101
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
102
|
Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, Méchali M. New insights into replication origin characteristics in metazoans. Cell Cycle 2012; 11:658-67. [PMID: 22373526 DOI: 10.4161/cc.11.4.19097] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently reported the identification and characterization of DNA replication origins (Oris) in metazoan cell lines. Here, we describe additional bioinformatic analyses showing that the previously identified GC-rich sequence elements form origin G-rich repeated elements (OGREs) that are present in 67% to 90% of the DNA replication origins from Drosophila to human cells, respectively. Our analyses also show that initiation of DNA synthesis takes place precisely at 160 bp (Drosophila) and 280 bp (mouse) from the OGRE. We also found that in most CpG islands, an OGRE is positioned in opposite orientation on each of the two DNA strands and detected two sites of initiation of DNA synthesis upstream or downstream of each OGRE. Conversely, Oris not associated with CpG islands have a single initiation site. OGRE density along chromosomes correlated with previously published replication timing data. Ori sequences centered on the OGRE are also predicted to have high intrinsic nucleosome occupancy. Finally, OGREs predict G-quadruplex structures at Oris that might be structural elements controlling the choice or activation of replication origins.
Collapse
|
103
|
McConnell KH, Dixon M, Calvi BR. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development 2012; 139:3880-90. [PMID: 22951641 DOI: 10.1242/dev.083576] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs.
Collapse
|
104
|
Donczew R, Weigel C, Lurz R, Zakrzewska-Czerwinska J, Zawilak-Pawlik A. Helicobacter pylori oriC--the first bipartite origin of chromosome replication in Gram-negative bacteria. Nucleic Acids Res 2012; 40:9647-60. [PMID: 22904070 PMCID: PMC3479198 DOI: 10.1093/nar/gks742] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Binding of the DnaA protein to oriC leads to DNA melting within the DNA unwinding element (DUE) and initiates replication of the bacterial chromosome. Helicobacter pylori oriC was previously identified as a region localized upstream of dnaA and containing a cluster of DnaA boxes bound by DnaA protein with a high affinity. However, no unwinding within the oriC sequence has been detected. Comprehensive in silico analysis presented in this work allowed us to identify an additional region (oriC2), separated from the original one (oriC1) by the dnaA gene. DnaA specifically binds both regions, but DnaA-dependent DNA unwinding occurs only within oriC2. Surprisingly, oriC2 is bound exclusively as supercoiled DNA, which directly shows the importance of the DNA topology in DnaA-oriC interactions, similarly as previously presented only for initiator-origin interactions in Archaea and some Eukaryota. We conclude that H. pylori oriC exhibits bipartite structure, being the first such origin discovered in a Gram-negative bacterium. The H. pylori mode of initiator-oriC interactions, with the loop formation between the subcomplexes of the discontinuous origin, resembles those discovered in Bacillus subtilis chromosome and in many plasmids, which might suggest a similar way of controlling initiation of replication.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland
| | | | | | | | | |
Collapse
|
105
|
Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 2012; 19:837-44. [PMID: 22751019 DOI: 10.1038/nsmb.2339] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/01/2012] [Indexed: 11/08/2022]
Abstract
DNA replication is highly regulated, ensuring faithful inheritance of genetic information through each cell cycle. In metazoans, this process is initiated at many thousands of DNA replication origins whose cell type-specific distribution and usage are poorly understood. We exhaustively mapped the genome-wide location of replication origins in human cells using deep sequencing of short nascent strands and identified ten times more origin positions than we expected; most of these positions were conserved in four different human cell lines. Furthermore, we identified a consensus G-quadruplex-forming DNA motif that can predict the position of DNA replication origins in human cells, accounting for their distribution, usage efficiency and timing. Finally, we discovered a cell type-specific reprogrammable signature of cell identity that was revealed by specific efficiencies of conserved origin positions and not by the selection of cell type-specific subsets of origins.
Collapse
|
106
|
Sun J, Kawakami H, Zech J, Speck C, Stillman B, Li H. Cdc6-induced conformational changes in ORC bound to origin DNA revealed by cryo-electron microscopy. Structure 2012; 20:534-44. [PMID: 22405012 DOI: 10.1016/j.str.2012.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/21/2023]
Abstract
The eukaryotic origin recognition complex (ORC) interacts with and remodels origins of DNA replication prior to initiation in S phase. Here, we report a single-particle cryo-EM-derived structure of the supramolecular assembly comprising Saccharomyces cerevisiae ORC, the replication initiation factor Cdc6, and double-stranded ARS1 origin DNA in the presence of ATPγS. The six subunits of ORC are arranged as Orc1:Orc4:Orc5:Orc2:Orc3, with Orc6 binding to Orc2. Cdc6 binding changes the conformation of ORC, in particular reorienting the Orc1 N-terminal BAH domain. Segmentation of the 3D map of ORC-Cdc6 on DNA and docking with the crystal structure of the homologous archaeal Orc1/Cdc6 protein suggest an origin DNA binding model in which the DNA tracks along the interior surface of the crescent-like ORC. Thus, ORC bends and wraps the DNA. This model is consistent with the observation that binding of a single Cdc6 extends the ORC footprint on origin DNA from both ends.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
107
|
The chromatin backdrop of DNA replication: lessons from genetics and genome-scale analyses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:794-801. [PMID: 22342530 DOI: 10.1016/j.bbagrm.2012.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/04/2023]
Abstract
The entire cellular genome must replicate during each cell cycle, but it is yet unclear how replication proceeds along with chromatin condensation and remodeling while ensuring the fidelity of the replicated genome. Mapping replication initiation sites can provide clues for the coordination of DNA replication and transcription on a whole-genome scale. Here we discuss recent insights obtained from genome-scale analyses of replication initiation sites and transcription in mammalian cells and ask how transcription and chromatin modifications affect the frequency of replication initiation events. We also discuss DNA sequences, such as insulators and replicators, which modulate replication and transcription of target genes, and use genome-wide maps of replication initiation sites to evaluate possible commonalities between replicators and chromatin insulators. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
108
|
Giri S, Prasanth SG. Replicating and transcribing on twisted roads of chromatin. Brief Funct Genomics 2012; 11:188-204. [PMID: 22267489 DOI: 10.1093/bfgp/elr047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin, a complex of DNA and proteins in the eukaryotic cell nucleus governs various cellular processes including DNA replication, DNA repair and transcription. Chromatin architecture and dynamics dictates the timing of cellular events by regulating proteins' accessibility to DNA as well as by acting as a scaffold for protein-protein interactions. Nucleosome, the basic unit of chromatin consists of a histone octamer comprised of (H3-H4)2 tetramer and two H2A-H2B dimers on which 146 bp of DNA is wrapped around ~1.6 times. Chromatin changes brought about by histone modifications, histone-modifying enzymes, chromatin remodeling factors, histone chaperones, histone variants and chromatin dynamics influence the regulation and timing of gene expression. Similarly, the timing of DNA replication is dependent on the chromatin context that in turn dictates origin selection. Further, during the process of DNA replication, not only does an organism's DNA have to be accurately replicated but also the chromatin structure and the epigenetic marks have to be faithfully transmitted to the daughter cells. Active transcription has been shown to repress replication while at the same time it has been shown that when origins are located at promoters, because of enhanced chromatin accessibility, they fire efficiently. In this review, we focus on how chromatin modulates two fundamental processes, DNA replication and transcription.
