101
|
Rando G, Horner D, Biserni A, Ramachandran B, Caruso D, Ciana P, Komm B, Maggi A. An innovative method to classify SERMs based on the dynamics of estrogen receptor transcriptional activity in living animals. Mol Endocrinol 2010; 24:735-44. [PMID: 20197311 DOI: 10.1210/me.2009-0514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using a mouse model engineered to measure estrogen receptor (ER) transcriptional activity in living organisms, we investigated the effect of long-term (21 d) hormone replacement on ER signaling by whole-body in vivo imaging. Estrogens and selective ER modulators were administered daily at doses equivalent to those used in humans as calculated by the allometric approach. As controls, ER activity was measured also in cycling and ovariectomized mice. The study demonstrated that ER-dependent transcriptional activity oscillated in time, and the frequency and amplitude of the transcription pulses was strictly associated with the target tissue and the estrogenic compound administered. Our results indicate that the spatiotemporal activity of selective ER modulators is predictive of their structure, demonstrating that the analysis of the effect of estrogenic compounds on a single surrogate marker of ER transcriptional activity is sufficient to classify families of compounds structurally and functionally related. For more than one century, the measure of drug structure-activity relationships has been based on mathematical equations describing the interaction of the drug with its biological receptor. The understanding of the multiplicity of biological responses induced by the drug-receptor interaction demonstrated the limits of current approach and the necessity to develop novel concepts for the quantitative analysis of drug action. Here, a systematic study of spatiotemporal effects is proposed as a measure of drug efficacy for the classification of pharmacologically active compounds. The application of this methodology is expected to simplify the identification of families of molecules functionally correlated and to speed up the process of drug discovery.
Collapse
Affiliation(s)
- Gianpaolo Rando
- Department of Pharmacological Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Noncooperative Interactions between Transcription Factors and Clustered DNA Binding Sites Enable Graded Transcriptional Responses to Environmental Inputs. Mol Cell 2010; 37:418-28. [DOI: 10.1016/j.molcel.2010.01.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/30/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023]
|
103
|
How transcription factors can adjust the gene expression floodgates. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 102:16-37. [PMID: 20025898 DOI: 10.1016/j.pbiomolbio.2009.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/17/2009] [Accepted: 12/07/2009] [Indexed: 12/18/2022]
Abstract
The rate of transcription initiation is the main level of quantitative control of gene expression, primarily responsible for the accumulation of mRNAs in the cell. Many, if not all, molecular actors involved in transcription initiation are known but the mechanisms underlying the frequency of initiations, remain elusive. To make the connection between transcription factors and the frequency of transcription initiation, intricated aspects of this complex activity are classified i) depending on whether or not the DNA-bound transcription factors directly activate the commitment to transcription and ii) on the destructive or non-destructive effect of transcription initiation on the stability of promoter complexes. Two possible sources of synergy allowing the combinatorial specificity of transcription factors action are compared, for binding to DNA and for recruiting transcription machineries. Tentative formulations are proposed to discriminate the different micro-reversible modes of DNA binding cooperativity modulating the specificity and dosage of transcription initiation.
Collapse
|
104
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
105
|
Kinetic enhancement of NF-kappaBxDNA dissociation by IkappaBalpha. Proc Natl Acad Sci U S A 2009; 106:19328-33. [PMID: 19887633 DOI: 10.1073/pnas.0908797106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hallmark of the NF-kappaB transcription response to inflammatory cytokines is the remarkably rapid rate of robust activation and subsequent signal repression. Although the rapidity of postinduction repression is explained partly by the fact that the gene for IkappaBalpha is strongly induced by NF-kappaB, the newly synthesized IkappaBalpha still must enter the nucleus and compete for binding to NF-kappaB with the very large number of kappaB sites in the DNA. We present results from real-time binding kinetic experiments, demonstrating that IkappaBalpha increases the dissociation rate of NF-kappaB from the DNA in a highly efficient kinetic process. Analysis of various IkappaB mutant proteins shows that this process requires the C-terminal PEST sequence and the weakly folded fifth and sixth ankyrin repeats of IkappaBalpha. Mutational stabilization of these repeats reduces the efficiency with which IkappaBalpha enhances the dissociation rate.
Collapse
|
106
|
Hager GL, McNally JG, Misteli T. Transcription dynamics. Mol Cell 2009; 35:741-53. [PMID: 19782025 DOI: 10.1016/j.molcel.2009.09.005] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 09/08/2009] [Indexed: 01/09/2023]
Abstract
All aspects of transcription and its regulation involve dynamic events. The basal transcription machinery and regulatory components are dynamically recruited to their target genes, and dynamic interactions of transcription factors with chromatin--and with each other--play a key role in RNA polymerase assembly, initiation, and elongation. These short-term binding dynamics of transcription factors are superimposed by long-term cyclical behavior of chromatin opening and transcription factor-binding events. Its dynamic nature is not only a fundamental property of the transcription machinery, but it is emerging as an important modulator of physiological processes, particularly in differentiation and development.
Collapse
Affiliation(s)
- Gordon L Hager
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
107
|
Larson DR, Singer RH, Zenklusen D. A single molecule view of gene expression. Trends Cell Biol 2009; 19:630-7. [PMID: 19819144 DOI: 10.1016/j.tcb.2009.08.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Analyzing the expression of single genes in single cells appears minimalistic in comparison to gene expression studies based on more global approaches. However, stimulated by advances in imaging technologies, single-cell studies have become an essential tool in understanding the rules that govern gene expression. This quantitative view of single-cell gene expression is based on counting mRNAs in single cells, monitoring transcription in real time, and visualizing single proteins. Parallel advances in mathematical models based on stochastic, discrete descriptions of biochemical processes have provided crucial insights into the underlying cellular mechanisms that control expression. The view that has emerged is rooted in a probabilistic understanding of cellular processes that quantitatively explains both the mean and the variation observed in gene-expression patterns among single cells. Thus, the close coupling between imaging and mathematical theory has established single-cell analysis as an essential branch of systems biology.
Collapse
Affiliation(s)
- Daniel R Larson
- Department of Anatomy and Structural Biology and The Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
108
|
Abstract
All aspects of transcription and its regulation involve dynamic events. The basal transcription machinery and regulatory components are dynamically recruited to their target genes, and dynamic interactions of transcription factors with chromatin--and with each other--play a key role in RNA polymerase assembly, initiation, and elongation. These short-term binding dynamics of transcription factors are superimposed by long-term cyclical behavior of chromatin opening and transcription factor-binding events. Its dynamic nature is not only a fundamental property of the transcription machinery, but it is emerging as an important modulator of physiological processes, particularly in differentiation and development.
