101
|
|
102
|
|
103
|
|
104
|
|
105
|
Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
106
|
|
107
|
|
108
|
|
109
|
|
110
|
|
111
|
|
112
|
|
113
|
|
114
|
|
115
|
|
116
|
|
117
|
|
118
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 5410=5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
119
|
|
120
|
|
121
|
|
122
|
|
123
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 2456=4508-- pete] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
124
|
|
125
|
|
126
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1-- mykv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
127
|
|
128
|
Abstract
Membrane trafficking between organelles by vesiculotubular carriers is fundamental to the existence of eukaryotic cells. Central in ensuring that cargoes are delivered to their correct destinations are the Rab GTPases, a large family of small GTPases that control membrane identity and vesicle budding, uncoating, motility and fusion through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases and motors. Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic. Functional impairments of Rab pathways are associated with diseases, such as immunodeficiencies, cancer and neurological disorders.
Collapse
|
129
|
Abstract
The Rab family of small GTPases functions in regulating vesicular transport in all eukaryotes. In the past few years, several important reports have linked some members of the Rab family to intriguing mechanistic aspects of cancer cell migration and invasiveness. Rab5 and Rab21 associate with alpha-integrin subunits and modulate their endosomal traffic and subcellular localization. Expression of the latter enhances adhesion and migration of certain cancer cell types. Rab25 has been functionally linked to tumor progression and the invasiveness of some epithelial cancers. Rab25 promotes invasive migration of cells in three-dimensional microenvironments by associating with alpha5beta1 integrin, and directing its recycling to dynamic ruffling protrusions at the migrating cell front. Acting directly, or through its effector, the Rab-coupling protein, Rab25 could potentially engage both integrin and epidermal growth factor receptor and enhance their oncogenic recycling and signaling. Tumor invasiveness may also be modulated by Rab8-mediated exocytic traffic of MT1-matrix metalloproteinase, with the latter's activity likely influenced by interaction with the mammalian suppressor of Sec4 (Mss4), a Rab8 guanine nucleotide exchange factor, and integrin. We discuss highlights in the recent literature that point towards a role for Rab-mediated membrane traffic in cancer cell migration and invasion.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | | |
Collapse
|
130
|
|
131
|
Di Fiore PP. Endocytosis, signaling and cancer, much more than meets the eye. Preface. Mol Oncol 2009; 3:273-9. [PMID: 19628439 DOI: 10.1016/j.molonc.2009.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022] Open
Affiliation(s)
- Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare at IFOM-IEO Campus, 20139 Milan, Italy.
| |
Collapse
|
132
|
Meurer S, Pioch S, Pabst T, Opitz N, Schmidt PM, Beckhaus T, Wagner K, Matt S, Gegenbauer K, Geschka S, Karas M, Stasch JP, Schmidt HHHW, Müller-Esterl W. Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteasomal degradation. Circ Res 2009; 105:33-41. [PMID: 19478201 DOI: 10.1161/circresaha.109.198234] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and downregulation of its major intracellular receptor, the alphabeta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of the heme of sGC, as well as the responsiveness of sGC to NO. sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here, we show that oxidation-induced downregulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand BAY 58-2667 prevented sGC ubiquitination and stabilized both alpha and beta subunits. Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC.
Collapse
Affiliation(s)
- Sabine Meurer
- Department of Pharmacology & Centre for Vascular Health, University of Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta Rev Cancer 2009; 1795:110-6. [PMID: 19425190 DOI: 10.1016/j.bbcan.2008.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Member of the Ras-associated binding (Rab) family of small GTPases function as molecular switches regulating vesicular transport in eukaryotes cells. Their pathophysiological roles in human malignancies are less well-known compared to members of Ras and Rho families. Several members of the Rab family have, however, been shown to be aberrantly expressed in various cancer tissues. Recent findings have also revealed , in particular, Rab25 as a determinant of tumor progression and aggressiveness of epithelial cancers. Rab25 associates with alpha5beta1 integrin, and enhances tumor cell invasion by directing the localization of integrin-containing vesicles to the leading edge of matrix invading pseudopodia. We summarized here recent integrin on Rab25 and other Rabs implicated to be involved in a variety of human cancers, and discussed plausible mechanisms of how dysregulation of Rab expression could be tumorigenic or tumor suppressive.