Collapse
Affiliation(s)
- Sumanprava Giri
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
109
|
Evolutionary link between the mycobacterial plasmid pAL5000 replication protein RepB and the extracytoplasmic function family of σ factors. J Bacteriol 2012; 194:1331-41. [PMID: 22247504 DOI: 10.1128/jb.06218-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mycobacterial plasmid pAL5000 represents a family of plasmids found mostly in the Actinobacteria. It replicates using two plasmid-encoded proteins, RepA and RepB. While BLAST searches indicate that RepA is a replicase family protein, the evolutionary connection of RepB cannot be established, as no significant homologous partner (E < 10(-3)) outside the RepB family can be identified. To obtain insight into the structure-function and evolutionary connections of RepB, an investigation was undertaken using homology modeling, phylogenetic, and mutational analysis methods. The results indicate that although they are synthesized from the same operon, the phylogenetic affinities of RepA and RepB differ. Thus, the operon may have evolved through random breaking and joining events. Homology modeling predicted the presence of a three-helical helix-turn-helix domain characteristic of region 4 of extracytoplasmic function (ECF) σ factors in the C-terminal region of RepB. At the N-terminal region, there is a helical stretch, which may be distantly related to region 3 of σ factors. Mutational analysis identified two arginines indispensable for RepB activity, one each located within the C- and N-terminal conserved regions. Apart from analyzing the domain organization of the protein, the significance of the presence of a highly conserved A/T-rich element within the RepB binding site was investigated. Mutational analysis revealed that although this motif does not bind RepB, its integrity is important for efficient DNA-protein interactions and replication to occur. The present investigation unravels the possibility that RepB-like proteins and their binding sites represent ancient DNA-protein interaction modules.
Collapse
|
110
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
111
|
Sequeira-Mendes J, Gómez M. On the opportunistic nature of transcription and replication initiation in the metazoan genome. Bioessays 2011; 34:119-25. [PMID: 22086495 DOI: 10.1002/bies.201100126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cellular identity and its response to external or internal signalling variations are encoded in a cell's genome as regulatory information. The genomic regions that specify this type of information are highly variable and degenerated in their sequence determinants, as it is becoming increasingly evident through the application of genome-scale methods to study gene expression. Here, we speculate that the same scenario applies to the regulatory regions controlling where DNA replication starts in the metazoan genome. We propose that replication origins cannot be defined as unique genomic features, but rather that DNA synthesis initiates opportunistically from accessible DNA sites, making cells highly robust and adaptable to environmental or developmental changes.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
112
|
Liu J, McConnell K, Dixon M, Calvi BR. Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex. Mol Biol Cell 2011; 23:200-12. [PMID: 22049023 PMCID: PMC3248898 DOI: 10.1091/mbc.e11-05-0409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A study of model DNA replication origins in Drosophila reveals a codependence between histone acetylation and pre-RC assembly and leads to a chromatin switch model for the coordination of origin and promoter activity during development. Epigenetic regulation exerts a major influence on origins of DNA replication during development. The mechanisms for this regulation, however, are poorly defined. We showed previously that acetylation of nucleosomes regulates the origins that mediate developmental gene amplification during Drosophila oogenesis. Here we show that developmental activation of these origins is associated with acetylation of multiple histone lysines. Although these modifications are not unique to origin loci, we find that the level of acetylation is higher at the active origins and quantitatively correlated with the number of times these origins initiate replication. All of these acetylation marks were developmentally dynamic, rapidly increasing with origin activation and rapidly declining when the origins shut off and neighboring promoters turn on. Fine-scale analysis of the origins revealed that both hyperacetylation of nucleosomes and binding of the origin recognition complex (ORC) occur in a broad domain and that acetylation is highest on nucleosomes adjacent to one side of the major site of replication initiation. It was surprising to find that acetylation of some lysines depends on binding of ORC to the origin, suggesting that multiple histone acetyltransferases may be recruited during origin licensing. Our results reveal new insights into the origin epigenetic landscape and lead us to propose a chromatin switch model to explain the coordination of origin and promoter activity during development.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
113
|
Harrison MM, Li XY, Kaplan T, Botchan MR, Eisen MB. Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 2011; 7:e1002266. [PMID: 22028662 PMCID: PMC3197655 DOI: 10.1371/journal.pgen.1002266] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
The earliest stages of development in most metazoans are driven by maternally deposited proteins and mRNAs, with widespread transcriptional activation of the zygotic genome occurring hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT). In Drosophila, the MZT is preceded by the transcription of a small number of genes that initiate sex determination, patterning, and other early developmental processes; and the zinc-finger protein Zelda (ZLD) plays a key role in their transcriptional activation. To better understand the mechanisms of ZLD activation and the range of its targets, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to map regions bound by ZLD before (mitotic cycle 8), during (mitotic cycle 13), and after (late mitotic cycle 14) the MZT. Although only a handful of genes are transcribed prior to mitotic cycle 10, we identified thousands of regions bound by ZLD in cycle 8 embryos, most of which remain bound through mitotic cycle 14. As expected, early ZLD-bound regions include the promoters and enhancers of genes transcribed at this early stage. However, we also observed ZLD bound at cycle 8 to the promoters of roughly a thousand genes whose first transcription does not occur until the MZT and to virtually all of the thousands of known and presumed enhancers bound at cycle 14 by transcription factors that regulate patterned gene activation during the MZT. The association between early ZLD binding and MZT activity is so strong that ZLD binding alone can be used to identify active promoters and regulatory sequences with high specificity and selectivity. This strong early association of ZLD with regions not active until the MZT suggests that ZLD is not only required for the earliest wave of transcription but also plays a major role in activating the genome at the MZT. The newly fertilized eggs of most animal species begin development with a series of rapid cell divisions. During this time of rapid DNA replication, there is little or no transcription of the embryo's genome, with the synthesis of new proteins being directed by a store of maternally deposited mRNAs. Several hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT), transcription of the embryo's genome begins in earnest, but little is known about how this process is initiated. In this paper we investigate the role of a protein known as Zelda (or ZLD) at the MZT in the laboratory model insect Drosophila melanogaster. ZLD had been previously shown to control the activation of a small number of genes expressed prior to the MZT. Here, using an experimental technique (ChIP-Seq) that allowed us to visualize where on the genome a protein is bound, we show that, approximately an hour prior to the MZT, ZLD is bound to most of the genomic regions active at the MZT. This suggests that ZLD may act as a kind of an “on switch” for the zygotic genome, poising regions where it binds for activation at the MZT, and this raises the possibility that similar master regulators of the MZT exist in other species.