Collapse
Affiliation(s)
- Gordon L Hager
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
109
|
Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Modulation of NF-kappaB-dependent gene expression by H2O2: a major role for a simple chemical process in a complex biological response. Antioxid Redox Signal 2009; 11:2043-53. [PMID: 19014314 DOI: 10.1089/ars.2008.2279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We recently observed that H2O2 regulates inflammation via upexpression of a few NF-kappaB-dependent genes, while leaving expression of most NF-kappaB-dependent genes unaltered. Here we test the hypothesis that this differential gene expression depends on the apparent affinity of kappaB sites in the gene-promoter regions toward NF-kappaB. Accordingly, cells were transfected with three reporter plasmids containing kappaB sequences with different affinities for NF-kappaB. It was observed that the lower the affinity, the higher the range of TNF-alpha concentrations where H2O2 upregulated gene expression. Mathematical models reproduced the key experimental observations indicating that H2O2 upregulation ceased when NF-kappaB fully occupied the kappaB sites. In vivo, it is predicted that genes with high-affinity sites remain insensitive to H2O2, whereas genes with lower-affinity sites are upregulated by H2O2. In conclusion, a simple chemical mechanism is at the root of a complex biologic process such as differential gene expression caused by H2O2.
Collapse
Affiliation(s)
- Virgínia Oliveira-Marques
- Grupo de Bioquímica dos Oxidantes e Antioxidantes, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | |
Collapse
|
110
|
Hyperactivated NF-{kappa}B and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 2009; 29:5488-504. [PMID: 19687301 DOI: 10.1128/mcb.01657-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin-6 (IL-6), involved in cancer-related inflammation, acts as an autocrine and paracrine growth factor, which promotes angiogenesis, metastasis, and subversion of immunity, and changes the response to hormones and to chemotherapeutics. We explored transcription mechanisms involved in differential IL-6 gene expression in breast cancer cells with different metastatic properties. In weakly metastatic MCF7 cells, histone H3 K9 methylation, HP1 binding, and weak recruitment of AP-1 Fra-1/c-Jun, NF-kappaB p65 transcription factors, and coactivators is indicative of low chromatin accessibility and gene transcription at the IL-6 gene promoter. In highly metastatic MDA-MB231 cells, strong DNase, MNase, and restriction enzyme accessibility, as well potent constitutive transcription of the IL-6 gene promoter, coincide with increased H3 S10 K14 phosphoacetylation and promoter enrichment of AP-1 Fra-1/c-Jun and NF-kappaB p65 transcription factors and MSK1, CBP/p300, Brg1, and Ezh2 cofactors. Complementation, silencing, and kinase inhibitor experiments further demonstrate involvement of AP-1 Fra-1/c-Jun and NF-kappaB p65/RelB members, but not of the alpha estrogen receptor in promoting chromatin accessibility and transcription across the IL-6 gene promoter in metastatic breast cancer cells. Finally, the natural withanolide Withaferin A was found to repress IL-6 gene transcription in metastatic breast cancer cells upon dual inhibition of NF-kappaB and AP-1 Fra-1 transcription factors and silencing of IL-6 promoter chromatin accessibility.
Collapse
|
111
|
Stavreva DA, Wiench M, John S, Conway-Campbell BL, McKenna MA, Pooley JR, Johnson TA, Voss TC, Lightman SL, Hager GL. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat Cell Biol 2009; 11:1093-102. [PMID: 19684579 DOI: 10.1038/ncb1922] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/22/2009] [Indexed: 01/10/2023]
Abstract
Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50:RelA bound to the HIV-1 LTR. J Mol Biol 2009; 393:98-112. [PMID: 19683540 DOI: 10.1016/j.jmb.2009.08.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 12/22/2022]
Abstract
The activation and latency of human immunodeficiency virus type 1 (HIV-1) are tightly controlled by the transcriptional activity of its long terminal repeat (LTR) region. The LTR is regulated by viral proteins as well as host factors, including the nuclear factor kappaB (NF-kappaB) that becomes activated in virus-infected cells. The two tandem NF-kappaB sites of the LTR are among the most highly conserved sequence elements of the HIV-1 genome. Puzzlingly, these sites are arranged in a manner that seems to preclude simultaneous binding of both sites by NF-kappaB, although previous biochemical work suggests otherwise. Here, we have determined the crystal structure of p50:RelA bound to the tandem kappaB element of the HIV-1 LTR as a dimeric dimer, providing direct structural evidence that NF-kappaB can occupy both sites simultaneously. The two p50:RelA dimers bind the adjacent kappaB sites and interact through a protein contact that is accommodated by DNA bending. The two dimers clamp DNA from opposite faces of the double helix and form a topological trap of the bound DNA. Consistent with these structural features, our biochemical analyses indicate that p50:RelA binds the HIV-1 LTR tandem kappaB sites with an apparent anti-cooperativity but enhanced kinetic stability. The slow on and off rates we observe may be relevant to viral latency because viral activation requires sustained NF-kappaB activation. Furthermore, our work demonstrates that the specific arrangement of the two kappaB sites on the HIV-1 LTR can modulate the assembly kinetics of the higher-order NF-kappaB complex on the viral promoter. This phenomenon is unlikely restricted to the HIV-1 LTR but probably represents a general mechanism for the function of composite DNA elements in transcription.
Collapse
|
113
|
Harada S, Uchida M, Shimizu N. Episomal high copy number maintenance of hairpin-capped DNA bearing a replication initiation region in human cells. J Biol Chem 2009; 284:24320-7. [PMID: 19617622 DOI: 10.1074/jbc.m109.008128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously found that a plasmid bearing a replication initiation region efficiently initiates gene amplification in mammalian cells and that it generates extrachromosomal double minutes and/or chromosomal homogeneously staining regions. During analysis of the underlying mechanism, we serendipitously found that hairpin-capped linear DNA was stably maintained as numerous extrachromosomal tiny episomes for more than a few months in a human cancer cell line. Generation of such episomes depended on the presence of the replication initiation region in the original plasmid. Despite extrachromosomal maintenance, episomal gene expression was epigenetically suppressed. The Southern blot analysis of the DNA of cloned cells revealed that the region around the hairpin end was diversified between the clones. Furthermore, the bisulfite-modified PCR and the sequencing analyses revealed that the palindrome sequence that derived from the original hairpin end or its end-resected structure were well preserved during clonal long term growth. From these data, we propose a model that explains the formation and maintenance of these episomes, in which replication of the hairpin-capped DNA and cruciform formation and its resolution play central roles. Our findings may be relevant for the dissection of mammalian replicator sequences.
Collapse
Affiliation(s)
- Seiyu Harada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima 739-8521, Japan
| | | | | |
Collapse
|
114
|
Darzacq X, Yao J, Larson DR, Causse SZ, Bosanac L, de Turris V, Ruda VM, Lionnet T, Zenklusen D, Guglielmi B, Tjian R, Singer RH. Imaging transcription in living cells. Annu Rev Biophys 2009; 38:173-96. [PMID: 19416065 DOI: 10.1146/annurev.biophys.050708.133728] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding.
