101
|
Hildrestrand GA, Duggal S, Bjørås M, Luna L, Brinchmann JE. Modulation of DNA glycosylase activities in mesenchymal stem cells. Exp Cell Res 2009; 315:2558-67. [PMID: 19477173 DOI: 10.1016/j.yexcr.2009.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/28/2009] [Accepted: 05/19/2009] [Indexed: 11/19/2022]
Abstract
Adipose-tissue derived mesenchymal stem cells (AT-MSCs) are a promising tool for use in cell-based therapies. However, in vitro expansion is required to obtain clinically relevant cell numbers, and this might increase the chance of genomic instability. DNA repair is crucial for maintaining DNA integrity. Here we have compared the initial step of base excision repair in uncultured and cultured AT-MSCs by analysis of base removal activities and expression levels of relevant DNA glycosylases. Uracil, 5-hydroxyuracil and ethenoadenine removal activities were upregulated in cultured cells compared to uncultured cells. In contrast, both the 8-oxo-7,8-dihydroguanine (8-oxoG) removal activity and the concentration of 8-oxoG bases in the DNA were reduced in the cultured cells. Gene expression analysis showed no substantial changes in mRNA expression. The glycosylase activities remained stable through at least 12 passages, suggesting that DNA repair is proficient through the period required for in vitro expansion of AT-MSCs to clinically relevant numbers.
Collapse
Affiliation(s)
- Gunn A Hildrestrand
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
102
|
Akbari M, Peña-Diaz J, Andersen S, Liabakk NB, Otterlei M, Krokan HE. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity. DNA Repair (Amst) 2009; 8:834-43. [PMID: 19442590 DOI: 10.1016/j.dnarep.2009.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/03/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
Base excision repair (BER) of damaged or inappropriate bases in DNA has been reported to take place by single nucleotide insertion or through incorporation of several nucleotides, termed short-patch and long-patch repair, respectively. We found that extracts from proliferating and non-proliferating cells both had capacity for single- and two-nucleotide insertion BER activity. However, patch size longer than two nucleotides was only detected in extracts from proliferating cells. Relative to extracts from proliferating cells, extracts from non-proliferating cells had approximately two-fold higher concentration of POLbeta, which contributed to most of two-nucleotide insertion BER. In contrast, two-nucleotide insertion in extracts from proliferating cells was not dependent on POLbeta. BER fidelity was two- to three-fold lower in extracts from the non-proliferating compared with extracts of proliferating cells. Furthermore, although one-nucleotide deletion was the predominant type of repair error in both extracts, the pattern of repair errors was somewhat different. These results establish two-nucleotide patch BER as a distinct POLbeta-dependent mechanism in non-proliferating cells and demonstrate that BER fidelity is lower in extracts from non-proliferating as compared with proliferating cells.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, NTNU, N-7489 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
103
|
Visnes T, Doseth B, Pettersen HS, Hagen L, Sousa MML, Akbari M, Otterlei M, Kavli B, Slupphaug G, Krokan HE. Uracil in DNA and its processing by different DNA glycosylases. Philos Trans R Soc Lond B Biol Sci 2009; 364:563-8. [PMID: 19008197 DOI: 10.1098/rstb.2008.0186] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Uracil in DNA may result from incorporation of dUMP during replication and from spontaneous or enzymatic deamination of cytosine, resulting in U:A pairs or U:G mismatches, respectively. Uracil generated by activation-induced cytosine deaminase (AID) in B cells is a normal intermediate in adaptive immunity. Five mammalian uracil-DNA glycosylases have been identified; these are mitochondrial UNG1 and nuclear UNG2, both encoded by the UNG gene, and the nuclear proteins SMUG1, TDG and MBD4. Nuclear UNG2 is apparently the sole contributor to the post-replicative repair of U:A lesions and to the removal of uracil from U:G contexts in immunoglobulin genes as part of somatic hypermutation and class-switch recombination processes in adaptive immunity. All uracil-DNA glycosylases apparently contribute to U:G repair in other cells, but they are likely to have different relative significance in proliferating and non-proliferating cells, and in different phases of the cell cycle. There are also some indications that there may be species differences in the function of the uracil-DNA glycosylases.