Collapse
Affiliation(s)
- Melissa M. Harrison
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Xiao-Yong Li
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Tommy Kaplan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- The California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States of America
| | - Michael R. Botchan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
- The California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
114
|
Ding Q, MacAlpine DM. Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol 2011; 46:165-79. [PMID: 21417598 DOI: 10.3109/10409238.2011.560139] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is an essential cell cycle event required for the accurate and timely duplication of the chromosomes. It is essential that the genome is replicated accurately and completely within the confines of S-phase. Failure to completely copy the genome has the potential to result in catastrophic genomic instability. Replication initiates in a coordinated manner from multiple locations, termed origins of replication, distributed across each of the chromosomes. The selection of these origins of replication is a dynamic process responding to both developmental and tissue-specific signals. In this review, we explore the role of the local chromatin environment in regulating the DNA replication program at the level of origin selection and activation. Finally, there is increasing molecular evidence that the DNA replication program itself affects the chromatin landscape, suggesting that DNA replication is critical for both genetic and epigenetic inheritance.
Collapse
Affiliation(s)
- Queying Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
115
|
Structural analysis of human Orc6 protein reveals a homology with transcription factor TFIIB. Proc Natl Acad Sci U S A 2011; 108:7373-8. [PMID: 21502537 DOI: 10.1073/pnas.1013676108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Origin Recognition Complex (ORC) is a six-subunit protein important for the initiation of DNA replication in eukaryotic cells. Orc6 is the smallest and the least conserved among ORC subunits. It is required for the DNA replication but also has a function in cytokinesis in metazoan species, however, the mechanisms of Orc6 action in these processes are not clear. Here we report a structure of the middle domain of human Orc6. This domain has an overall fold similar to the corresponding helical domain of transcription factor TFIIB. Based on these findings, a model of Orc6 binding to DNA is produced. We have identified amino acids of Orc6 which are directly involved in DNA binding. Alterations of these amino acids abolish DNA binding ability of Orc6 and also result in reduced levels of DNA replication in vitro and in cultured cells. Our data indicate that Orc6 is one of the DNA binding subunits of ORC in metazoan species. We propose that Orc6 may participate in positioning of ORC at the origins of DNA replication similar to the role of TFIIB in positioning transcription preinitiation complex at the promoter.
Collapse
|
116
|
Dobrovolskaia IV, Kenward M, Arya G. Twist propagation in dinucleosome arrays. Biophys J 2011; 99:3355-64. [PMID: 21081084 DOI: 10.1016/j.bpj.2010.09.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/13/2010] [Accepted: 09/28/2010] [Indexed: 12/01/2022] Open
Abstract
We present a Monte Carlo simulation study of the distribution and propagation of twist from one DNA linker to another for a two-nucleosome array subjected to externally applied twist. A mesoscopic model of the array that incorporates nucleosome geometry along with the bending and twisting mechanics of the linkers is employed and external twist is applied in stepwise increments to mimic quasistatic twisting of chromatin fibers. Simulation results reveal that the magnitude and sign of the imposed and induced twist on contiguous linkers depend strongly on their relative orientation. Remarkably, the relative direction of the induced and applied twist can become inverted for a subset of linker orientations-a phenomenon we refer to as "twist inversion". We characterize the twist inversion, as a function of relative linker orientation, in a phase diagram and explain its key features using a simple model based on the geometry of the nucleosome/linker complex. In addition to twist inversion, our simulations reveal "nucleosome flipping", whereby nucleosomes may undergo sudden flipping in response to applied twist, causing a rapid bending of the linker and a significant change in the overall twist and writhe of the array. Our findings shed light on the underlying mechanisms by which torsional stresses impact chromatin organization.
Collapse
Affiliation(s)
- Irina V Dobrovolskaia
- Department of NanoEngineering, University of California at San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
117
|
Dueber EC, Costa A, Corn JE, Bell SD, Berger JM. Molecular determinants of origin discrimination by Orc1 initiators in archaea. Nucleic Acids Res 2011; 39:3621-31. [PMID: 21227921 PMCID: PMC3089459 DOI: 10.1093/nar/gkq1308] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA+) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA+ domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA+ domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites.