Collapse
Affiliation(s)
- Xavier Darzacq
- Janelia Farm Research Consortium on Imaging Transcription, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Thomson SJP, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BMJ, Udalova IA. The role of transposable elements in the regulation of IFN-lambda1 gene expression. Proc Natl Acad Sci U S A 2009; 106:11564-9. [PMID: 19570999 PMCID: PMC2710658 DOI: 10.1073/pnas.0904477106] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Indexed: 01/21/2023] Open
Abstract
IFNs lambda1, lambda2, and lambda3, or type III IFNs, are recently identified cytokines distantly related to type I IFNs. Despite an early evolutionary divergence, the 2 types of IFNs display similar antiviral activities, and both are produced primarily in dendritic cells. Although virus induction of the type I IFN-beta gene had served as a paradigm of gene regulation, relatively little is known about the regulation of IFN-lambda gene expression. Studies of virus induction of IFN-lambda1 identified an essential role of IFN regulatory factors (IRF) 3 and 7, which bind to a regulatory DNA sequence near the start site of transcription. Here, we report that the proximal promoter region of the IFN-lambda1 regulatory region is not sufficient for maximal gene induction in response to bacterial LPS, and we identify an essential cluster of homotypic NF-kappaB binding sites. Remarkably, these sites, which bind efficiently to NF-kappaB and function independently of the IRF3/7 binding sites, originate as transposable elements of the Alu and LTR families. We also show that depletion of the NF-kappaB RelA protein significantly reduces the level of the IFN-lambda1 gene expression. We conclude that IFN-lambda1 gene expression requires NF-kappaB, and we propose a model for IFN-lambda1 gene regulation, in which IRF and NF-kappaB activate gene expression independently via spatially separated promoter elements. These observations provide insights into the independent evolution of the IFN-lambda1 and IFN-beta promoters and directly implicate transposable elements in the regulation of the IFN-lambda1 gene by NF-kappaB.
Collapse
Affiliation(s)
- Scott J. P. Thomson
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Fui G. Goh
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Helen Banks
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Thomas Krausgruber
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Sergei V. Kotenko
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry, New Jersey Medical School, Newark, NJ 07103
| | - Brian M. J. Foxwell
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| | - Irina A. Udalova
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology, and Medicine, 65 Aspenlea Road, London W6 8LH, United Kingdom; and
| |
Collapse
|
116
|
Abstract
The glucocorticoid receptor regulates the expression of a large number of genes in mammalian cells. The interaction of this receptor with regulatory elements has been discovered to be highly dynamic, with occupancy states measured in seconds, rather than minutes or hours. This finding has led to a paradigm shift in our understanding of receptor function throughout the genome. The mechanisms involved in these rapid exchange events, as well as the implications for receptor function, are discussed.
Collapse
Affiliation(s)
- Simon C Biddie
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | |
Collapse
|
117
|
Michel D. Fine tuning gene expression through short DNA-protein binding cycles. Biochimie 2009; 91:933-41. [PMID: 19376190 DOI: 10.1016/j.biochi.2009.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
Abstract
Certain transcription factors have recently been shown to interact with DNA in living cells, through very short binding cycles, contrasting with the data previously obtained in vitro, and with the view of a stepwise building of transcription initiation complexes. These short cycles are triggered by active dissociation mechanisms, suggesting that they ensure important biological functions. Various interpretations of these observations have been proposed, including a mechanism allowing the cell to switch off gene expression after removal of the inducer, or increasing the availability of free transcription factors. The interpretation examined here is that the brevity of the transcription factor turnovers favors the determinism of gene expression. For the genes with open chromatin and subject to this mode of interaction, the differential dynamics between promoter occupancy and the following processes mediating protein accumulation, can be essential for the dosage of gene expression. Biological activities and quantitative conditions allowing to increase the frequency of DNA-protein binding cycles are proposed. The unexpected dynamics of certain DNA-protein interactions can provide a concrete example of the notion of apparent gradation of single-site occupancy, which is a general solution allowing to extend the mass action determinism to low copy number molecules.
Collapse
Affiliation(s)
- Denis Michel
- Université de Rennes 1, Molecular and Cellular Interactions, UMR6026 CNRS-Hip-IFR140 GFAS, Bâtiment 13, Campus de Beaulieu, 35042 Rennes Cedex, France.
| |
Collapse
|
118
|
Schmiedeberg L, Skene P, Deaton A, Bird A. A temporal threshold for formaldehyde crosslinking and fixation. PLoS One 2009; 4:e4636. [PMID: 19247482 PMCID: PMC2645674 DOI: 10.1371/journal.pone.0004636] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/27/2009] [Indexed: 11/18/2022] Open
Abstract
Background Formaldehyde crosslinking is in widespread use as a biological fixative for microscopy and molecular biology. An assumption behind its use is that most biologically meaningful interactions are preserved by crosslinking, but the minimum length of time required for an interaction to become fixed has not been determined. Methodology Using a unique series of mutations in the DNA binding protein MeCP2, we show that in vivo interactions lasting less than 5 seconds are invisible in the microscope after formaldehyde fixation, though they are obvious in live cells. The stark contrast between live cell and fixed cell images illustrates hitherto unsuspected limitations to the fixation process. We show that chromatin immunoprecipitation, a technique in widespread use that depends on formaldehyde crosslinking, also fails to capture these transient interactions. Conclusions/Significance Our findings for the first time establish a minimum temporal limitation to crosslink chemistry that has implications for many fields of research.
Collapse
Affiliation(s)
- Lars Schmiedeberg
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Pete Skene
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Aimée Deaton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
119
|
Voss TC, Schiltz RL, Sung MH, Johnson TA, John S, Hager GL. Combinatorial probabilistic chromatin interactions produce transcriptional heterogeneity. J Cell Sci 2009; 122:345-56. [PMID: 19126674 DOI: 10.1242/jcs.035865] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene regulation often appears deterministic in the average cell population, but transcription is a probabilistic process at the single-cell level. Although many mechanisms are invoked to account for this behavior, it is difficult to determine how cell-to-cell variation in the interactions of transcription factors with target chromatin impact transcriptional output. Here, we use cells that contain a 200-copy tandem array of promoter or reporter gene units to simultaneously visualize transient interaction, equilibrium or steady-state binding of fluorescent-protein-labeled glucocorticoid receptor with its DNA response elements, the recruitment of diverse coregulators, and transcriptional output at the single-cell level. These regulatory proteins associate with target chromatin via a probabilistic mechanism that produces cell-to-cell variability in binding. The multiple steps of this process are partially independent and differ between individual regulators. The association level of each regulator influences the transcriptional output in individual cells, but this does not account for all transcriptional heterogeneity. Additionally, specific combinatorial interactions of the glucocorticoid receptor and coregulators with response elements regulate transcription at the single-cell level. Like many endogenous genes, the average array transcriptional activity evolves over time. This apparently deterministic average temporal promoter progression involves changes in the probability that specific combinatorial glucocorticoid receptor and coregulator interactions will occur on the response elements in single cells. These data support the emerging ;return-to-template' transcription model, which mechanistically unifies the observed extremely transient interactions between the transcription factor and response elements, cell-to-cell variability in steady-state association of factors with chromatin, and the resulting heterogeneous gene expression between individual cells.
Collapse
Affiliation(s)
- Ty C Voss
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
120
|
George AA, Louis Schiltz R, Hager GL. Dynamic access of the glucocorticoid receptor to response elements in chromatin. Int J Biochem Cell Biol 2009; 41:214-24. [PMID: 18930837 PMCID: PMC2632576 DOI: 10.1016/j.biocel.2008.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 12/22/2022]
Abstract
Transcriptional activation as a rate-limiting step of gene expression is often triggered by an environmental stimulus that is transmitted through a signaling cascade to specific transcription factors. Transcription factors must then find appropriate target genes in the context of chromatin. Subsequent modulation of local chromatin domains is now recognized as a major mechanism of gene regulation. The interactions of transcription factors with chromatin structures have recently been observed to be highly dynamic, with residence times measured in seconds. Thus, the concept of static, multi-protein complexes forming at regulatory elements in the genome has been replaced by a new paradigm that envisages rapid and continuous exchange events with the template. These highly dynamic interactions are a property of both DNA-protein and protein-protein interactions and are inherent to every stage of the transcriptional response. In this review we discuss the dynamics of a nuclear receptor, and its transcriptional response in the chromatin context.