Collapse
Affiliation(s)
- Torkild Visnes
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Reynaud CA, Delbos F, Faili A, Guéranger Q, Aoufouchi S, Weill JC. Competitive repair pathways in immunoglobulin gene hypermutation. Philos Trans R Soc Lond B Biol Sci 2009; 364:613-9. [PMID: 19010770 DOI: 10.1098/rstb.2008.0206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review focuses on the contribution of translesion DNA polymerases to immunoglobulin gene hypermutation, in particular on the roles of DNA polymerase eta (Poleta) in the generation of mutations at A/T bases from the initial cytosine-targeted activation-induced cytidine deaminase (AID)-mediated deamination event, and of Polkappa, an enzyme of the same polymerase family, used as a substitute when Poleta is absent. The proposition that the UNG uracil glycosylase and the MSH2-MSH6 mismatch recognition complex are two competitive rather than alternative pathways in the processing of uracils generated by AID is further discussed.
Collapse
Affiliation(s)
- Claude-Agnès Reynaud
- INSERM U783 Développement du système immunitaire, Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
105
|
Begum NA, Stanlie A, Doi T, Sasaki Y, Jin HW, Kim YS, Nagaoka H, Honjo T. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination. Proc Natl Acad Sci U S A 2009; 106:2752-7. [PMID: 19202054 PMCID: PMC2650371 DOI: 10.1073/pnas.0813252106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) introduces DNA cleavage in the Ig gene locus to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells. The DNA deamination model assumes that AID deaminates cytidine (C) on DNA and generates uridine (U), resulting in DNA cleavage after removal of U by uracil DNA glycosylase (UNG). Although UNG deficiency reduces CSR efficiency to one tenth, we reported that catalytically inactive mutants of UNG were fully proficient in CSR and that several mutants at noncatalytic sites lost CSR activity, indicating that enzymatic activity of UNG is not required for CSR. In this report we show that CSR activity by many UNG mutants critically depends on its N-terminal domain, irrespective of their enzymatic activities. Dissociation of the catalytic and CSR activity was also found in another UNG family member, SMUG1, and its mutants. We also show that Ugi, a specific peptide inhibitor of UNG, inhibits CSR without reducing DNA cleavage of the S (switch) region, confirming dispensability of UNG in DNA cleavage in CSR. It is therefore likely that UNG is involved in a repair step after DNA cleavage in CSR. Furthermore, requirement of the N terminus but not enzymatic activity of UNG mutants for CSR indicates that the UNG protein structure is critical. The present findings support our earlier proposal that CSR depends on a noncanonical function of the UNG protein (e.g., as a scaffold for repair enzymes) that might be required for the recombination reaction after DNA cleavage.
Collapse
Affiliation(s)
- Nasim A. Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Andre Stanlie
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomitsu Doi
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Sasaki
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Hai Wei Jin
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Yong Sung Kim
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Nagaoka
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
106
|
Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 2008; 43:239-76. [PMID: 18756381 DOI: 10.1080/10409230802309905] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Gent, Belgium
| | | |
Collapse
|
107
|
Visnes T, Akbari M, Hagen L, Slupphaug G, Krokan HE. The rate of base excision repair of uracil is controlled by the initiating glycosylase. DNA Repair (Amst) 2008; 7:1869-81. [PMID: 18721906 DOI: 10.1016/j.dnarep.2008.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/17/2008] [Accepted: 07/21/2008] [Indexed: 11/16/2022]
Abstract
Uracil in DNA is repaired by base excision repair (BER) initiated by a DNA glycosylase, followed by strand incision, trimming of ends, gap filling and ligation. Uracil in DNA comes in two distinct forms; U:A pairs, typically resulting from replication errors, and mutagenic U:G mismatches, arising from cytosine deamination. To identify proteins critical to the rate of repair of these lesions, we quantified overall repair of U:A pairs, U:G mismatches and repair intermediates (abasic sites and nicked abasic sites) in vitro. For this purpose we used circular DNA substrates and nuclear extracts of eight human cell lines with wide variation in the content of BER proteins. We identified the initiating uracil-DNA glycosylase UNG2 as the major overall rate-limiting factor. UNG2 is apparently the sole glycosylase initiating BER of U:A pairs and generally initiated repair of almost 90% of the U:G mismatches. Surprisingly, TDG contributed at least as much as single-strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1) to BER of U:G mismatches. Furthermore, in a cell line that expressed unusually high amounts of TDG, this glycosylase contributed to initiation of as much as approximately 30% of U:G repair. Repair of U:G mismatches was generally faster than that of U:A pairs, which agrees with the known substrate preference of UNG-type glycosylases. Unexpectedly, repair of abasic sites opposite G was also generally faster than when opposite A, and this could not be explained by the properties of the purified APE1 protein. It may rather reflect differences in substrate recognition or repair by different complex(es). Lig III is apparently a minor rate-regulator for U:G repair. APE1, Pol beta, Pol delta, PCNA, XRCC1 and Lig I did not seem to be rate-limiting for overall repair of any of the substrates. These results identify damaged base removal as the major rate-limiting step in BER of uracil in human cells.