Collapse
Affiliation(s)
- Wan Jie Chia
- Department of Biochemistry,Yong Loo Lin School of Medicine, national University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
134
|
Acconcia F, Sigismund S, Polo S. Ubiquitin in trafficking: The network at work. Exp Cell Res 2009; 315:1610-8. [DOI: 10.1016/j.yexcr.2008.10.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
135
|
Stuffers S, Sem Wegner C, Stenmark H, Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 2009; 10:925-37. [PMID: 19490536 DOI: 10.1111/j.1600-0854.2009.00920.x] [Citation(s) in RCA: 542] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) protein machinery comprises four complexes, ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III, that facilitate receptor sorting into the lumen of multivesicular endosomes (MVEs) in order to terminate signalling receptors for final degradation within the lysosomes. Even though ESCRT proteins appear to be essential for the biogenesis of MVEs in Saccharomyces cerevisae, it is not clear whether ESCRT-independent pathways for MVE biogenesis exist in higher organisms. In this study we maximized inhibition of ESCRT-dependent pathway by depleting cells of key subunits of all four ESCRTs and followed MVE formation and epidermal growth factor (EGF) receptor (EGFR) traffic using electron and confocal microscopy. There was a dramatic alteration in the morphology of components of the endocytic pathway in ESCRT-depleted cells, but early and late endosomes stayed clearly differentiated. Importantly, although EGF-induced formation of MVEs was highly sensitive to ESCRT depletion, EGF-independent formation of MVEs could still occur. The MVEs remaining in ESCRT-depleted cells contained enlarged intralumenal vesicles into which EGFRs were not sorted. Our observations suggest that both ESCRT-dependent and ESCRT-independent mechanisms of MVE biogenesis exist in mammalian cells.
Collapse
Affiliation(s)
- Susanne Stuffers
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radiumhospital and Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
136
|
Doern A, Cao X, Sereno A, Reyes CL, Altshuler A, Huang F, Hession C, Flavier A, Favis M, Tran H, Ailor E, Levesque M, Murphy T, Berquist L, Tamraz S, Snipas T, Garber E, Shestowsky WS, Rennard R, Graff CP, Wu X, Snyder W, Cole L, Gregson D, Shields M, Ho SN, Reff ME, Glaser SM, Dong J, Demarest SJ, Hariharan K. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo. J Biol Chem 2009; 284:10254-67. [PMID: 19211557 PMCID: PMC2665079 DOI: 10.1074/jbc.m809709200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 01/30/2009] [Indexed: 12/28/2022] Open
Abstract
Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism leads to optimal clinical efficacy.
Collapse
Affiliation(s)
- Adam Doern
- Biogen Idec, San Diego, California 92130 and Applied Photophysics Limited, Leatherhead, Surrey KT22 7PB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Davies BA, Lee JRE, Oestreich AJ, Katzmann DJ. Membrane protein targeting to the MVB/lysosome. Chem Rev 2009; 109:1575-86. [PMID: 19243135 PMCID: PMC3911787 DOI: 10.1021/cr800473s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Brian A. Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Jacqueline R. E. Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Andrea J. Oestreich
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - David J. Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
138
|
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery consists of four protein complexes that mediate sorting of ubiquitinated membrane proteins into the intraluminal vesicles of multivesicular endosomes, thereby targeting them for degradation in lysosomes. In the present paper, we review how ESCRT-mediated receptor down-regulation affects signalling downstream of Notch and growth factor receptors, and how ESCRTs may control cell proliferation, survival and cytoskeletal functions and contribute to tumour suppression.