Collapse
Affiliation(s)
- Erin C Dueber
- Department of Molecular Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA, 94707, USA
| | | | | | | | | |
Collapse
|
118
|
Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, Kharchenko PV, MacAlpine DM. Chromatin signatures of the Drosophila replication program. Genome Res 2010; 21:164-74. [PMID: 21177973 DOI: 10.1101/gr.116038.110] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA replication initiates from thousands of start sites throughout the Drosophila genome and must be coordinated with other ongoing nuclear processes such as transcription to ensure genetic and epigenetic inheritance. Considerable progress has been made toward understanding how chromatin modifications regulate the transcription program; in contrast, we know relatively little about the role of the chromatin landscape in defining how start sites of DNA replication are selected and regulated. Here, we describe the Drosophila replication program in the context of the chromatin and transcription landscape for multiple cell lines using data generated by the modENCODE consortium. We find that while the cell lines exhibit similar replication programs, there are numerous cell line-specific differences that correlate with changes in the chromatin architecture. We identify chromatin features that are associated with replication timing, early origin usage, and ORC binding. Primary sequence, activating chromatin marks, and DNA-binding proteins (including chromatin remodelers) contribute in an additive manner to specify ORC-binding sites. We also generate accurate and predictive models from the chromatin data to describe origin usage and strength between cell lines. Multiple activating chromatin modifications contribute to the function and relative strength of replication origins, suggesting that the chromatin environment does not regulate origins of replication as a simple binary switch, but rather acts as a tunable rheostat to regulate replication initiation events.
Collapse
Affiliation(s)
- Matthew L Eaton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
119
|
Lubelsky Y, Sasaki T, Kuipers MA, Lucas I, Le Beau MM, Carignon S, Debatisse M, Prinz JA, Dennis JH, Gilbert DM. Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone. Nucleic Acids Res 2010; 39:3141-55. [PMID: 21148149 PMCID: PMC3082903 DOI: 10.1093/nar/gkq1276] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genome-scale mapping of pre-replication complex proteins has not been reported in mammalian cells. Poor enrichment of these proteins at specific sites may be due to dispersed binding, poor epitope availability or cell cycle stage-specific binding. Here, we have mapped sites of biotin-tagged ORC and MCM protein binding in G1-synchronized populations of Chinese hamster cells harboring amplified copies of the dihydrofolate reductase (DHFR) locus, using avidin-affinity purification of biotinylated chromatin followed by high-density microarray analysis across the DHFR locus. We have identified several sites of significant enrichment for both complexes distributed throughout the previously identified initiation zone. Analysis of the frequency of initiations across stretched DNA fibers from the DHFR locus confirmed a broad zone of de-localized initiation activity surrounding the sites of ORC and MCM enrichment. Mapping positions of mononucleosomal DNA empirically and computing nucleosome-positioning information in silico revealed that ORC and MCM map to regions of low measured and predicted nucleosome occupancy. Our results demonstrate that specific sites of ORC and MCM enrichment can be detected within a mammalian intitiation zone, and suggest that initiation zones may be regions of generally low nucleosome occupancy where flexible nucleosome positioning permits flexible pre-RC assembly sites.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Marchetti L, Comelli L, D'Innocenzo B, Puzzi L, Luin S, Arosio D, Calvello M, Mendoza-Maldonado R, Peverali F, Trovato F, Riva S, Biamonti G, Abdurashidova G, Beltram F, Falaschi A. Homeotic proteins participate in the function of human-DNA replication origins. Nucleic Acids Res 2010; 38:8105-19. [PMID: 20693533 PMCID: PMC3001063 DOI: 10.1093/nar/gkq688] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/16/2010] [Accepted: 07/22/2010] [Indexed: 01/15/2023] Open
Abstract
Recent evidence points to homeotic proteins as actors in the crosstalk between development and DNA replication. The present work demonstrates that HOXC13, previously identified as a new member of human DNA replicative complexes, is a stable component of early replicating chromatin in living cells: it displays a slow nuclear dynamics due to its anchoring to the DNA minor groove via the arginine-5 residue of the homeodomain. HOXC13 binds in vivo to the lamin B2 origin in a cell-cycle-dependent manner consistent with origin function; the interaction maps with nucleotide precision within the replicative complex. HOXC13 displays in vitro affinity for other replicative complex proteins; it interacts also in vivo with the same proteins in a cell-cycle-dependent fashion. Chromatin-structure modifying treatments, disturbing origin function, reduce also HOXC13-origin interaction. The described interactions are not restricted to a single origin nor to a single homeotic protein (also HOXC10 binds the lamin B2 origin in vivo). Thus, HOX complexes probably contribute in a general, structure-dependent manner, to origin identification and assembly of replicative complexes thereon, in presence of specific chromatin configurations.
Collapse
Affiliation(s)
- Laura Marchetti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Mechanisms regulating where and when eukaryotic DNA replication initiates remain a mystery. Recently, genome-scale methods have been brought to bear on this problem. The identification of replication origins and their associated proteins in yeasts is a well-integrated investigative tool, but corresponding data sets from multicellular organisms are scarce. By contrast, standardized protocols for evaluating replication timing have generated informative data sets for most eukaryotic systems. Here, I summarize the genome-scale methods that are most frequently used to analyse replication in eukaryotes, the kinds of questions each method can address and the technical hurdles that must be overcome to gain a complete understanding of the nature of eukaryotic replication origins.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, 32306, USA.