Collapse
Affiliation(s)
- Anuja A. George
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055
| | - R. Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055
| |
Collapse
|
121
|
Utani KI, Shimizu N. How transcription proceeds in a large artificial heterochromatin in human cells. Nucleic Acids Res 2008; 37:393-404. [PMID: 19043073 PMCID: PMC2632932 DOI: 10.1093/nar/gkn970] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heterochromatin is critical for genome integrity, and recent studies have suggested the importance of transcription in heterochromatin for maintaining its silent state. We previously developed a method to generate a large homogeneously staining region (HSR) composed of tandem plasmid sequences in human cells that showed typical heterochromatin characteristics. In this study, we examined transcription in the HSR. We found that transcription of genes downstream to no-inducible SRα promoter was restricted to a few specific points inside the large HSR domain. Furthermore, the HSR localized to either to the surface or to the interior of the nucleolus, where it was more actively transcribed. The perinucleolar or intranucleolar locations were biased to late or early S-phase, and the location depended on either RNA polymerase II/III or I transcription, respectively. Strong activation of the inducible TRE promoter resulted in the reversible loosening of the HSR domain and the appearance of transcripts downstream of not only the TRE promoters, but also the SRα promoters. During this process, detection of HP1α or H3K9Me3 suggested that transcription was activated at many specific points dispersed inside large heterochromatin. The transcriptional rules obtained from studying artificial heterochromatin should be useful for understanding natural heterochromatin.
Collapse
Affiliation(s)
- Koh-ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521, Japan
| | | |
Collapse
|
122
|
RelB sustains IkappaBalpha expression during endotoxin tolerance. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:104-10. [PMID: 19020113 DOI: 10.1128/cvi.00320-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcription factors and chromatin structural modifiers induce clinically relevant epigenetic modifications of blood leukocytes during severe systemic inflammation (SSI) in humans and animals. These changes affect genes with distinct functions, as exemplified by the silencing of a set of acute proinflammatory genes and the sustained expression of a group of antimicrobial and anti-inflammatory genes. This paradigm is closely mimicked in the THP-1 human promonocyte cell model of lipopolysaccharide (LPS) endotoxin tolerance. We previously reported that LPS-induced de novo expression of RelB is required for generating tolerance to interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) expression. RelB represses transcription by binding with heterochromatic protein 1 alpha (HP1alpha) to the proximal promoters of IL-1beta and TNF-alpha. In contrast, we report herein that RelB is required for sustained expression of anti-inflammatory IkappaBalpha in LPS-tolerant THP-1 cells. RelB transcription activation requires binding to the IkappaBalpha proximal promoter along with NF-kappaB p50 and is associated with an apparent dimer exchange with p65. We also observed that RelB induced during human SSI binds to the IkappaBalpha proximal promoter of circulating leukocytes. We conclude that RelB functions as a dual transcription regulator during LPS tolerance and human SSI by activating and repressing innate immunity genes.
Collapse
|
123
|
Rascle A, Neumann T, Raschta AS, Neumann A, Heining E, Kastner J, Witzgall R. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes. Exp Cell Res 2008; 315:76-96. [PMID: 18996370 DOI: 10.1016/j.yexcr.2008.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 12/18/2022]
Abstract
LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-kappaB target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-kappaB activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-kappaB activity by TNF-alpha synergizes induction of NF-kappaB target genes by LMX1B. Chromatin immunoprecipitation demonstrated that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized kappaB site, and that LMX1B recruitment correlates with increased NF-kappaB DNA association. IL-6 promoter-reporter assays showed that the kappaB site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-kappaB target genes is affected in the kidney of Lmx1b(-/-) knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-kappaB target genes in cooperation with nuclear p50/p65 NF-kappaB.
Collapse
Affiliation(s)
- Anne Rascle
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
124
|
Frier BC, Noble EG, Locke M. Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappaB activation and expression. Cell Stress Chaperones 2008; 13:287-96. [PMID: 18633731 PMCID: PMC2673946 DOI: 10.1007/s12192-008-0062-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/02/2007] [Accepted: 11/11/2007] [Indexed: 02/07/2023] Open
Abstract
NF-kappaB is a transcription factor implicated in pathological responses that develop during diabetes mellitus, including skeletal muscle atrophy. Given that NF-kappaB activation, protein composition, and content within diabetic skeletal muscle remain generally uncharacterized, a streptozotocin (STZ) model was used to assess NF-kappaB activation, composition, and content. Sprague-Dawley rats were injected with STZ (55 mg/kg) and after 30 days the soleus (SOL), plantaris (PL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles were assessed by electrophoresis mobility shift assay and western blotting. NF-kappaB activation was detected in all muscles examined, but was reduced in RG muscles from diabetic animals. Supershifts indicated NF-kappaB was composed primarily of p50 in diabetic and control animals. The content of both p65 and p52 was elevated in SOL and PL muscles, while p52 was decreased in RG. The coactivating protein, Bcl-3, was increased in WG and RG, but decreased in PL. Both p50 and RelB remained unchanged in all tissues examined. All muscles from diabetic animals demonstrated reduced mass when compared to controls, but only the gastrocnemius demonstrated atrophy as reflected by a reduced muscle-to-body mass ratio. In conclusion, diabetic alterations to the contents and activation of the NF-kappaB protein were tissue-specific, but did not appear to alter dimer composition of constitutively bound NF-kappaB. These results indicate that diabetes may alter NF-kappaB activity and expression in a muscle-specific manner.
Collapse
Affiliation(s)
- Bruce C. Frier
- School of Kinesiology, Faculty of Health Sciences, Research Institute, University of Western Ontario, London, ON Canada
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, Research Institute, University of Western Ontario, London, ON Canada
- Lawson Health, Research Institute, University of Western Ontario, London, ON Canada
| | - Marius Locke
- Faculty of Physical Education and Health, University of Toronto, 55 Harbord Street, , Toronto, ON M5S 2W6 Canada
| |
Collapse
|
125
|
Voss TC, Hager GL. Visualizing chromatin dynamics in intact cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2044-51. [PMID: 18675855 DOI: 10.1016/j.bbamcr.2008.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 06/29/2008] [Indexed: 01/08/2023]
Abstract
Chromatin and associated regulatory proteins regulate gene expression in the natural environment of the intact cell nucleus. Specific combinations of DNA-binding transcription factors and recruited coregulatory proteins alter the conformation of chromatin at promoters and enhancers of target genes to stimulate or repress transcription. The dynamic nature of the regulatory proteins active in these processes allows the cell to modulate gene expression very rapidly, an important feature in many physiological processes. Live cell imaging and photobleaching studies of fluorescently-tagged proteins reveal that many transcription factors and other chromatin-associated proteins rapidly move through the nucleoplasm. Transcription factors also transiently interact with specific regulatory sequences in chromatin, suggesting that gene activation does not require the formation of stable long-lived regulatory complexes on the chromatin. In this review we discuss how dynamic interactions allow transcriptional regulatory proteins find their targets within the nucleus, alter target chromatin structure, and modulate physiological gene expression.