Collapse
|
139
|
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery plays a critical role in receptor down-regulation, retroviral budding, and other normal and pathological processes. The ESCRT components are conserved in all five major subgroups of eukaryotes. This review summarizes the growing number of links identified between ESCRT-mediated protein sorting in the MVB (multivesicular body) pathway and various human diseases.
Collapse
|
140
|
Cha JY, Maddileti S, Mitin N, Harden TK, Der CJ. Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to the transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J Biol Chem 2008; 284:6227-40. [PMID: 19103595 DOI: 10.1074/jbc.m803998200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling.
Collapse
Affiliation(s)
- Jiyoung Y Cha
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
141
|
Shih AJ, Purvis J, Radhakrishnan R. Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing. MOLECULAR BIOSYSTEMS 2008; 4:1151-9. [PMID: 19396377 PMCID: PMC2811052 DOI: 10.1039/b803806f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexity in intracellular signaling mechanisms relevant for the conquest of many diseases resides at different levels of organization with scales ranging from the subatomic realm relevant to catalytic functions of enzymes to the mesoscopic realm relevant to the cooperative association of molecular assemblies and membrane processes. Consequently, the challenge of representing and quantifying functional or dysfunctional modules within the networks remains due to the current limitations in our understanding of mesoscopic biology, i.e., how the components assemble into functional molecular ensembles. A multiscale approach is necessary to treat a hierarchy of interactions ranging from molecular (nm, ns) to signaling (microm, ms) length and time scales, which necessitates the development and application of specialized modeling tools. Complementary to multiscale experimentation (encompassing structural biology, mechanistic enzymology, cell biology, and single molecule studies) multiscale modeling offers a powerful and quantitative alternative for the study of functional intracellular signaling modules. Here, we describe the application of a multiscale approach to signaling mediated by the ErbB1 receptor which constitutes a network hub for the cell's proliferative, migratory, and survival programs. Through our multiscale model, we mechanistically describe how point-mutations in the ErbB1 receptor can profoundly alter signaling characteristics leading to the onset of oncogenic transformations. Specifically, we describe how the point mutations induce cascading fragility mechanisms at the molecular scale as well as at the scale of the signaling network to preferentially activate the survival factor Akt. We provide a quantitative explanation for how the hallmark of preferential Akt activation in cell-lines harboring the constitutively active mutant ErbB1 receptors causes these cell-lines to be addicted to ErbB1-mediated generation of survival signals. Consequently, inhibition of ErbB1 activity leads to a remarkable therapeutic response in the addicted cell lines.
Collapse
Affiliation(s)
- Andrew J. Shih
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Jeremy Purvis
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, 210 S 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, 210 S 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
142
|
Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene 2008; 28:854-65. [PMID: 19029950 DOI: 10.1038/onc.2008.427] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The NF2 gene product, merlin/schwannomin, is a cytoskeleton organizer with unique growth-inhibiting activity in specific cell types. A narrow spectrum of tumors is associated with NF2 deficiency, mainly schwannomas and meningiomas, suggesting cell-specific mechanisms of growth control. We have investigated merlin function in mouse Schwann cells (SCs). We found that merlin regulates contact inhibition of proliferation by limiting the delivery of several growth factor receptors at the plasma membrane of primary SCs. Notably, upon cell-to-cell contact, merlin downregulates the membrane levels of ErbB2 and ErbB3, thus inhibiting the activity of the downstream mitogenic signaling pathways protein kinase B and mitogen-activated protein kinase. Consequently, loss of merlin activity is associated with elevated levels of ErbB receptors in primary SCs. We also observed accumulation of growth factor receptors such as ErbB2 and 3, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor in peripheral nerves of Nf2-mutant mice and in human NF2 schwannomas, suggesting that this mechanism could play an important role in tumorigenesis.