| |
Collapse
|
122
|
Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010; 11:728-38. [DOI: 10.1038/nrm2976] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
123
|
Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 2010; 120:39-46. [DOI: 10.1007/s00412-010-0287-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 06/22/2010] [Accepted: 07/17/2010] [Indexed: 01/22/2023]
|
124
|
Rampakakis E, Gkogkas C, Di Paola D, Zannis-Hadjopoulos M. Replication initiation and DNA topology: The twisted life of the origin. J Cell Biochem 2010; 110:35-43. [PMID: 20213762 DOI: 10.1002/jcb.22557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genomic propagation in both prokaryotes and eukaryotes is tightly regulated at the level of initiation, ensuring that the genome is accurately replicated and equally segregated to the daughter cells. Even though replication origins and the proteins that bind onto them (initiator proteins) have diverged throughout the course of evolution, the mechanism of initiation has been conserved, consisting of origin recognition, multi-protein complex assembly, helicase activation and loading of the replicative machinery. Recruitment of the multiprotein initiation complexes onto the replication origins is constrained by the dense packing of the DNA within the nucleus and unusual structures such as knots and supercoils. In this review, we focus on the DNA topological barriers that the multi-protein complexes have to overcome in order to access the replication origins and how the topological state of the origins changes during origin firing. Recent advances in the available methodologies to study DNA topology and their clinical significance are also discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Goodman Cancer Centre, Department of Biochemistry, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
125
|
Sun J, Kong D. DNA replication origins, ORC/DNA interaction, and assembly of pre-replication complex in eukaryotes. Acta Biochim Biophys Sin (Shanghai) 2010; 42:433-9. [PMID: 20705581 DOI: 10.1093/abbs/gmq048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chromosomal DNA replication in eukaryotic cells is highly complicated and sophisticatedly regulated. Owing to its large size, a typical eukaryotic genome contains hundreds to tens of thousands of initiation sites called DNA replication origins where DNA synthesis takes place. Multiple initiation sites remove the constraint of a genome size because only a certain amount of DNA can be replicated from a single origin in a limited time. The activation of these multiple origins must be coordinated so that each segment of chromosomal DNA is precisely duplicated only once per cell cycle. Although DNA replication is a vital process for cell growth and its mechanism is highly conserved, recent studies also reveal significant diversity in origin structure, assembly of pre-replication complex (pre-RC) and regulation of replication initiation along evolutionary lines. The DNA replication origins in the fission yeast Schizosaccharomyces pombe are found to contain a second essential element that is bound by Sap1 protein besides the essential origin recognition complex-binding site. Sap1 is recently demonstrated to be a novel replication initiation protein that plays an essential role in loading the initiation protein Cdc18 to origins and thus directly participates in pre-RC formation. In this review, we summarize the recent advance in understanding how DNA replication origins are organized, how pre-RC is assembled and how DNA replication is initiated and regulated in yeast and metazoans.
Collapse
Affiliation(s)
- Jingya Sun
- Department of Environmental Science, Zhejiang Ocean University, Zhoushan City, China
| | | |
Collapse
|
126
|
Müller P, Park S, Shor E, Huebert DJ, Warren CL, Ansari AZ, Weinreich M, Eaton ML, MacAlpine DM, Fox CA. The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev 2010; 24:1418-33. [PMID: 20595233 PMCID: PMC2895200 DOI: 10.1101/gad.1906410] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
Abstract
The origin recognition complex (ORC) binds to the specific positions on chromosomes that serve as DNA replication origins. Although ORC is conserved from yeast to humans, the DNA sequence elements that specify ORC binding are not. In particular, metazoan ORC shows no obvious DNA sequence specificity, whereas yeast ORC binds to a specific DNA sequence within all yeast origins. Thus, whereas chromatin must play an important role in metazoan ORC's ability to recognize origins, it is unclear whether chromatin plays a role in yeast ORC's recognition of origins. This study focused on the role of the conserved N-terminal bromo-adjacent homology domain of yeast Orc1 (Orc1BAH). Recent studies indicate that BAH domains are chromatin-binding modules. We show that the Orc1BAH domain was necessary for ORC's stable association with yeast chromosomes, and was physiologically relevant to DNA replication in vivo. This replication role was separable from the Orc1BAH domain's previously defined role in transcriptional silencing. Genome-wide analyses of ORC binding in ORC1 and orc1bahDelta cells revealed that the Orc1BAH domain contributed to ORC's association with most yeast origins, including a class of origins highly dependent on the Orc1BAH domain for ORC association (orc1bahDelta-sensitive origins). Orc1bahDelta-sensitive origins required the Orc1BAH domain for normal activity on chromosomes and plasmids, and were associated with a distinct local nucleosome structure. These data provide molecular insights into how the Orc1BAH domain contributes to ORC's selection of replication origins, as well as new tools for examining conserved mechanisms governing ORC's selection of origins within eukaryotic chromosomes.
Collapse
Affiliation(s)
- Philipp Müller
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Erika Shor
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dana J. Huebert
- Program in Cellular and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Christopher L. Warren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael Weinreich
- Laboratory for Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Matthew L. Eaton
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M. MacAlpine
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Program in Cellular and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
127
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
128
|
Kusic J, Tomic B, Divac A, Kojic S. Human initiation protein Orc4 prefers triple stranded DNA. Mol Biol Rep 2010; 37:2317-22. [PMID: 19690980 DOI: 10.1007/s11033-009-9735-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 12/18/2022]
Abstract
In higher eukaryotes mechanism of DNA replication origin recognition and binding by origin recognition complex (ORC) is still unknown. Origin transfer studies have shown that origin sites are genetically determined, containing functionally interchangeable modules. One of such modules from the human lamin B2 origin of replication has the ability to adopt unorthodox structure partly composed of intramolecular triplex. Sequences involved in triplex formation coincide with ORC binding sites both in vitro and in vivo. To explore potential significance of unorthodox DNA structures in origin recognition by ORC, we tested DNA binding properties of human ORC subunit 4 (HsOrc4) which has independent DNA binding activity in vitro and similar binding characteristics as ORC holocomplex. Our results demonstrated that DNA binding activity of HsOrc4 depends on length and structure of DNA with triplex being the protein's preferred binding target. Such feature could play part in origin selection through directing ORC to DNA sequence prone to adopt unorthodox structure.
Collapse
Affiliation(s)
- J Kusic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| | | | | | | |
Collapse
|
129
|
Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines replication origins. Genes Dev 2010; 24:748-53. [PMID: 20351051 DOI: 10.1101/gad.1913210] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The origin recognition complex (ORC) specifies replication origin location. The Saccharomyces cerevisiae ORC recognizes the ARS (autonomously replicating sequence) consensus sequence (ACS), but only a subset of potential genomic sites are bound, suggesting other chromosomal features influence ORC binding. Using high-throughput sequencing to map ORC binding and nucleosome positioning, we show that yeast origins are characterized by an asymmetric pattern of positioned nucleosomes flanking the ACS. The origin sequences are sufficient to maintain a nucleosome-free origin; however, ORC is required for the precise positioning of nucleosomes flanking the origin. These findings identify local nucleosomes as an important determinant for origin selection and function.
