amplification and Western blotting of conditional Myc-expressing cell lines. Transient or stable gene silencing was used to quantify mitochondrial functions in bioenergetics, outer membrane permeability, Ca2+ homeostasis, redox balance and cell death. Tumorigenicity was assessed by cell proliferation, colony formation and xenograft tumour growth. Findings We identified Mitochondrial Fission Factor (MFF) as a novel transcriptional target of oncogenic Myc overexpressed in primary and metastatic cancer, compared to normal tissues. Biochemically, MFF isoforms, MFF1 and MFF2 associate with the Voltage-Dependent Anion Channel-1 (VDAC1) at the mitochondrial outer membrane, in vivo. Disruption of this complex by MFF silencing induces general collapse of mitochondrial functions with increased outer membrane permeability, loss of inner membrane potential, Ca2+ unbalance, bioenergetics defects and activation of cell death pathways. In turn, this inhibits tumour cell proliferation, suppresses colony formation and reduces xenograft tumour growth in mice. Interpretation An MFF-VDAC1 complex is a novel regulator of mitochondrial integrity and actionable therapeutic target in cancer.
Collapse
Affiliation(s)
- Jae Ho Seo
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ekta Agarwal
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Young Chan Chae
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA; School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Yu Geon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - David S Garlick
- Histo-Scientific Research Laboratories, Mount Jackson, VA 22842, USA
| | - Alessandra Maria Storaci
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan 20122, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Umberto Gianelli
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
149
|
Mangoni AA, Eynde JJV, Jampilek J, Hadjipavlou-Litina D, Liu H, Reynisson J, Sousa ME, Gomes PAC, Prokai-Tatrai K, Tuccinardi T, Sabatier JM, Luque FJ, Rautio J, Karaman R, Vasconcelos MH, Gemma S, Galdiero S, Hulme C, Collina S, Gütschow M, Kokotos G, Siciliano C, Capasso R, Agrofoglio LA, Ragno R, Muñoz-Torrero D. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-5. Molecules 2019; 24:molecules24132415. [PMID: 31262039 PMCID: PMC6650823 DOI: 10.3390/molecules24132415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jóhannes Reynisson
- School of Pharmacy, Keele University, Hornbeam building, Staffordshire ST5 5BG, UK
| | - Maria Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências, Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| | - Paula A C Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard - CS80011, 13344 Marseille CEDEX 15, France
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Rafik Karaman
- Pharmaceutical & Medicinal Chemistry Department, Faculty of Pharmacy, Al-Quds University, POB 20002 Jerusalem, Palestine
- Department of Sciences, University of Basilicata, Viadell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sandra Gemma
- Department of Biotechnology, chemistry and pharmacy, University of Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Christopher Hulme
- Department of Pharmacology and Toxicology, and Department of Chemistry and Biochemistry, College of Pharmacy, The University of Arizona, Biological Sciences West Room 351, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53115 Bonn, Germany
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Arcavacata di Rende, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi A Agrofoglio
- ICOA, CNRS UMR 7311, Universite d'Orleans, Rue de Chartres, 45067 Orleans CEDEX 2, France
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|