Collapse
|
143
|
Gao X, Lorinczi M, Hill KS, Brooks NC, Dokainish H, Ireton K, Elferink LA. Met receptor tyrosine kinase degradation is altered in response to the leucine-rich repeat of the Listeria invasion protein internalin B. J Biol Chem 2008; 284:774-83. [PMID: 18990695 DOI: 10.1074/jbc.m805989200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Entry of the bacterial pathogen Listeria monocytogenes into host epithelial cells is critical for infection and virulence. One major pathway for Listeria entry involves binding of the bacterial protein Internalin B to the host receptor tyrosine kinase Met (hepatocyte growth factor receptor). Activation of Met and downstream signaling cascades is critical for Listeria entry. Internalin B is composed of several structural domains including an N-terminal leucine-rich repeat that is sufficient for binding Met and stimulating downstream signal transduction. Internalin B is monomeric, whereas the leucine-rich repeat is dimeric when expressed as an isolated fragment. The different quaternary states of Internalin B and the leucine-rich repeat suggest that these two Met ligands might cause distinct biological effects. Here we demonstrate that Internalin B and the leucine-rich repeat fragment exhibit agonist properties that differentially influence Met down-regulation in lysosomes. Specifically, Met stability is increased in response to the leucine-rich repeat fragment compared with Internalin B. Interestingly, Internalin B and the leucine-rich repeat stimulate equivalent rates of clathrin-mediated Met internalization. However, the leucine-rich repeat is defective in promoting lysosomal down-regulation of Met and instead enhances receptor recycling to the cell surface. In addition, the leucine-rich repeat causes prolonged Met activation (phosphorylation) and increased cell motility compared with Internalin B. Taken together, our findings indicate that individual domains of Internalin B differentially regulate Met trafficking. The ability of the leucine-rich repeat fragment to promote Met recycling could account for the increased cell motility induced by this ligand.
Collapse
Affiliation(s)
- Xiu Gao
- Department of Neuroscience and Cell Biology, Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1074, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Tanowitz M, Hislop JN, von Zastrow M. Alternative splicing determines the post-endocytic sorting fate of G-protein-coupled receptors. J Biol Chem 2008; 283:35614-21. [PMID: 18936093 DOI: 10.1074/jbc.m806588200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mu-type opioid receptors are physiologically important G-protein-coupled receptors that are generally thought to recycle after agonist-induced endocytosis. Here we show that several alternatively spliced receptor variants fail to do so efficiently because of splice-mediated removal of an endocytic sorting sequence that is present specifically in the MOR1 variant. All of the recycling-impaired receptor variants were found to undergo proteolytic down-regulation more rapidly than MOR1, irrespective of moderate differences in endocytic rate, indicating that alternative splicing plays a specific role in distinguishing the trafficking itinerary of receptors after endocytosis. The recycling-impaired MOR1B variant was similar to MOR1 in its ability to mediate opioid-dependent inhibition of adenylyl cyclase, and to undergo opioid-induced desensitization in intact cells. Functional recovery (resensitization) of MOR1B-mediated cellular responsiveness after opioid removal, however, was significantly impaired (4-fold reduction in rate) compared with MOR1. To our knowledge the present results are the first to establish a role of alternative RNA processing in specifying the post-endocytic sorting of G-protein-coupled receptors between divergent and functionally distinct membrane pathways.
Collapse
Affiliation(s)
- Michael Tanowitz
- Department of Psychiatry, University of California, San Francisco, California 94158-2140, USA
| | | | | |
Collapse
|
145
|
Sadowski L, Pilecka I, Miaczynska M. Signaling from endosomes: location makes a difference. Exp Cell Res 2008; 315:1601-9. [PMID: 18930045 DOI: 10.1016/j.yexcr.2008.09.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 09/23/2008] [Indexed: 01/14/2023]
Abstract
In all transmembrane receptor systems the kinetics of receptor trafficking upon ligand stimulation is maintained in a balance between degradative and recycling pathways in order to keep homeostasis and to strictly control receptor-mediated signaling. Endocytosis is commonly considered as an efficient mechanism of uptake and transport of membrane-associated signaling molecules leading to attenuation of ligand-induced responses. Accumulating evidence, however, shows that signaling from internalized receptors not only continues in endosomal compartments, but that there are also distinct signaling events that require endocytosis. Endocytic organelles form a dynamic network of subcellular compartments, which actively control the timing, amplitude, and specificity of signaling. In this review we provide examples in which signal transduction either requires an active endocytic machinery, or directly originates from various types of endosomes. Based on recent discoveries, we emphasize the close interdependence between signaling and endocytosis, and the physiological relevance of endocytic transport in health and disease.