Collapse
Affiliation(s)
- Matthew L Eaton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
130
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|
131
|
MacAlpine HK, Gordân R, Powell SK, Hartemink AJ, MacAlpine DM. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 2010; 20:201-11. [PMID: 19996087 PMCID: PMC2813476 DOI: 10.1101/gr.097873.109] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 11/23/2009] [Indexed: 12/11/2022]
Abstract
The origin recognition complex (ORC) is an essential DNA replication initiation factor conserved in all eukaryotes. In Saccharomyces cerevisiae, ORC binds to specific DNA elements; however, in higher eukaryotes, ORC exhibits little sequence specificity in vitro or in vivo. We investigated the genome-wide distribution of ORC in Drosophila and found that ORC localizes to specific chromosomal locations in the absence of any discernible simple motif. Although no clear sequence motif emerged, we were able to use machine learning approaches to accurately discriminate between ORC-associated sequences and ORC-free sequences based solely on primary sequence. The complex sequence features that define ORC binding sites are highly correlated with nucleosome positioning signals and likely represent a preferred nucleosomal landscape for ORC association. Open chromatin appears to be the underlying feature that is deterministic for ORC binding. ORC-associated sequences are enriched for the histone variant, H3.3, often at transcription start sites, and depleted for bulk nucleosomes. The density of ORC binding along the chromosome is reflected in the time at which a sequence replicates, with early replicating sequences having a high density of ORC binding. Finally, we found a high concordance between sites of ORC binding and cohesin loading, suggesting that, in addition to DNA replication, ORC may be required for the loading of cohesin on DNA in Drosophila.
Collapse
Affiliation(s)
- Heather K. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Raluca Gordân
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Sara K. Powell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
132
|
The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol Cell Biol 2010; 30:1495-507. [PMID: 20065034 DOI: 10.1128/mcb.00710-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Template unwinding during DNA replication initiation requires the loading of the MCM helicase activator Cdc45 at replication origins. We show that Cdc45 interacts with the DNA unwinding element (DUE) binding protein DUE-B and that these proteins localize to the DUEs of active replication origins. DUE-B and Cdc45 are not bound at the inactive c-myc replicator in the absence of a functional DUE or at the recently identified ataxin 10 (ATX10) origin, which is silent before disease-related (ATTCT)(n) repeat length expansion of its DUE sequence, despite the presence of the origin recognition complex (ORC) and MCM proteins at these origins. Addition of a heterologous DUE to the ectopic c-myc origin, or expansion of the ATX10 DUE, leads to origin activation, DUE-B binding, and Cdc45 binding. DUE-B, Cdc45, and topoisomerase IIbeta binding protein 1 (TopBP1) form complexes in cell extracts and when expressed from baculovirus vectors. During replication in Xenopus egg extracts, DUE-B and Cdc45 bind to chromatin with similar kinetics, and DUE-B immunodepletion blocks replication and the loading of Cdc45 and a fraction of TopBP1. The coordinated binding of DUE-B and Cdc45 to origins and the physical interactions of DUE-B, Cdc45, and TopBP1 suggest that complexes of these proteins are necessary for replication initiation.
Collapse
|
133
|
Audit B, Zaghloul L, Vaillant C, Chevereau G, d'Aubenton-Carafa Y, Thermes C, Arneodo A. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells. Nucleic Acids Res 2009; 37:6064-75. [PMID: 19671527 PMCID: PMC2764438 DOI: 10.1093/nar/gkp631] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions approximately 300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as 'master' replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these 'master' origins are likely to play a key role in genome dynamics during evolution and in pathological situations.
Collapse
|
134
|
Rampakakis E, Zannis-Hadjopoulos M. Transient dsDNA breaks during pre-replication complex assembly. Nucleic Acids Res 2009; 37:5714-24. [PMID: 19638425 PMCID: PMC2761281 DOI: 10.1093/nar/gkp617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Initiation of DNA replication involves the ordered assembly of the multi-protein pre-replicative complex (pre-RC) during G1 phase. Previously, DNA topoisomerase II (topo II) was shown to associate with the DNA replication origin located in the lamin B2 gene locus in a cell-cycle-modulated manner. Here we report that activation of both the early-firing lamin B2 and the late-firing hOrs8 human replication origins involves DNA topo II-dependent, transient, site-specific dsDNA-break formation. Topo IIβ in complex with the DNA repair protein Ku associates in vivo and in vitro with the pre-RC region, introducing dsDNA breaks in a biphasic manner, during early and mid-G1 phase. Inhibition of topo II activity interferes with the pre-RC assembly resulting in prolonged G1 phase. The data mechanistically link DNA topo IIβ-dependent dsDNA breaks and the components of the DNA repair machinery with the initiation of DNA replication and suggest an important role for DNA topology in origin activation.
Collapse
Affiliation(s)
- Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|
135
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
136
|
Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 2009; 5:e1000446. [PMID: 19360092 PMCID: PMC2661365 DOI: 10.1371/journal.pgen.1000446] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/04/2009] [Indexed: 12/24/2022] Open
Abstract
Genomic mapping of DNA replication origins (ORIs) in mammals provides a powerful means for understanding the regulatory complexity of our genome. Here we combine a genome-wide approach to identify preferential sites of DNA replication initiation at 0.4% of the mouse genome with detailed molecular analysis at distinct classes of ORIs according to their location relative to the genes. Our study reveals that 85% of the replication initiation sites in mouse embryonic stem (ES) cells are associated with transcriptional units. Nearly half of the identified ORIs map at promoter regions and, interestingly, ORI density strongly correlates with promoter density, reflecting the coordinated organisation of replication and transcription in the mouse genome. Detailed analysis of ORI activity showed that CpG island promoter-ORIs are the most efficient ORIs in ES cells and both ORI specification and firing efficiency are maintained across cell types. Remarkably, the distribution of replication initiation sites at promoter-ORIs exactly parallels that of transcription start sites (TSS), suggesting a co-evolution of the regulatory regions driving replication and transcription. Moreover, we found that promoter-ORIs are significantly enriched in CAGE tags derived from early embryos relative to all promoters. This association implies that transcription initiation early in development sets the probability of ORI activation, unveiling a new hallmark in ORI efficiency regulation in mammalian cells. The duplication of the genetic information of a cell starts from specific sites on the chromosomes called DNA replication origins. Their number varies from a few hundred in yeast cells to several thousands in human cells, distributed along the genome at comparable distances in both systems. An important question in the field is to understand how origins of replication are specified and regulated in the mammalian genome, as neither their location nor their activity can be directly inferred from the DNA sequence. Previous studies at individual origins and, more recently, at large scale across 1% of the human genome, have revealed that most origins overlap with transcriptional regulatory elements, and specifically with gene promoters. To gain insight into the nature of the relationship between active transcription and origin specification we have combined a genomic mapping of origins at 0.4% of the mouse genome with detailed studies of activation efficiency. The data identify two types of origins with distinct regulatory properties: highly efficient origins map at CpG island-promoters and low efficient origins locate elsewhere in association with transcriptional units. We also find a remarkable parallel organisation of the replication initiation sites and transcription start sites at efficient promoter-origins that suggests a prominent role of transcription initiation in setting the efficiency of replication origin activation.