Collapse
Affiliation(s)
- Ty C Voss
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Drive, National Cancer Institute, NIH Bethesda, MD 20892-5055, USA
| | | |
Collapse
|
126
|
Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol Cell 2008; 30:486-97. [PMID: 18498750 DOI: 10.1016/j.molcel.2008.04.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 02/14/2008] [Accepted: 04/13/2008] [Indexed: 12/20/2022]
Abstract
The interaction of transcription factors with target genes is highly dynamic. Whether the dynamic nature of these interactions is merely an intrinsic property of transcription factors or serves a regulatory role is unknown. Here we have used single-cell fluorescence imaging combined with computational modeling and chromatin immunoprecipitation to analyze transcription complex dynamics in gene regulation during the cell cycle in living cells. We demonstrate a link between the dynamics of RNA polymerase I (RNA Pol I) assembly and transcriptional output. We show that transcriptional upregulation is accompanied by prolonged retention of RNA Pol I components at the promoter, resulting in longer promoter dwell time, and an increase in the steady-state population of assembling polymerase. As a consequence, polymerase assembly efficiency and, ultimately, the rate of entry into processive elongation are elevated. Our results show that regulation of rDNA transcription in vivo occurs via modulation of the efficiency of transcription complex subunit capture and assembly.
Collapse
|
127
|
Diefenbacher M, Sekula S, Heilbock C, Maier JV, Litfin M, van Dam H, Castellazzi M, Herrlich P, Kassel O. Restriction to Fos family members of Trip6-dependent coactivation and glucocorticoid receptor-dependent trans-repression of activator protein-1. Mol Endocrinol 2008; 22:1767-80. [PMID: 18535250 DOI: 10.1210/me.2007-0574] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The term activator protein (AP)-1 describes homodimeric and heterodimeric transcription factors composed of members of the Jun, Fos, and cAMP response element-binding protein (CREB)/activating transcription factor (ATF) families of proteins. Distinct AP-1 dimers, for instance the prototypical c-Jun:c-Fos and c-Jun:ATF2 dimers, are differentially regulated by signaling pathways and bind related yet distinct response elements in the regulatory regions of AP-1 target genes. Little is known about the dimer-specific regulation of AP-1 activity at the promoter of its target genes. We have previously shown that nTrip6, the nuclear isoform of the LIM domain protein Trip6, acts as an AP-1 coactivator. Moreover, nTrip6 is an essential component of glucocorticoid receptor (GR)-mediated trans-repression of AP-1, in that it mediates the tethering of GR to the promoter-bound AP-1. We have now discovered a striking specificity of nTrip6 actions determined by the binding preference of its LIM domains. We show that nTrip6 interacts only with Fos family members. Consequently, nTrip6 is a selective coactivator for AP-1 dimers containing Fos. nTrip6 also assembles activated GR to c-Jun:c-Fos-driven promoters. Neither nTrip6 nor GR are recruited to a promoter occupied by c-Jun:ATF2. Thus, only Fos-containing dimers are trans-repressed by GR. Thus, the dimer composition of AP-1 determines the mechanism of both the positive and negative regulation of AP-1 transcriptional activity. Interestingly, on a second level of action, GR represses the increase in transcriptional activity of c-Jun:ATF2 induced by c-Jun N-terminal kinase (JNK)-dependent phosphorylation. This repression depends on GR-mediated induction of MAPK phosphatase 1 (MKP-1) expression, which results in c-Jun N-terminal kinase inactivation.
Collapse
Affiliation(s)
- Markus Diefenbacher
- Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz Platz 1, D- 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Activation of estrogen receptor-alpha by E2 or EGF induces temporally distinct patterns of large-scale chromatin modification and mRNA transcription. PLoS One 2008; 3:e2286. [PMID: 18509470 PMCID: PMC2386239 DOI: 10.1371/journal.pone.0002286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 04/14/2008] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor-alpha (ER) transcription function is regulated in a ligand-dependent (e.g., estradiol, E2) or ligand-independent (e.g., growth factors) manner. Our laboratory seeks to understand these two modes of action. Using a cell line that contains a visible prolactin enhancer/promoter array (PRL-HeLa) regulated by ER, we analyzed ER response to E2 and EGF by quantifying image-based results. Data show differential recruitment of GFP-ER to the array, with the AF1 domain playing a vital role in EGF-mediated responsiveness. Temporal analyses of large-scale chromatin dynamics, and accumulation of array-localized reporter mRNA over 24 hours showed that the EGF response consists of a single pulse of reporter mRNA accumulation concomitant with transient increase in array decondensation. Estradiol induced a novel cyclical pattern of mRNA accumulation with a sustained increase in array decondensation. Collectively, our work shows that there is a stimuli-specific pattern of large-scale chromatin modification and transcript levels by ER.
Collapse
|
129
|
John S, Sabo PJ, Johnson TA, Sung MH, Biddie SC, Lightman SL, Voss TC, Davis SR, Meltzer PS, Stamatoyannopoulos JA, Hager GL. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol Cell 2008; 29:611-24. [PMID: 18342607 DOI: 10.1016/j.molcel.2008.02.010] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/22/2007] [Accepted: 02/27/2008] [Indexed: 11/18/2022]
Abstract
The generality and spectrum of chromatin-remodeling requirements for nuclear receptor function are unknown. We have characterized glucocorticoid receptor (GR) binding events and chromatin structural transitions across GR-induced or -repressed genes. This analysis reveals that GR binding invariably occurs at nuclease-accessible sites (DHS). A remarkable diversity of mechanisms, however, render these sites available for GR binding. Accessibility of the GR binding sites is either constitutive or hormone inducible. Within each category, some DHS sites require the Brg1-containing Swi/Snf complex, but others are Brg1 independent, implicating a different remodeling complex. The H2A.Z histone variant is highly enriched at both inducible and constitutive DHS sites and is subject to exchange during hormone activation. The DHS profile is highly cell specific, implicating cell-selective organization of the chromatin landscape as a critical determinant of tissue-selective receptor function. Furthermore, the widespread requirement for chromatin remodeling supports the recent hypothesis that the rapid exchange of receptor proteins occurs during nucleosome reorganization.