Collapse
Affiliation(s)
- Lukasz Sadowski
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
146
|
Kantamneni S, Holman D, Wilkinson KA, Corrêa SAL, Feligioni M, Ogden S, Fraser W, Nishimune A, Henley JM. GISP binding to TSG101 increases GABA receptor stability by down-regulating ESCRT-mediated lysosomal degradation. J Neurochem 2008; 107:86-95. [PMID: 18643869 PMCID: PMC3314514 DOI: 10.1111/j.1471-4159.2008.05580.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuron-specific G protein-coupled receptor interacting scaffold protein (GISP) is a multidomain, brain-specific protein derived from the A-kinase anchoring protein-9 gene. We originally isolated GISP as an interacting partner for the GABA(B) receptor subunit GABA(B1). Here, we show that the protein tumour susceptibility gene 101 (TSG101), an integral component of the endosomal sorting machinery that targets membrane proteins for lysosomal degradation, also interacts with GISP. TSG101 co-immunoprecipitates with GISP from adult rat brain, and using GST pull-downs, we identified that the eighth coiled-coiled region of GISP is critical for TSG101 association. Intriguingly, although there is no direct interaction between GISP and the GABA(B2) subunit, their co-expression in HEK293 cells increases levels of GABA(B2). GISP also inhibits TSG101-dependent GABA(B2) down-regulation in human embryonic kidney 293 cells whereas over-expression of a mutant GISP lacking the TSG101 binding domain has no effect on GABA(B2) degradation. These data suggest that GISP can function as a negative regulator of TSG101-dependent lysosomal degradation of transmembrane proteins in neurons to promote receptor stability.
Collapse
Affiliation(s)
- Sriharsha Kantamneni
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Kantamneni S, Holman D, Wilkinson KA, Corrêa SAL, Feligioni M, Ogden S, Fraser W, Nishimune A, Henley JM. GISP binding to TSG101 increases GABA receptor stability by down-regulating ESCRT-mediated lysosomal degradation. J Neurochem 2008. [PMID: 18643869 DOI: 10.1111/j.1471-4159.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The neuron-specific G protein-coupled receptor interacting scaffold protein (GISP) is a multidomain, brain-specific protein derived from the A-kinase anchoring protein-9 gene. We originally isolated GISP as an interacting partner for the GABA(B) receptor subunit GABA(B1). Here, we show that the protein tumour susceptibility gene 101 (TSG101), an integral component of the endosomal sorting machinery that targets membrane proteins for lysosomal degradation, also interacts with GISP. TSG101 co-immunoprecipitates with GISP from adult rat brain, and using GST pull-downs, we identified that the eighth coiled-coiled region of GISP is critical for TSG101 association. Intriguingly, although there is no direct interaction between GISP and the GABA(B2) subunit, their co-expression in HEK293 cells increases levels of GABA(B2). GISP also inhibits TSG101-dependent GABA(B2) down-regulation in human embryonic kidney 293 cells whereas over-expression of a mutant GISP lacking the TSG101 binding domain has no effect on GABA(B2) degradation. These data suggest that GISP can function as a negative regulator of TSG101-dependent lysosomal degradation of transmembrane proteins in neurons to promote receptor stability.