Collapse
|
137
|
Gan H, Tang K, Sun T, Hirtz M, Li Y, Chi L, Butz S, Fuchs H. Selective Adsorption of DNA on Chiral Surfaces: Supercoiled or Relaxed Conformation. Angew Chem Int Ed Engl 2009; 48:5282-6. [DOI: 10.1002/anie.200806295] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
138
|
Gan H, Tang K, Sun T, Hirtz M, Li Y, Chi L, Butz S, Fuchs H. Selective Adsorption of DNA on Chiral Surfaces: Supercoiled or Relaxed Conformation. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
139
|
Abstract
Duplication of the simian virus 40 (SV40) genome is the best understood eukaryotic DNA replication process to date. Like most prokaryotic genomes, the SV40 genome is a circular duplex DNA organized in a single replicon. This small viral genome, its association with host histones in nucleosomes, and its dependence on the host cell milieu for replication factors and precursors led to its adoption as a simple and powerful model. The steps in replication, the viral initiator, the host proteins, and their mechanisms of action were initially defined using a cell-free SV40 replication reaction. Although our understanding of the vastly more complex host replication fork is advancing, no eukaryotic replisome has yet been reconstituted and the SV40 paradigm remains a point of reference. This article reviews some of the milestones in the development of this paradigm and speculates on its potential utility to address unsolved questions in eukaryotic genome maintenance.
Collapse
Affiliation(s)
- Ellen Fanning
- Department of Biological Sciences, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235-1634, USA.
| | | |
Collapse
|
140
|
Gimenes F, Assis MA, Fiorini A, Mareze VA, Monesi N, Fernandez MA. Intrinsically bent DNA sites in the Drosophila melanogaster third chromosome amplified domain. Mol Genet Genomics 2009; 281:539-49. [PMID: 19219620 DOI: 10.1007/s00438-009-0430-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 01/27/2009] [Indexed: 02/07/2023]
Abstract
Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-beta. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-beta region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes.
Collapse
Affiliation(s)
- Fabrícia Gimenes
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, 87020-900, Brazil
| | | | | | | | | | | |
Collapse
|
141
|
Donti TR, Datta S, Sandoval PY, Kapler GM. Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins. EMBO J 2009; 28:223-33. [PMID: 19153611 DOI: 10.1038/emboj.2008.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/02/2008] [Indexed: 11/09/2022] Open
Abstract
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis-acting replication determinant--the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non-rDNA fragment containing two closely associated replicators, ARS1-A (0.8 kb) and ARS1-B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA-independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non-rDNA ARS1 chromosome changed across the cell cycle. In G(2) phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1-A/B. Remarkably, ORC and Mcm6 associated with just the ARS1-A replicator in G(1) phase when pre-replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non-rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase.
Collapse
Affiliation(s)
- Taraka R Donti
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | | | | | | |
Collapse
|
142
|
Abstract
The interaction of DNA topology modifying enzymes with eukaryotic DNA replication origins can be detected with nucleotide precision exploiting the action of enzyme poisons specific for type I or type II DNA topoisomerases. Using the topoisomerase I poison camptothecin and the topoisomerase II poison VP16, the precise sites of interaction of these enzymes around the lamin B2 origin have been identified at different points in the cell cycle. The procedure can be applied to any origin for which the sequence has been identified within approximately 1 kb.
Collapse
Affiliation(s)
- Arturo Falaschi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
143
|
Clarey MG, Botchan M, Nogales E. Single particle EM studies of the Drosophila melanogaster origin recognition complex and evidence for DNA wrapping. J Struct Biol 2008; 164:241-9. [PMID: 18824234 PMCID: PMC2640233 DOI: 10.1016/j.jsb.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/22/2022]
Abstract
Hyperphosphorylation of the Drosophila melanogaster origin recognition complex (DmORC) by cyclin dependent kinases (CDKs) allows nucleotide binding but inhibits the ATPase activity of Orc1, and ablates the ATP-dependent interaction of ORC with DNA. Here we present single particle electron microscopy (EM) studies of ORC bound to nucleotide in both the dephosphorylated and hyper-phosphorylated states. 3D image reconstructions show that nucleotide binding gives rise to an analogous conformation independent of phosphorylation state. At the intermediate resolution achieved in our studies, ATP promotes changes along the toroidal core of the complex with negligible differences contributed by phosphorylation. Thus, hyperphosphorylation of DmORC does not induce meso-scale rearrangement of the ORC structure. To better understand ORC's role in origin remodeling, we performed atomic force microscopy (AFM) studies that show the contour length of a 688bp linear DNA fragment shortens by the equivalent of approximately 130bp upon ORC binding. This data, coupled with previous studies that showed a linking number change in circular DNA upon ORC binding, suggests that ORC may wrap the DNA in a manner akin to DnaA. Based on existing data and our structures, we propose a subunit arrangement for the AAA+ and winged helix domains, and in addition, speculate on a path of the 133bp of DNA around the ORC complex.