Collapse
Affiliation(s)
- Sam John
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Nuclear functions in space and time: Gene expression in a dynamic, constrained environment. FEBS Lett 2008; 582:1960-70. [DOI: 10.1016/j.febslet.2008.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
|
131
|
Sun L, Yang G, Zaidi M, Iqbal J. TNF-induced gene expression oscillates in time. Biochem Biophys Res Commun 2008; 371:900-5. [PMID: 18384746 DOI: 10.1016/j.bbrc.2008.03.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
With only few exceptions that include Hes-1 p53, and IkappaB, the expression of genes has never been shown to be oscillatory. Here, we show that the inflammatory cytokine TNF triggers oscillations in >5000 genes. We utilize microarrays at 30-min intervals to analyze the pattern of global gene expression in murine macrophages. We find that 15% of genes in the genome underwent a significant >3-fold increase in expression, with 89% of these displaying oscillations at frequencies as low as every 50min. We analyze further two sub-clusters of genes that either began oscillating early or after a lag phase. Through the use of quantitative PCR, we confirm the oscillations and show that the oscillations are continuous. Moreover, we show that these continuous oscillations are not unique to TNF, but that related cytokines such as RANK-L produces oscillations with a unique induction profile. In the two papers accompanying this one, we analyze the mechanism of these oscillations and find that TNF also triggers oscillations in the phosphorylation of MAP kinases, and that these oscillations combine to recruit transcription factors to promoters in a cyclical fashion. The results presented here suggest that gene transcription is a highly dynamic processes, with thousands of genes displaying rapid (<60min) oscillations over time. Considering this dynamism, time-resolved measurements of gene transcription should become the experimental norm.
Collapse
Affiliation(s)
- Li Sun
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
132
|
Shimizu N, Hanada N, Utani K, Sekiguchi N. Interconversion of intra- and extra-chromosomal sites of gene amplification by modulation of gene expression and DNA methylation. J Cell Biochem 2008; 102:515-29. [PMID: 17390337 DOI: 10.1002/jcb.21313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously showed that plasmids containing a mammalian replication initiation region and a matrix attachment region were efficiently amplified to few thousand copies per cell, and that they formed extrachromosomal double minutes (DMs) or chromosomal homogeneously staining regions (HSRs). In these structures, the plasmid sequence was arranged as a tandem repeats, and we suggested a mechanism of plasmid amplification. Since amplification was very efficient, easy, and convenient, it might be adapted to a novel method for protein production. In the current study, we found that gene expression from the tandem plasmid repeat was suppressed. We identified several strategies to overcome this suppression, including: (1) use of higher concentrations of antibiotic during cell selection; (2) treatment of cells with agents that influence DNA methylation (5-azacytidine) or histone acetylation (butyrate); (3) co-amplification of an insulator sequence; and (4) co-amplification of sequences that encode a transcriptional activator. Expression from the plasmid repeat was always higher at DMs compared to HSRs. We found that continuous activation of a plasmid-encoded inducible promoter prevented the generation of long HSRs, and favored amplification at DMs. Consistent with this finding, there was a synergistic effect of transcriptional activation and inhibition of DNA methylation on the fragmentation of long HSRs and the generation of DMs and short HSRs. Our results indicate that both transcriptional activation and DNA methylation regulate the interconversion between extra- and intra-chromosomal gene amplification. These results have important implications for both protein production technology, and the generation of chromosomal abnormalities found in human cancer cells.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan.
| | | | | | | |
Collapse
|
133
|
RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol 2008; 28:3623-38. [PMID: 18362169 DOI: 10.1128/mcb.01152-07] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
NF-kappaB plays a central role in cytokine-inducible inflammatory gene expression. Previously we empirically determined the identity of 92 members of the genetic network under direct NF-kappaB/RelA control that show marked heterogeneity in magnitude of transcriptional induction and kinetics of peak activation. To investigate this network further, we have applied a recently developed two-step chromatin immunoprecipitation assay that accurately reflects association and disassociation of RelA binding to its chromatin targets. Although inducible RelA binding occurs with similar kinetics on all NF-kappaB-dependent genes, serine 276 (Ser(276))-phosphorylated RelA binding is seen primarily on a subset of genes that are rapidly induced by tumor necrosis factor (TNF), including Gro-beta, interleukin-8 (IL-8), and IkappaBalpha. Previous work has shown that TNF-inducible RelA Ser(276) phosphorylation is controlled by a reactive oxygen species (ROS)-protein kinase A signaling pathway. To further understand the role of phospho-Ser(276) RelA in target gene expression, we inhibited its formation by ROS scavengers and antioxidants, treatments that disrupt phospho-Ser(276) formation but not the translocation and DNA binding of nonphosphorylated RelA. Here we find that phospho-Ser(276) RelA is required only for activation of IL-8 and Gro-beta, with IkappaBalpha being unaffected. These data were confirmed in experiments using RelA(-/-) murine embryonic fibroblasts reconstituted with a RelA Ser(276)Ala mutation. In addition, we observe that phospho-Ser(276) RelA binds the positive transcription elongation factor b (P-TEFb), a complex containing the cyclin-dependent kinase 9 (CDK-9) and cyclin T1 subunits. Inhibition of P-TEFb activity by short interfering RNA (siRNA)-mediated knockdown shows that the phospho-Ser(276) RelA-P-TEFb complex is required for IL-8 and Gro-beta gene activation but not for IkappaBalpha gene activation. These studies indicate that TNF induces target gene expression by heterogeneous mechanisms. One is mediated by phospho-Ser(276) RelA formation and chromatin targeting of P-TEFb controlling polymerase II (Pol II) recruitment and carboxy-terminal domain phosphorylation on the IL-8 and Gro-beta genes. The second involves a phospho-Ser(276) RelA-independent activation of genes preloaded with Pol II, exemplified by the IkappaBalpha gene. Together, these data suggest that the binding kinetics, selection of genomic targets, and mechanisms of promoter induction by RelA are controlled by a phosphorylation code influencing its interactions with coactivators and transcriptional elongation factors.
Collapse
|
134
|
Panne D. The enhanceosome. Curr Opin Struct Biol 2008; 18:236-42. [PMID: 18206362 DOI: 10.1016/j.sbi.2007.12.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
The interferon-beta (IFN-beta) enhanceosome is a paradigm for understanding the role of transcription factor complexes in eukaryotic signal integration. Recent structural studies provide a complete atomic model of the enhanceosome at the protein-DNA interface. The composite model shows how binding of eight transcription factors to enhancer DNA creates a continuous recognition surface. The extensive overlap of individual binding sites creates a composite element that ensures that the enhancer operates as a single unit of regulation. The absence of major protein-protein interfaces between the transcription factors suggests that cooperative binding occurs through a combination of binding-induced conformational changes in DNA structure and specific interactions with coactivator proteins such as CBP/p300. Contacts with virtually every nucleotide explain why the enhancer is evolutionary conserved in mammalian genomes.
Collapse
Affiliation(s)
- Daniel Panne
- EMBL, 6 Rue Jules Horowitz, BP181, 38042 Grenoble, France.
| |
Collapse
|
135
|
Karpova TS, Kim MJ, Spriet C, Nalley K, Stasevich TJ, Kherrouche Z, Heliot L, McNally JG. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 2008; 319:466-9. [PMID: 18218898 DOI: 10.1126/science.1150559] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For gene regulation, some transcriptional activators bind periodically to promoters with either a fast (approximately 1 minute) or a slow (approximately 15 to 90 minutes) cycle. It is uncertain whether the fast cycle occurs on natural promoters, and the function of either cycle in transcription remains unclear. We report that fast and slow cycling can occur simultaneously on an endogenous yeast promoter and that slow cycling in this system reflects an oscillation in the fraction of accessible promoters rather than the recruitment and release of stably bound transcriptional activators. This observation, combined with single-cell measurements of messenger RNA (mRNA) production, argues that fast cycling initiates transcription and that slow cycling regulates the quantity of mRNA produced. These findings counter the prevailing view that slow cycling initiates transcription.