Collapse
Affiliation(s)
- Sriharsha Kantamneni
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Kruse U, Bantscheff M, Drewes G, Hopf C. Chemical and pathway proteomics: powerful tools for oncology drug discovery and personalized health care. Mol Cell Proteomics 2008; 7:1887-901. [PMID: 18676365 DOI: 10.1074/mcp.r800006-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years mass spectrometry-based proteomics has moved beyond a mere quantitative description of protein expression levels and their possible correlation with disease or drug action. Impressive progress in LC-MS instrumentation together with the availability of new enabling tools and methods for quantitative proteome analysis and for identification of posttranslational modifications has triggered a surge of chemical and functional proteomics studies dissecting mechanisms of action of cancer drugs and molecular mechanisms that modulate signal transduction pathways. Despite the tremendous progress that has been made in the field, major challenges, relating to sensitivity, dynamic range, and throughput of the described methods, remain. In this review we summarize recent advances in LC-MS-based approaches and their application to cancer drug discovery and to studies of cancer-related pathways in cell culture models with particular emphasis on mechanistic studies of drug action in these systems. Moreover we highlight the emerging utility of pathway and chemical proteomics techniques for translational research in patient tissue.
Collapse
Affiliation(s)
- Ulrich Kruse
- Deptartment of Discovery Technology, Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
149
|
Kantamneni S, Holman D, Wilkinson KA, Corrêa SAL, Feligioni M, Ogden S, Fraser W, Nishimune A, Henley JM. GISP binding to TSG101 increases GABA receptor stability by down-regulating ESCRT-mediated lysosomal degradation. J Neurochem 2008. [PMID: 18643869 DOI: 10.1111/j.1471-4159.2008.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuron-specific G protein-coupled receptor interacting scaffold protein (GISP) is a multidomain, brain-specific protein derived from the A-kinase anchoring protein-9 gene. We originally isolated GISP as an interacting partner for the GABA(B) receptor subunit GABA(B1). Here, we show that the protein tumour susceptibility gene 101 (TSG101), an integral component of the endosomal sorting machinery that targets membrane proteins for lysosomal degradation, also interacts with GISP. TSG101 co-immunoprecipitates with GISP from adult rat brain, and using GST pull-downs, we identified that the eighth coiled-coiled region of GISP is critical for TSG101 association. Intriguingly, although there is no direct interaction between GISP and the GABA(B2) subunit, their co-expression in HEK293 cells increases levels of GABA(B2). GISP also inhibits TSG101-dependent GABA(B2) down-regulation in human embryonic kidney 293 cells whereas over-expression of a mutant GISP lacking the TSG101 binding domain has no effect on GABA(B2) degradation. These data suggest that GISP can function as a negative regulator of TSG101-dependent lysosomal degradation of transmembrane proteins in neurons to promote receptor stability.
Collapse
Affiliation(s)
- Sriharsha Kantamneni
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Tanaka N, Kyuuma M, Sugamura K. Endosomal sorting complex required for transport proteins in cancer pathogenesis, vesicular transport, and non-endosomal functions. Cancer Sci 2008; 99:1293-303. [PMID: 18429951 PMCID: PMC11158640 DOI: 10.1111/j.1349-7006.2008.00825.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 12/18/2022] Open
Abstract
Endosomal sorting complex required for transport (ESCRT) proteins form a multicomplex sorting machinery that controls multivesicular body (MVB) formation and the sorting of ubiquitinated membrane proteins to the endosomes. Being sorted to the MVB generally results in the lysosome-dependent degradation of cell-surface receptors, and defects in this machinery induce dysregulated receptor traffic and turnover. Recent lessons from gene targeting and silencing methodologies have implicated the ESCRT in normal development, cell differentiation, and growth, as well as in the budding of certain enveloped viruses. Furthermore, it is becoming apparent that the dysregulation of ESCRT proteins is involved in the development of various human diseases, including many types of cancers and neurodegenerative disorders. Here, we summarize the roles of ESCRT proteins in MVB sorting processes and the regulation of tumor cells, and we discuss some of their other functions that are unrelated to vesicular transport.
Collapse
Affiliation(s)
- Nobuyuki Tanaka
- Department of Microbiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | |
Collapse
|