Collapse
Affiliation(s)
- Megan G. Clarey
- Molecular & Cell Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Botchan
- Molecular & Cell Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Eva Nogales
- Molecular & Cell Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
- Life Science Division, Lawrence Berkeley National Laboratory, 1, Cyclotron Road, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, UC Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
144
|
Kato JI. Regulatory Network of the Initiation of Chromosomal Replication inEscherichia coli. Crit Rev Biochem Mol Biol 2008; 40:331-42. [PMID: 16338685 DOI: 10.1080/10409230500366090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.
Collapse
Affiliation(s)
- Jun-ichi Kato
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, Japan
| |
Collapse
|
145
|
Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci U S A 2008; 105:15837-42. [PMID: 18838675 DOI: 10.1073/pnas.0805208105] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To get insights into the regulation of replication initiation, we systematically mapped replication origins along 1% of the human genome in HeLa cells. We identified 283 origins, 10 times more than previously known. Origin density is strongly correlated with genomic landscapes, with clusters of closely spaced origins in GC-rich regions and no origins in large GC-poor regions. Origin sequences are evolutionarily conserved, and half of them map within or near CpG islands. Most of the origins overlap transcriptional regulatory elements, providing further evidence of a connection with gene regulation. Moreover, we identify c-JUN and c-FOS as important regulators of origin selection. Half of the identified replication initiation sites do not have an open chromatin configuration, showing the absence of a direct link with gene regulation. Replication timing analyses coupled with our origin mapping suggest that a relatively strict origin-timing program regulates the replication of the human genome.
Collapse
|
146
|
Houchens CR, Lu W, Chuang RY, Frattini MG, Fuller A, Simancek P, Kelly TJ. Multiple mechanisms contribute to Schizosaccharomyces pombe origin recognition complex-DNA interactions. J Biol Chem 2008; 283:30216-24. [PMID: 18723846 DOI: 10.1074/jbc.m802649200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA replication requires the assembly of multiprotein pre-replication complexes (pre-RCs) at chromosomal origins of DNA replication. Here we describe the interactions of highly purified Schizosaccharomyces pombe pre-RC components, SpORC, SpCdc18, and SpCdt1, with each other and with ars1 origin DNA. We show that SpORC binds DNA in at least two steps. The first step likely involves electrostatic interactions between the AT-hook motifs of SpOrc4 and AT tracts in ars1 DNA and results in the formation of a salt-sensitive complex. In the second step, the salt-sensitive complex is slowly converted to a salt-stable complex that involves additional interactions between SpORC and DNA. Binding of SpORC to ars1 DNA is facilitated by negative supercoiling and is accompanied by changes in DNA topology, suggesting that SpORC-DNA complexes contain underwound or negatively writhed DNA. Purified human origin recognition complex (ORC) induces similar topological changes in origin DNA, indicating that this property of ORC is conserved in eukaryotic evolution and plays an important role in ORC function. We also show that SpCdc18 and SpCdt1 form a binary complex that has greater affinity for DNA than either protein alone. In addition, both proteins contribute significantly to the stability of the initial SpORC-DNA complex and enhance the SpORC-dependent topology changes in origin DNA. Thus, the formation of stable protein-DNA complexes at S. pombe origins of replication involves binary interactions among all three proteins, as well as interactions of both SpORC and SpCdt1-SpCdc18 with origin DNA. These findings demonstrate that SpORC is not the sole determinant of origin recognition.
Collapse
Affiliation(s)
- Christopher R Houchens
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
148
|
Cavaliere V, Bernardi F, Romani P, Duchi S, Gargiulo G. Building up theDrosophilaeggshell: First of all the eggshell genes must be transcribed. Dev Dyn 2008; 237:2061-72. [DOI: 10.1002/dvdy.21625] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
149
|
Stefanovic D, Kusic J, Divac A, Tomic B. Formation of noncanonical DNA structures mediated by human ORC4, a protein component of the origin recognition complex. Biochemistry 2008; 47:8760-7. [PMID: 18652488 DOI: 10.1021/bi800684f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many genomic sequences, DNA replication origins included, contain specific structural motifs prone to alternative base pairing. Structural rearrangements of DNA require specific environmental conditions and could be favored by chemical agents or proteins. To improve our understanding of alternative conformations of origins and the manner in which they form, we have investigated the effect of DNA-binding, AAA+ protein human ORC4 on single-stranded origin DNA or various oligonucleotides. Here we demonstrate that human ORC4 stimulated formation of inter- and intramolecular T.A.T triplexes and created novel structures, such as homoadenine duplexes. Adenine-based structures were held together by Hoogsteen hydrogen bonds, as demonstrated on 7-deaza-dAMP- or dAMP-containing substrates, and characterized by increased thermal stability. Adenine pairing occurred only in the presence of human ORC4, in a neutral buffer supplemented with ATP and Mg (2+) ions. The protein mutant that could not bind ATP was inactive in this reaction. Since the action of human ORC4 could be biologically important, its potential impact on DNA replication is discussed.
Collapse
Affiliation(s)
- Dragana Stefanovic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | |
Collapse
|
150
|
In Xenopus egg extracts, DNA replication initiates preferentially at or near asymmetric AT sequences. Mol Cell Biol 2008; 28:5265-74. [PMID: 18573882 DOI: 10.1128/mcb.00181-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous observations led to the conclusion that in Xenopus eggs and during early development, DNA replication initiates at regular intervals but with no apparent sequence specificity. Conversely, here, we present evidence for site-specific DNA replication origins in Xenopus egg extracts. Using lambda DNA, we show that DNA replication origins are activated in clusters in regions that contain closely spaced adenine or thymine asymmetric tracks used as preferential initiation sites. In agreement with these data, AT-rich asymmetric sequences added as competitors preferentially recruit origin recognition complexes and inhibit sperm chromatin replication by increasing interorigin spacing. We also show that the assembly of a transcription complex favors origin activity at the corresponding site without necessarily eliminating the other origins. Thus, although Xenopus eggs have the ability to replicate any kind of DNA, AT-rich domains or transcription factors favor the selection of DNA replication origins without increasing the overall efficiency of DNA synthesis. These results suggest that asymmetric AT-rich regions might be default elements that favor the selection of a DNA replication origin in a transcriptionally silent complex, whereas other epigenetic elements linked to the organization of domains for transcription may have further evolved over this basal layer of regulation.
Collapse
|