Collapse
Affiliation(s)
- Tatiana S Karpova
- Center for Cancer Research Core Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Natoli G, Chiocca S. Nuclear Ubiquitin Ligases, NF- B Degradation, and the Control of Inflammation. Sci Signal 2008; 1:pe1. [DOI: 10.1126/stke.11pe1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
137
|
Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 2008; 9:15-26. [DOI: 10.1038/nrg2206] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
138
|
Damdimopoulos AE, Spyrou G, Gustafsson JA. Ligands differentially modify the nuclear mobility of estrogen receptors alpha and beta. Endocrinology 2008; 149:339-45. [PMID: 17884941 DOI: 10.1210/en.2007-0198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signaling of nuclear receptors depends on the structure of their ligands, with different ligands eliciting different responses. In this study using a comparative analysis, an array of ligands was examined for effects on estrogen receptor alpha (ERalpha) and ERbeta mobility. Our results indicated that these two receptors share similarities in response to some ligands but differ significantly in response to others. Our results suggest that for ERalpha, ligands can be classified into three distinct groups: 1) ligands that do not affect the mobility of the receptor, 2) ligands that cause a moderate effect, and 3) ligands that strongly impact mobility of ERalpha. Interestingly, we found that for ERbeta such a classification was not possible because ERbeta ligands caused a wider spectrum of responses. One of the main differences between the two receptors was the response toward the antiestrogens ICI and raloxifene, which was not attributable to differential subnuclear localization or different conformations of helix 12 in the C-terminal domain. We showed that both of these ligands caused a robust phenotype, leading to an almost total immobilization of ERalpha, whereas ERbeta retained its mobility; we provide evidence that the mobility of the two receptors depends upon the function of the proteasome machinery. This novel finding that ERbeta retains its mobility in the presence of antiestrogens could be important for its ability to regulate genes that do not contain classic estrogen response element sites and do not require DNA binding and could be used in the investigation of ligands that show ER subtype specificity.
Collapse
|
139
|
Moorthy AK, Huang DB, Wang VYF, Vu D, Ghosh G. X-ray structure of a NF-kappaB p50/RelB/DNA complex reveals assembly of multiple dimers on tandem kappaB sites. J Mol Biol 2007; 373:723-34. [PMID: 17869269 PMCID: PMC4167888 DOI: 10.1016/j.jmb.2007.08.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 01/07/2023]
Abstract
We describe here the X-ray crystal structure of NF-kappaB p50/RelB heterodimer bound to a kappaB DNA. Although the global modes of subunit association and kappaB DNA recognition are similar to other NF-kappaB/DNA complexes, this complex reveals distinctive features not observed for non-RelB complexes. For example, Lys274 of RelB is removed from the protein-DNA interface whereas the corresponding residues in all other subunits make base-specific contacts. This mode of binding suggests that RelB may allow the recognition of more diverse kappaB sequences. Complementary surfaces on RelB and p50, as revealed by the crystal contacts, are highly suggestive of assembly of multiple p50/RelB heterodimers on tandem kappaB sites in solution. Consistent with this model our in vitro binding experiments reveal optimal assembly of two wild-type p50/RelB heterodimers on tandem HIV kappaB DNA with 2 bp spacing but not by a mutant heterodimer where one of the RelB packing surface is altered. We suggest that multiple NF-kappaB dimers assemble at diverse kappaB promoters through direct interactions utilizing unique protein-protein interaction surfaces.
Collapse
|
140
|
De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007; 130:1083-94. [PMID: 17825402 DOI: 10.1016/j.cell.2007.08.019] [Citation(s) in RCA: 753] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/09/2007] [Accepted: 08/10/2007] [Indexed: 12/13/2022]
Abstract
Epigenetic chromatin marks restrict the ability of differentiated cells to change gene expression programs in response to environmental cues and to transdifferentiate. Polycomb group (PcG) proteins mediate gene silencing and repress transdifferentiation in a manner dependent on histone H3 lysine 27 trimethylation (H3K27me3). However, macrophages migrated into inflamed tissues can transdifferentiate, but it is unknown whether inflammation alters PcG-dependent silencing. Here we show that the JmjC-domain protein Jmjd3 is a H3K27me demethylase expressed in macrophages in response to bacterial products and inflammatory cytokines. Jmjd3 binds PcG target genes and regulates their H3K27me3 levels and transcriptional activity. The discovery of an inducible enzyme that erases a histone mark controlling differentiation and cell identity provides a link between inflammation and reprogramming of the epigenome, which could be the basis for macrophage plasticity and might explain the differentiation abnormalities in chronic inflammation.
Collapse
Affiliation(s)
- Francesca De Santa
- Department of Experimental Oncology, European Institute of Oncology, Campus IFOM-IEO, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | |
Collapse
|
141
|
Hashizume T, Shimizu N. Dissection of mammalian replicators by a novel plasmid stability assay. J Cell Biochem 2007; 101:552-65. [PMID: 17226771 DOI: 10.1002/jcb.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid, bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) was previously shown to be efficiently amplified to high copy number in mammalian cells and to generate chromosomal homogeneously staining regions (HSRs). The amplification mechanism was suggested to entail a head-on collision at the MAR between the transcription machinery and the hypothetical replication fork arriving from the IR, leading to double strand breakage (DSB) that triggered HSR formation. The experiments described here show that such plasmids are stabilized if collisions involving not only promoter-driven transcription but also promoter-independent transcription are avoided, and stable plasmids appeared to persist as submicroscopic episomes. These findings suggest that the IR sequence that promotes HSR generation may correspond to the sequence that supports replication initiation (replicator). Thus, we developed a "plasmid stability assay" that sensitively detects the activity of HSR generation in a test sequence. The assay was used to dissect two replicator regions, derived from the c-myc and DHFR ori-beta loci. Consequently, minimum sequences that efficiently promoted HSR generation were identified. They included several sequence elements, most of which coincided with reported replicator elements. These data and this assay will benefit studies of replication initiation and applications that depend on plasmid amplification.
Collapse
Affiliation(s)
- Toshihiko Hashizume
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | |
Collapse
|
142
|
Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH. Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science 2007; 317:675-8. [PMID: 17673665 DOI: 10.1126/science.1142953] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toll-like receptors (TLRs) trigger the production of inflammatory cytokines and shape adaptive and innate immunity to pathogens. We report the identification of B cell leukemia (Bcl)-3 as an essential negative regulator of TLR signaling. By blocking ubiquitination of p50, a member of the nuclear factor (NF)-kappaB family, Bcl-3 stabilizes a p50 complex that inhibits gene transcription. As a consequence, Bcl-3-deficient mice and cells were found to be hypersensitive to TLR activation and unable to control responses to lipopolysaccharides. Thus, p50 ubiquitination blockade by Bcl-3 limits the strength of TLR responses and maintains innate immune homeostasis. These findings indicate that the p50 ubiquitination pathway can be selectively targeted to control deleterious inflammatory diseases.