Collapse
Affiliation(s)
- Torkild Visnes
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gate 1, Trondheim, Norway
| | | | | | | | | |
Collapse
|
108
|
Castillo-Acosta VM, Estévez AM, Vidal AE, Ruiz-Perez LM, González-Pacanowska D. Depletion of dimeric all-alpha dUTPase induces DNA strand breaks and impairs cell cycle progression in Trypanosoma brucei. Int J Biochem Cell Biol 2008; 40:2901-13. [PMID: 18656547 DOI: 10.1016/j.biocel.2008.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 11/17/2022]
Abstract
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is responsible for the control of intracellular levels of dUTP thus controlling the incorporation of uracil into DNA during replication. Trypanosomes and certain eubacteria contain a dimeric dUTP-dUDPase belonging to the recently described superfamily of all-alpha NTP pyrophosphatases which bears no resemblance with typical eukaryotic trimeric dUTPases and presents unique properties regarding substrate specificity and product inhibition. While the biological trimeric enzymes have been studied in detail and the human enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies, little is known regarding the biological function of dimeric proteins. Here, we show that in Trypanosoma brucei, the dimeric dUTPase is a nuclear enzyme and that down-regulation of activity by RNAi greatly reduces cell proliferation and increases the intracellular levels of dUTP. Defects in growth could be partially reverted by the addition of exogenous thymidine. dUTPase-depleted cells presented hypersensitivity to methotrexate, a drug that increases the intracellular pools of dUTP, and enhanced uracil-DNA glycosylase activity, the first step in base excision repair. The knockdown of activity produces numerous DNA strand breaks and defects in both S and G2/M progression. Multiple parasites with a single enlarged nucleus were visualized together with an enhanced population of anucleated cells. We conclude that dimeric dUTPases are strongly involved in the control of dUTP incorporation and that adequate levels of enzyme are indispensable for efficient cell cycle progression and DNA replication.
Collapse
Affiliation(s)
- Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18100-Armilla, Granada, Spain
| | | | | | | | | |
Collapse
|
109
|
Akbari M, Krokan HE. Cytotoxicity and mutagenicity of endogenous DNA base lesions as potential cause of human aging. Mech Ageing Dev 2008; 129:353-65. [PMID: 18355895 DOI: 10.1016/j.mad.2008.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 11/26/2022]
Abstract
Endogenous factors constitute a substantial source of damage to the genomic DNA. The type of damage includes a number of different base lesions and single- and double-strand breaks. Unrepaired DNA damage can give rise to mutations and may cause cell death. A number of studies have demonstrated an association between aging and the accumulation of DNA damage. This may be attributed to reduced DNA repair with age, although this is apparently not a general feature for all types of damage and repair mechanisms. Therefore, detailed studies that improve our knowledge of DNA repair systems as well as mutagenic and toxic effects of DNA lesions will help us to gain a better insight into the mechanisms of aging. The aim of this review is to provide a brief description of cytotoxic and mutagenic endogenous DNA lesions that are mainly repaired by base excision repair and single-strand break repair pathways and to discuss the potential role of DNA lesions and DNA repair dysfunction in the onset of human aging.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|