Collapse
Affiliation(s)
- Ruaidhrí J Carmody
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
143
|
Bode KA, Schroder K, Hume DA, Ravasi T, Heeg K, Sweet MJ, Dalpke AH. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology 2007; 122:596-606. [PMID: 17635610 PMCID: PMC2266046 DOI: 10.1111/j.1365-2567.2007.02678.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications of histone proteins are major mechanisms that modify chromatin structure and regulate gene expression in eukaryotes. Activation of histone acetyltransferases or inhibition of histone deacetylases (HDACs) is generally believed to allow chromatin to assume a more open state, permitting transcriptional activity. We report here the surprising observation that treatment of murine dendritic cells with the HDAC inhibitors trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) in non-apoptotic concentrations strongly inhibited induction of both interleukin-12 protein p40 (IL-12p40) mRNA and protein upon stimulation of Toll-like receptors (TLRs). Moreover, TLR-mediated up-regulation of costimulatory molecules was also inhibited. Up-regulation of tumour necrosis factor-alpha mRNA and protein in response to TLR agonists was only affected upon prolonged exposure to HDAC inhibitors and regulation of IL-1 beta was not affected. Similar effects were apparent in murine and human macrophages. Regarding the mode of action, HDAC inhibition increased the acetylation status at the IL-12p40 locus. Nevertheless, IL-12p40 chromatin remodelling, binding of Rel-A and IRF1 to the IL-12p40 promoter and transcriptional activation were abrogated. In contrast, HDAC inhibitors had no effects on upstream nuclear factor-kappaB and mitogen-activated protein kinase activation. Thus HDACs positively regulate the expression of a subset of cytokine genes by enabling transcription factor recruitment.
Collapse
Affiliation(s)
- Konrad A Bode
- Department of Medical Microbiology and Hygiene, University Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
144
|
Rafalska-Metcalf IU, Janicki SM. Show and tell: visualizing gene expression in living cells. J Cell Sci 2007; 120:2301-7. [PMID: 17606985 DOI: 10.1242/jcs.008664] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of non-invasive methods of visualizing proteins and nucleic acids in living cells has provided profound insight into how they move and interact with each other in vivo. It is possible to evaluate basic mechanisms of gene expression, and to define their temporal and spatial parameters by using this methodology to label endogenous genes and make reporter constructs that allow specific DNA and RNA regulatory elements to be localized. This Commentary highlights recent reports that have used these techniques to study nuclear organization, transcription factor dynamics and the kinetics of RNA synthesis. These studies show how imaging gene expression in single living cells can reveal new regulatory mechanisms. They also expand our understanding of the role of chromatin and RNA dynamics in modulating cellular responses to developmental and environmental signals.
Collapse
|
145
|
Krejčí A, Bray S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev 2007; 21:1322-7. [PMID: 17545467 PMCID: PMC1877745 DOI: 10.1101/gad.424607] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The CSL [CBF1/Su(H)/Lag2] proteins [Su(H) in Drosophila] are implicated in repression and activation of Notch target loci. Prevailing models imply a static association of these DNA-binding transcription factors with their target enhancers. Our analysis of Su(H) binding and chromatin-associated features at 11 E(spl) Notch target genes before and after Notch revealed large differences in Su(H) occupancy at target loci that correlated with the presence of polymerase II and other marks of transcriptional activity. Unexpectedly, Su(H) occupancy was significantly and transiently increased following Notch activation, suggesting a more dynamic interaction with targets than hitherto proposed.
Collapse
Affiliation(s)
- Alena Krejčí
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
- Corresponding author.E-MAIL ; FAX 44-1223-333840
| |
Collapse
|
146
|
Abstract
The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show 'ultradian' oscillations, with a time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NF-kappaB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour.
Collapse
Affiliation(s)
- G Tiana
- Department of Physics, University of Milano and INFN, Milano, Italy
| | | | | | | | | |
Collapse
|
147
|
Wang J, Wang X, Hussain S, Zheng Y, Sanjabi S, Ouaaz F, Beg AA. Distinct Roles of Different NF-κB Subunits in Regulating Inflammatory and T Cell Stimulatory Gene Expression in Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6777-88. [PMID: 17513725 DOI: 10.4049/jimmunol.178.11.6777] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TLRs play a critical role in inducing inflammatory and immune responses against microbial agents. In this study, we have investigated the role of NF-kappaB transcription factors in regulating TLR-induced gene expression in dendritic cells, a key APC type. The p50 and cRel NF-kappaB subunits were found to be crucial for regulating genes important for dendritic cell-induced T cell responses (e.g., CD40, IL-12, and IL-18) but not for genes encoding inflammatory cytokines (e.g., TNF-alpha, IL-1alpha, and IL-6). In striking contrast, the RelA subunit was crucial for expression of inflammatory cytokine genes but not T cell stimulatory genes. These novel findings reveal a fundamentally important difference in biological function of genes regulated by different NF-kappaB subunits. Focusing on RelA target gene specificity mechanisms, we investigated whether the kappaB site and/or the unique composition of RelA played the most crucial role. Surprisingly, studies of IL-6 expression showed that the kappaB site is not a primary determinant of RelA target gene specificity. Instead, a major specificity mechanism is the unique ability of RelA to interact with the transcriptional coactivator CREB-binding protein, a function not shared with the closely related cRel subunit. Together, our findings indicate novel and critically important overall roles of NF-kappaB in TLR-induced gene expression that are mediated by unique functions of distinct subunits.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Ozato K, Tailor P, Kubota T. The interferon regulatory factor family in host defense: mechanism of action. J Biol Chem 2007; 282:20065-9. [PMID: 17502370 DOI: 10.1074/jbc.r700003200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transcription factors of the interferon regulatory factor (IRF) family commands the entire type I interferon (IFN) system from induction of IFNs to diverse IFN responses, thereby providing a principal basis for host resistance against pathogens. However, the family has various additional roles. Regulating the development of the immune system, IRFs shape the establishment and execution of innate and adaptive immunity. IRFs also regulate growth and differentiation of many cell types, thus playing a role in leukemia and other cancers. In addition, evidence indicates that IRFs confer antiviral mechanisms not directly ascribed to the IFN system. This review deals with the diverse roles of IRFs in host defense and discusses the molecular mechanisms by which they regulate target gene transcription.
Collapse
Affiliation(s)
- Keiko Ozato
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
149
|
Macagno A, Napolitani G, Lanzavecchia A, Sallusto F. Duration, combination and timing: the signal integration model of dendritic cell activation. Trends Immunol 2007; 28:227-33. [PMID: 17403614 DOI: 10.1016/j.it.2007.03.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/01/2007] [Accepted: 03/19/2007] [Indexed: 02/07/2023]
Abstract
The activation of resting dendritic cells (DCs) is a crucial step in the initiation of adaptive immunity because it links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. It is well recognized that a wide variety of microbial products and endogenous signals can trigger DC activation, and that different DC subsets are specialized in inducing different classes of immune responses. In this review, we will focus on how different aspects of DC maturation are regulated not only by the nature of the DC maturation stimuli, but also by their duration, combination and timing, and provide an overview of how different modes of DC activation can affect T cell responses.
Collapse
Affiliation(s)
- Annalisa Macagno
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
150
|
Abstract
Genomes are more than linear sequences. In vivo they exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. I discuss here the functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus. Recent insights into the cell biology of genomes have overturned long-held dogmas and have led to new models for many essential cellular processes, including gene expression and genome stability.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|